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Abstract

In multi-platform genomic data analysis, multiple large sequences are observed from normal and abnormal

subjects, and the sample sizes are relatively small. How to analyze such data jointly is challenging. Existing

methods include the Lasso or graphical Lasso by selecting only few of the data for the analysis, resulting

in information loss and possible biases. Here we propose two new methods: the integrative correlation to

characterize the innate relationships within the sequences, and the empirical process/the smoothing method

to combine information for prediction. These methods take the full data into the analysis and are very simple

to use. Simulation studies are conducted to evaluate the performance of the methods, and a real multi-platform

genomic data is analyzed to illustrate the application of the second method.
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1. Introduction

With the development of biotechnology, ultra-high dimensional genetic data are available. A typ-

ical character for such data is small n (sample size, often 10 - 100), large m (data dimension,

often 10,000 or millions) and often with several different types of data with varied sample sizes and

dependence relationships. How to analyze such data is a practical challenge, and new statistical

methods are in demand for interpreting the wealth of data into biologically and clinically meaning-

ful information. The integrative analysis is a recent research topic, which aims to deal with this

problem.

Many existing methods analyze each variable separately. For example, individual datasets for

genes, methylations or microRNAs were analyzed extensively for the disease diagnosis and prog-

nosis study (Ramaswamy et al., 2001; Mikeska et al. 2012), little has been done on combining all
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the information as an integrated dataset for the same study. DNA methylation has been thought

as being an essential role of gene expression, usually negatively correlated with gene expression.

However, recent studies on the relationship between DNA methylation, gene expression suggested a

more complicated situation (Jones et al., 2013; Wagner et al., 2014). The methylation can be either

active or passive related to gene expression, and there also exist situations that they are indepen-

dently affected by small nucleotide polymorphism (SNP). Therefore, genomic data obtained from

gene, transcript or methylation studies may have both common and unique information regarding

the disease progress.

One may attempt to use traditional methods for these types of data, such as regression, but the

large number of parameters is prohibitive for estimation. Existing methods are to use the LASSO

(Tibshirani, 1996; 1997) to select only a few significant components, or to use the graphical model

(For example, Edward, 2000; Anandkumar et al., 2012) on each variable separately. These methods

will lead to information loss.

The integrative analysis is aimed at analyzing the mentioned types of data jointly, to gain more

information and efficiency. Although there is no formal definition of integrative analysis, Li et al.,

(2009) used such method in the analysis of gene expression data. Zhang, Fang and Li (2015) used

such method for gene expression and methylation analysis. Lin et al (2015) considered survival

model for a similar problem. Wei (2015) gives a review of methods in this filed, and summarized

the current methods as for several goals: dealing with batch effects for single data type, multiple data

type, single data with survival data, multiple data with multiple study. In terms of methods used,

these methods are summarized into linear/regression model, hierarchical model, Bayesian model,

and survival model. In integrative analysis, we are to analyze the data jointly, instead of separately.

We need to infer the relationships among the different types of data for this problem. Here we

consider two methods for this problem under different assumptions of the data information, one

attempts to capture the inner relationships among the data types, another aims at the basic structures

of the data sequences. Simulation studies are conducted to evaluate the performance of the methods,

and then one method is used to analyze a real data.
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2. The proposed methods

We consider two methods for this problem based on different assumptions. The first method, the

integrative correlation, assuming patterned structure of the data, attempts to capture the inner re-

lationships among the data types. The second method, the smoothed empirical process method,

assuming known ordering of the data sequence, aims at the basic structures of the data sequences.

Below we describe them one by one.

2.1 the integrative correlation

With this method, we assume that the ordering of the data is unknown, so it cannot be treated as data

processes. Also, the correspondence relationships among the measurements are unknown, and they

have different lengths, so the relationships among them cannot be directly computed. With these

assumption on the data, we introduce the integrative correlation.

We consider a typical data format: data collected from n(= 150) normal individuals (control)

and n1(= 100) tumor patients (case). For each individual, measurements of m1(= 20, 000) genes

(G, copy numbers), of m2(= 7000) proteins (P), of m3(= 9000) methylations (M), and of m4(=

10000) SNPs (S, 0,1,2 valued) are collected. The variables G, P, M are continuous. The goal is to

predict patient/normal status based on an individual’s measurements.

As an assumption, there are patterned relationships among the measurements in normal individ-

uals, while there is no regular relationships among the measurements in patients. So, we only need

data from normal individuals to infer such relationships. Let gij be the measurement of j-th gene

of the i-th individual, pij be that for the j-th protein, mij be that of the j-th methylation, and sij

be that for the j-th SNP; gi = (gi1, ..., gi,m1), pi = (pi1, ..., pi,m2), mi = (mi1, ...,mi,m3), and

si = (si1, ..., si,m3), (i = 1, ..., n1). For two data sequences x = (x1, ..., xm) and y = (y1, ..., ym),

there are m(m− 1)/2 correlation coefficients among their components. If we use canonical corre-

lation between x and y, we still need to compute all the m(m− 1)/2 correlations. When m is large

and the sample size n is relatively small (like our case m ≈ 10, 000, n ≈ 100), estimating these

coefficients does not make sense. For a normal individual, often the components of genetic material

have some innate connection. For example, the measurements gi of genes from individual i may

have the form

gij = g(tj) + εij , (i = 1, ..., n; j = 1, ...,m)
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where g(·) is some determinant function reflecting the inner relationship among the genes, tj is the

position of the j-th gene, and εij is random error. While for abnormal individuals, often such a

systematic relationship does not function, or only partially functions, so the measurments among

the sequence are more random, or the relationship obeys different rules.

To capture the inner relationship among the components of sequence measurements, we intro-

duce a single new measure, the integrative correlation between two sequences.

Let x̄ = m−1
∑m

i=1 xi, ȳ = m−1
∑m

i=1 yi, Con(x,y) = m−1
∑m

i=1(xi − x̄)(yi − ȳ) =

m−1
∑n

i=1 xiyi−x̄ȳ,D2(x) = m−1
∑m

i=1(xi−x̄)2 = m−1
∑n

i=1 x
2
i−x̄2,D2(y) = m−1

∑m
i=1(yi−

ȳ)2 = m−1
∑n

i=1 y
2
i − ȳ2, and define the integrative correlation between two sequences x and y as

Icor(x,y) = E(x,y)[Cor(x,y)], with Cor(x,y) =
Con(x,y)

D(x)D(y)
.

Note that the quantities D2(x), Con(x,y) and Icor(x,y) look like the empirical variance of

some random variable x, the empirical covariance and the empirical correlation between two ran-

dom variables (x, y), respectively, but in fact they are not. For independent observations (x1, ..., xn) ∼

x and (y1, ..., yn) ∼ y, if x and y are independent, then the empirical correlation based on (x1, ..., xn)

and (y1, ..., yn) is ≈ 0. But for two independent sequence data, x and y, Icor(x,y) can take any

value in the interval [−1, 1]. It measures the concordance among the components of x and those of

y. If x and y are in perfect positive concordance, i.e., yi ≈ xi (i = 1, ...,m), then Icor(x,y) ≈ 1,

even if x and y are independent; if x and y are in perfect negative concordance, i.e., yi ≈ −xi
(i = 1, ...,m), then Icor(x,y) ≈ −1, even if x and y are independent; if the components of x

and y have no concordance, then Icor(x,y) ≈ 0. Also, the correlation between two iid copies

of a random variable itself is always 1, but Icor(x1,x2) between two iid copies of x is generally

less than 1. For the gene measurement example, if g(·) ≡ some constant, only then the integrative

correlation is the classical correlation.

We define the integrative correlation of x itself as Icor(x1,x2), for any two iid copies of x, and

denote it as Icor(x). Intuitively, generally we have Icor(x,y) < Icor(x), and a pair of sequences

from the normal population will be more concordant than a pair with one from a normal individual

and one from an abnormal individual. Based on this, we can construct statistics using the integrative

correlations to diagnose an individual to be normal or not.

As an example, x = (x1, ..., xm), xi = sin(i) + εi, the ε′is are iid N(0, 1). x1 = (x11, ..., x1m)

and x2 = (x21, ..., x2m) are two iid copies of x. Then by Cauchy-Schwarz inequality −1 ≤
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Cor(x1,x2) ≤ 1, with “=” if and only if x1i = cx2i (i = 1, ..,m) for some non-zero and finite

constant c. Since this condition is not satisfied, we have −1 < Cor(x1,x2) < 1 for any iid copies

x1 and x2 of x, and so −1 < Icor(x) < 1.

Given n iid copies x1, ...,xn ∼ x, since the distribution of x is unknown, an estimate of Icor(x)

is the U-statistic (Hoeffding, 1948; 1961)

Îcorn(x) =
1

n(n− 1)

n∑
i6=j

Cor(xi,xj).

Now coming to our problem, we have four measures Icor(g), Icor(p), Icor(m) and Icor(s)

for g,p,m and s. Their estimates are

Îcorn(g) =
1

n(n− 1)

n∑
i6=j

Icor(gi,gj), Îcorn(p) =
1

n(n− 1)

n∑
i6=j

Icor(pi,pj),

Îcorn(m) =
1

n(n− 1)

n∑
i6=j

Icor(mi,mj), Îcorn(s) =
1

n(n− 1)

n∑
i6=j

Icor(si, sj). (1)

Let δ = (Icor(g), Icor(p), Icor(m), Icor(s))′, and

δ̂n = (Îcorn(g), Îcorn(p), Îcorn(m), Îcorn(s))′ (2)

Then from standard U-statistics theory, as n→∞, µ̂n
a.s.→ µ, and

√
n
(
δ̂n − δ

) D→ N(0,Ω), or n
(
δ̂n − δ

)
Ω−1

(
δ̂n − δ

)′ D→ χ2
4.

To compute Ω, we need the following notations. Let yi = (gi,pi,mi, si),

h(yi) =
(
E[Cor(gi,gj)

∣∣gi], E[Cor(pi,pj)
∣∣pi], E[Cor(mi,mj)

∣∣mi], E[Cor(si, sj)
∣∣si])′ − δ,

then (see, for example, Serfling, 1980)

Ω = 4E[h(y)h′(y)].

Let

hn(yi) =
1

n

n∑
j 6=i

(
Cor(gi,gj), Cor(pi,pj), Cor(mi,mj), Cor(si, sj)

)′ − δ̂n.

Then Ω is estimated by

Ω̂n =
4

n

n∑
i=1

hn(yi)h
′
n(yi). (3)

JSM 2016 - Statistics Without Borders

3906



Thus for given nominal level α, the (1− α)-th joint confidence region Rn(α) of δ can be obtained

as

Rn(α) =
{

µ : n
(
δ − δ̂n)′Ω−1

(
δ − δ̂n

)
≤ χ2

4(1− α)
}
,

where χ2
4(1− α) is the (1− α)-th upper quantile of χ2

4.

For a new individual j with measurements yj = (gj ,pj ,mj , sj), compute the statistic

t(yj) =
1

n

n∑
i=1

(
Cor(gi,gj), Cor(pi,pj), Cor(mi,mj), Cor(si, sj)

)′
. (4)

If t(yj) ∈ Rn(α) or

n
(
t(yj)− δ̂n

)′
Ω−1

(
t(yj)− δ̂n

)
≤ χ2

4(1− α) (5)

we diagnose individual j as normal, otherwise abnormal.

2.2 Smoothed Empirical process

The method of integrative correlation assumes that the normal and abnormal populations have dif-

ferent innate relation structures. In practice, many data may not satisfy this assumption. In this

case we consider the smoothed empirical process method, it requires the ordering of the sequences

to be known. Numerous other methods can be used for this problem. We are more interested in

methods using all the data information, thus excluding variable selection methods such as LASSO

and principal components analysis. A natural candidate is the empirical process method. The genes,

SNPs, and proteins are well studied, their ordering and genetic distances among them, and the cor-

respondence between each gene and each protein can all be find from internee. But methylation

has no ordering and location information. Thus this method only applies to the (gi(·),pi(·), si(·))’s

(i = 1, ..., n), viewed as observed processes. Here the (gi(·),pi(·), si(·))’s are the re-arranged ver-

sions of the original data, in orderings according to their genetic orderings and correspondences as

searched from the Internet.

Let xi(·) = (gi(·),pi(·), si(·))′, x̄(·) = n−1
∑n

i=1 xi(·), and µ(·) = E[xi(·)]. Then under

suitable conditions,
√
n
(
x̄(·)− µ(·)

) D⇒W(·),

where W(·) is a mean zero Gaussian process, with a covariance function σ(s, t) = E[W (s)W (t)]
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which can be determined. In particular, at each fixed t, the variance at t is estimated by

σ2(t) =
1

n− 1

n∑
i=1

(
xi(t)− x̄(t)

)(
xi(t)− x̄(t)

)′
and for given level α, we can construct level (1− α) confidence band for µ(·).

Let µ0(·) and µ1(·) be the empirical mean for the normal and abnormal populations, σ20(·) and

σ21(·) be the corresponding variance functions, and n0 and n1 be the corresponding sample sizes.

Then the level 1− α confidence bands for normal and abnormal populations can be obtained as

[µ0(·)± n
−1/2
0 1.96σ0(·)], [µ1(·)± n

−1/2
1 1.96σ1(·)]

For a new data xj(·), we classify the underlying individual as normal or abnormal by comparing its

relationships to the two bands.

However, in practice often the data are very noise, directly using the empirical process method

does not work well. In this case, we consider smoothing method to reduce the noises. For this,

let k(·) be a density function (typically, we can take k(·) = φ(·), the density function of N(0,1)).

We use the Nadaraya-Watson smoother (Nadaraya, 1964; Watson, 1964). For simple of exposition,

we first deal with each measurement separately. Let µ0(t)and µ1(t) as given before. For simple of

exposition, we conly consider gene only. The smoothed version is

µ̄0(t) =

∑m
j=1 µ0(tj)k(

tj−t
h )∑m

j=1 k(
tj−t
h )

, t ∈ T.

where h > 0 is the bandwidth. It is known that the method is not sensitive to the choices of the

kernel, but is very sentsitive to the choice of the bandwidth. For convenience, we choose k(·) to be

the density of N(0,1). There are various choices of the badwidth h, vary from simple to complicated.

For simplicity we choose h = O(n−5/12). The bandwidth can be used to control the amount for

smoothness. The larger h is, the more smooth the curve.

The variance of µ̄0(t) is approximated as

σ̄20(t) ≈ σ20(t)

∫
t2k(t)dt

nh
.

Define µ̄1(t) similarly and obtain σ̄21(t) similarly. The 1 − α confidence bands for normal and

abnormal populations as, for α =5%,

[µ̄0(·)± n
−1/2
0 1.96σ̄0(·)], [µ̄1(·)± n

−1/2
1 1.96σ̄1(·)].
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In R, the function ksmooth in stat package is used to compute µ̄(·).

For a coming subject with observation {g(t) : t ∈ T}. We first smooth it by the method above,

to get ḡ(·). Then compute its projections onto the two profiles µ̄0(·) and µ̄1(·),

〈ḡ, µ̄0〉 =

∫
T ḡ(t)µ̄0(t)dt

||ḡ|| ||µ̄0||
, 〈ḡ, µ̄1〉 =

∫
T ḡ(t)µ̄1(t)dt

||ḡ|| ||µ̄1||
,

where, for a function g, ||g||2 =
∫
T g

2(t)dt. Geometrically, 〈ḡ, µ̄0〉 is the cosine value of the angle

between the ḡ and µ̄0, and large value of it means closeness of the two curves. Thus we classify this

subject is normal if 〈ḡ, µ̄0〉 > 〈ḡ, µ̄1〉, otherwise abnormal.

3. Simulation study and application

3.1 Simulation study for integrative correlation method

We simulate n = 150 normal individuals and n1 = 100 abnormal individuals, each with measure-

ments on log of gene copy numbers g on m1 = 20, 000 genes, on proteins p with m2 = 12, 000

measurements, on methylations m with m3 = 16, 000 components, and on SNPs s with m4 =

12, 000 locus sites. The measurements are correlated within the same individual, to reflect this, we

use successive conditioning sampling. We distinguish normal and abnormal individuals.

Data for normal individuals are generated as below.

For each i = 1, ..., n, to sample gi = (gi,1, ..., gi,m1),

gij ∼ sin(2j) +
1

100
εij , εij ∼ N(0, 102), (j = 1, ...,m1).

To sample pi = (pi,1, ..., pi,m2),

pij ∼ sin(2j) +
1

100
εij , εij ∼ N(0, 122), (j = 1, ...,m2).

To sample mi = (mi,1, ...,mi,m3),

mij ∼ sin(4j) +
1

100
εij , εij ∼ N(0, 112), (j = 1, ...,m3).

To sample si = (si,1, ..., si,m4), si,1 ∼ multinomial(1, p0), with p0 = (0.3, 0.35, 0.35)′. We

first sample a continuous xi = (xi,1, ..., xi,m4)’s, xi,1 ∼ | sin(20)|+ εi1 + 2, with εi1 ∼ N(µx, σ
2
x),

µx = 0, σx = 0.55. For j = 2, ..., s1, sample xi,j |xi,j−1 ∼ | sin(20j)| + εij + 2, with εij ∼
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Table 1: Type I error of Simulation Data for Integration Correlation Method

measure gene protein methylation SNP Type I error

simulation 1 N(0, 102) N(0, 122) N(0, 112) N(0, 0.552)

ρ = 0.95 0.040

simulation 2 N(0, 112) N(0, 122) N(0, 92) N(0, 0.52)

ρ = 0.961 0.04667

simulation 3 N(0, 82) N(0, 142) N(0, 122) N(0, 0.52)

ρ = 0.96 0.0533

N(µx + ρx(xi,j−1 − µx), (1 − ρ2x)σ2x), with ρx = 0.95.let xi standardize normal to yi. Let q0 be

the p0-th quantile of yi, q1 be the (p0 + p1)-th quantile, and q2 = ∞. Then define si,j = k, if

qk < yi,j ≤ qk+1, (k = 0, 1, 2).

Data for normal individuals are generated below.

For each i = 1, ..., n1, to sample gi = (gi,1, ..., gi,m1),

gij ∼ sin(2j) +
1

100
εij , εij ∼ N(0, 10.32), (j = 1, ...,m1).

To sample pi = (pi,1, ..., pi,m2),

pij ∼ sin(2j) +
1

100
εij + 2, εij ∼ N(0, 12.22), (j = 1, ...,m2).

To sample mi = (mi,1, ...,mi,m3),

mij ∼ sin(4j) +
1

100
εij + 1, εij ∼ N(0, 11.22), (j = 1, ...,m3).

for the abnormal individuals the parameters change( for example gene expression with µ =

0, σ = 0.58), detailed parameters are displayed in Table1 and Table 2.

After the data generated, for the normal individuals, compute µ̂n as in (1) and (2), and Ω̂n as in

(3). Then for each incoming individual j with data yj = (gj ,pj ,mj , sj), compute t(yj) as in (4),

and check if (5) is satisfied or not, to classify this individual as normal or abnormal. Type I error

and Power are calculated to evaluate the performance of simulations.
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Table 2: Power of Simulation Data for Integration Correlation Method

measure gene protein methylation SNP power

simulation 1 N(0, 10.32) N(0, 12.22) N(0, 11.22) N(0, 0.582)

ρ = 0.95

p0 = (0.3, 0.35, 0.35)′ 0.85

simulation 2 N(0, 11.22) N(0, 12.22) N(0, 9.32) N(0, 0.52)

ρ = 0.961

p0 = (0.3, 0.364, 0.336)′ 0.87

simulation 3 N(0, 8.32) N(0, 14.22) N(0, 12.22) N(0, 0.52)

ρ = 0.9615

p0 = (0.3, 0.35, 0.35)′ 0.94

Table 3: Simulation Data for Smoothed Emprical Process Method

measure Normal Abnormal prediction accuracy for normal prediction accuracy for abnormal

simulation 1 N(0, 0.82) N(0, 2.52) 0.807 0.89

simulation 2 N(0, 0.52) N(0, 1.52) 0.80 0.90

3.2 Simulation study for smoothed emprical process method

We simulate gene expression information for n = 150 normal individuals and n1 = 100 abnormal

individuals. Data for normal individuals are generated below. For each i = 1, ..., n, to sample

gi = (gi,1, ..., gi,m1),

gij ∼ sin(j) + εij , εij ∼ N(0, 0.82), (j = 1, ...,m1).

Data for abnormal individuals are generated below. For each i = 1, ..., n1, to sample gi =

(gi,1, ..., gi,m1),

gij ∼ sin(j) + εij , εij ∼ N(0, 2.52), (j = 1, ...,m1).

Detailed simulation parameters and the proportion of correct classification for both normal and

abnormal patients are reported in Table 3.
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3.3 Application of the smoothed emprical process method to real data

In this section, we will use data from The Cancer Genome Atlas (TCGA) project at NIH for the

study of the Ovarian Carcinoma disease from 2001-2010. There are 330 individuals in this data,

with 92 disease free and 238 recurred/ progressed. For each patient, he or she contains information

of 10521 gene and 172 protein.

For this data, the normal/abnormal status are known, so simulation study is not necessary and

we analyze the data directly. The data is from two platforms: the gene expression data and the

protein data. For this data, the ordering of the sequences are known, so both methods can be

used. We computed integrative correlations for the normal and abnormal populations, and found

no significance difference in the correlation structures. So we used the smoothed empirical process

method to analyze the data. The results are plotted in Figures 1 and 2.

From the Figures, we see that smoothed empirical mean curves can characterize the stable struc-

ture of both gene and protein information. After smoothing these means, the projections of a new

patient between normal and abnormal smoothed means are compared. For the gene expression data,

62.0% normal patients and 92.9% abnormal patients are correctly predicted. For the protein data,

64.1% normal patients and 67.6% abnormal patients are correctly predicted.
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Figure 1: Gene expression for normal and abnormal populations

0 2000 4000 6000 8000 10000

−0
.4

0.
0

0.
4

smoothed mean value of gene of normal patients

Index

m
ea

nG

0 2000 4000 6000 8000 10000

−0
.2

0.
0

0.
2

smoothermean value of gene of abnormal patients

Index

m
ea

nA
G

JSM 2016 - Statistics Without Borders

3913



0 50 100 150

−0
.2

0.
2

0.
4

smoothed mean value of protein of normal patients

Index

m
ea

nP

0 50 100 150

−0
.2

0.
0

0.
2

0.
4

smoothed mean value of protein of abnormal patients

Index

m
ea

nA
P

Figure 2: protein for normal and abnormal populations
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