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Abstract
This study discusses difficulties of effect comparisons in multilevel structural equation models

with non-metric outcomes, such as nonlinear dyadic mixed-effects regression. In these models, the
fixation of the level-1 error variances induces substantial drawbacks in the context of effect com-
parisons which align with the well-known problems of standard single- and multilevel nonlinear
models. Specifically, the level-1 and level-2 coefficients as well as the level-2 variance compo-
nents are implicitly rescaled by the amount of unobserved level-1 residual variation and thus may
apparently differ across (and within) equations despite of true effect equality. Against this back-
ground, the present study discusses a multilevel extension of the method proposed by Sobel and
Arminger (1992) with which potential differences in level-1 residual variation can be taken into
account through the specification of non-linear parameter constraints. The problems of effect com-
parisons in multilevel probit SEM’s and the proposed correction method are exemplified with a
simulation study.
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1. Introduction

Nonlinear regression methods – such as logit and probit models – involve a number of
distinctive features, resulting in substantial difficulties in the context of effect comparisons
between different model specifications and/ or groups. Specifically, the fixed error variance
in nonlinear models (logit V (ε) = π2

3 , probit V (ε) = 1) leads to implicitly rescaled coeffi-
cients, which additionally depend on the extent of unobserved residual variation such that
naive effect comparisons can lead to false conclusions. In a multilevel setup with categori-
cal y variables, the same holds true for the respective level-1 residual variation. Against this
background, various correction techniques have been introduced for effect comparisons in
single- as well as multilevel regression models with non-metric outcomes. In the case of
standard logit and probit models, e.g. the usage of y∗-standardized coefficients, average
marginal effects (AME’s) or the KHB method have been proposed for effect comparisons
across different model specifications (Karlson et al. 2012, Mood 2010), whereas correction
methods in the context of group comparisons are discussed by Allison (1999) and Williams
(2009, 2010, cf. also Long 2009). Concerning multilevel regression with non-metric de-
pendent variables, effect comparisons between different nested models can be carried out
through the usage of the rescaling procedures proposed by Hox (2010) and Bauer (2009,
cf. also Fielding 2004).

Furthermore, it can be shown that problems of effect comparisons also arise in nonlin-
ear models with multiple outcomes, such as dyadic logit and probit regression in a structural
equation modeling framework (Stein / Pavetic 2013, Kern / Stein 2015). In this case, ef-
fect comparisons between and within equations are likewise complicated by the implicit
fixation of error variances, leading to potential drawbacks when the assumption of equal
residual variation is not met. A potential solution in the case of single-level probit SEM’s
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has been proposed by Sobel and Arminger (1992) through the specification of non-linear
parameter constraints.

Combining the multilevel and multivariate perspective, the present study discusses dif-
ficulties of effect comparisons in multilevel structural equation models with non-metric
outcomes. In this context, it can be demonstrated that the level-1 and level-2 coefficients
as well as the level-2 variance components are implicitly rescaled by the amount of unob-
served level-1 residual variation and thus may apparently differ across (and within) equa-
tions despite of true effect equality. Consequently, a correction method is also needed in
this case. Against this background, the present study discusses a multilevel extension of the
Sobel and Arminger (1992) approach, with which potential differences in level-1 residual
variation can be taken into account within the specification of equality constraints. This
approach thereby enables the researcher to impose “robust” equality restrictions for effect
comparisons between and within level-1 and level-2 equations. However, it is important
to note that this approach rests on the initial assumption of true effect equality between
equations and therefore involves the same limitations as the corresponding procedure in
the single-level case (Kern / Stein 2015).

In the following, section 2 outlines the issue of implicit rescaling in mixed-effects mod-
els with multiple non-metric outcomes and introduces non-linear parameter constraints in
the multilevel SEM context. In section 3, the problems of effect comparisons in multilevel
probit SEM’s and the proposed correction method are exemplified with a simulation study.
Finally, limitations of the proposed approach are discussed in the last section (4) of this
paper.

2. Effect comparison in mixed-effects probit SEM’s

2.1 Implicit rescaling

Denoting y∗pij the p–th latent response variable (p = 1, ..., P ) for individual i = 1, ..., Nj in
cluster j = 1, ..., C, one can set up a two-level structural equation model by decomposing
y∗pij into a within (y∗wpij) and a between (y∗bpj) component (Asparouhov / Muthén 2007):

y∗pij = y∗wpij + y∗bpj (1)

On this basis, structural equations and measurement equations can be specified on both
levels. On level-1, these equations are given by:

y∗wij = Λwηwij + εwij (2)

ηwij = Bwηwij + Γwxwij + ζwij (3)

Likewise, the level-2 equations are:

y∗bj = vb + Λbηbj + εbj (4)

ηbj = αb + Bbηbj + Γbxbj + ζbj (5)

The following sections focus solely on the structural part, thus it is assumed that each of
the latent ηij variables is perfectly measured by one y∗ij variable (Λw = I, Λb = I, vb = 0,
εwij = 0 and εbj = 0.).

On this basis, ηwij represents a (M × 1) vector of latent dependent variables on level-1
(within-part of ηij), Bw is a (M ×M ) matrix of regression coefficients covering relation-
ships between the ηwij variables, Γw contains a (M × Q1) matrix of within regression
slopes, xwij is a (Q1 × 1) vector of (observed) independent variables on level-1 and ζwij
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is a (M × 1) vector of level-1 residuals with ζwij ∼ N (0,Ψw). Correspondingly, ηbj
represents a (M × 1) vector of latent dependent variables on level-2 (between-part of ηij),
αb is a (M × 1) vector of level-2 intercepts, Bb is a (M ×M ) matrix of coefficients cov-
ering relationships between the ηbj variables, Γb contains a (M × Q2) matrix of between
regression slopes, xbj is a (Q2 × 1) vector of (observed) independent variables on level-2
and ζbj is a (M × 1) vector of level-2 residuals with ζbj ∼ N (0,Ψb). With this setup, the
diagonal elements of Ψb allow the specification of random intercepts for ηbj .

Without a measurement model, the reduced form equations for the y∗ variables are

y∗wij = (I−Bw)−1Γwxwij + εwij (6)

y∗bj = (I−Bb)
−1αb + (I−Bb)

−1Γbxbj + εbj (7)

with εwij ∼ N (0,Σw) and εbj ∼ N (0,Σb). In this case, the covariance matrices Σw and
Σb are given by:

Σw = (I−Bw)−1Ψw(I−Bw)′−1 (8)

Σb = (I−Bb)
−1Ψb(I−Bb)

′−1 (9)

With categorical observed y variables, restrictions have to be introduced into the model
structure. Relating y and y∗ with a threshold model, αb = 0 has to be imposed since a
simultaneous specification of all intercepts and thresholds leads to identification issues.

Most importantly, additional standardizations have to be made with respect to Σw and
Ψw. First, a diagonal matrix ∆w with elements 1/

√
Σwmm is introduced in order to nor-

malize Σw so that diag(Σ∗w) = I (resulting in a multivariate probit model for y∗ijs). In this
case, Σw and Σ∗w as well as Σb and Σ∗b are related as follows:

Σ∗w = ∆wΣw∆w (10)

Σ∗b = ∆wΣb∆w (11)

Secondly, identifying assumptions have to be made concerning the unobservable error vari-
ances of Ψw within Σw, whereas in the following the standardization diag(Ψ∗w) = I is
imposed (Theta parameterization; Muthén / Asparouhov 2002). More explicitly, the unre-
stricted Ψw matrix

Ψw =


ψw11 ψw12 · · · ψw1m
ψw21 ψw22 · · · ψw2m

...
...

. . .
...

ψwm1 ψwm2 · · · ψwmm

 (12)

is replaced by

Ψ∗w =


1 ψ∗w12 · · · ψ∗w1m

ψ∗w21 1 · · · ψ∗w2m
...

...
. . .

...
ψ∗wm1 ψ∗wm2 · · · 1

 (13)

through the (implicit) introduction of

∆∗w =


σw1 0 · · · 0
0 σw2 · · · 0
...

...
. . .

...
0 0 · · · σwm


−1

. (14)
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In this context, ∆∗w contains the inverted standard deviations of the unobserved level-1
residuals with σwm =

√
ψwmm. The relation between Ψw and Ψ∗w is given by:

Ψ∗w = ∆∗wΨw∆∗w (15)

Applying the first standardization through the introduction of ∆w, the two-level model for
the standardized y∗ variables follows

y∗wijs = ∆w(I−Bw)−1Γwxwij + ε∗wij (16)

y∗bjs = ∆w(I−Bb)
−1Γbxbj + ε∗bj (17)

with ε∗wij ∼ N (0,Σ∗w) and ε∗bj ∼ N (0,Σ∗b).
Furthermore – building on the previous differentiation between Ψw and Ψ∗w – it be-

comes clear that (16) and (17) are subject to a second standardization. With the fixation of
the level-1 error variances of Ψw within Σ∗w, the elements of (16) and (17) are implicitly
rescaled through the additional introduction of ∆∗w. More specific, the relationships be-
tween the standardized and fully standardized matrices are given by (cf. Sobel / Arminger
1992, Stein / Pavetic 2013):

B∗w = ∆∗wBw∆∗−1w (18)

B∗b = ∆∗wBb∆
∗−1
w (19)

Γ∗w = ∆∗wΓw (20)

Γ∗b = ∆∗wΓb (21)

Ψ∗b = ∆∗wΨb∆
∗
w (22)

Thus, as a result of diag(Ψ∗w) = I, the estimable level-1 and level-2 coefficients addition-
ally depend on the amount of unobserved level-1 error variation.

2.2 Non-linear constraints

Using scalar notation, equation (18) implies that e.g. β∗w31 = σw1βw31

σw3
and β∗w32 = σw2βw32

σw3
.

Likewise, equation (20) corresponds to γ∗w1q =
γw1q

σw1
and γ∗w2q =

γw2q

σw2
, while equation (21)

implies that γ∗b1q =
γb1q
σw1

and γ∗b2q =
γb2q
σw2

. On this basis, effect comparisons between (Γ∗w,
Γ∗b ) and within (B∗w, B∗b ) equations can lead to false conclusions in models with differences
in unobserved error variances across equations.

Building on Sobel / Arminger (1992), equality restrictions within the specified model
must therefore be formulated in terms of the rescaled coefficients. For the hypothesis that
e.g. γw1q = γw2q, it follows:

γ∗w1qσw1 = γ∗w2qσw2

γ∗w1q =
σw2
σw1

γ∗w2q (23)

γ∗w1q = λγ∗w2q

Defining λ = σw2
σw1

, the relation of the unobserved level-1 error variances of the first two
equations is taken into account within the imposed equality restriction through the intro-
duction of λ. Given λ, the hypothesis that e.g. βw32 = βw31 can be replaced by:1

β∗w32
σw3
σw2

= β∗w31
σw3
σw1

β∗w32 = β∗w31
σw3
σw1

σw2
σw3

(24)

β∗w32 = λβ∗w31
1Likewise for corresponding hypotheses concerning B∗b .
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Finally, the hypothesis γb1q = γb2q can be formulated in terms of:

γ∗b1qσw1 = γ∗b2qσw2

γ∗b1q =
σw2
σw1

γ∗b2q (25)

γ∗b1q = λγ∗b2q

The empirical implementation of (23), (24) and (25) results in the specification of non-
linear parameter constraints, which can be utilized in advanced SEM-software like Mplus
(Muthén / Muthén 1998–2012). In this context, a constrained model specification can
be compared with a less restrictive model in order to draw conclusions concerning the
postulated hypothesis of effect equality for specific coefficients. Likewise, different sets of
parameter restrictions can be tested in a stepwise manner.

3. Simulation study

3.1 Simulation setup

The problems of effect comparisons in multilevel probit SEM’s and the proposed correction
method can be exemplified with a simulation study. As a starting point, a simple multivari-
ate mixed-effects model has been specified from which data for a hypothetical population
has been generated. This population consists of 1000 level-2 units with 1000 level-1 cases,
respectively. In line with the previous derivations, the data-generating model only includes
a structural part, which in this case involves three dependent variables. Here, the first two
η variables are each specified as a function of six level-1 and one level-2 predictors (with
xw1 ∼ unif(1, 10), ..., xw6 ∼ unif(1, 10) and xb ∼ unif(1, 10)), whereas the third η variable
is in turn dependent on the first two η variables:

ηij =

 0 0 0
0 0 0

βw31βw320

ηwij+
γw11γw12γw13γw14γw15γw16γw21γw22γw23γw24γw25γw26

0 0 0 0 0 0

xwij+

γb11γb21
0

xbj+ζwij+ζbj
On this basis, a effect structure has been specified which involves equal γw and γb coeffi-
cients between the first two equations and equal βw coefficients within the third equation.
More specific, the true parameter values are:

γw11 = γw24 = −0.5

γw12 = γw25 = 0.3

γw13 = γw26 = 0.2

γw14 = γw21 = −0.4

γw15 = γw22 = 0.2

γw16 = γw23 = 0.1

γb11 = γb21 = −0.2

βw31 = βw32 = 0.4

Furthermore, error components have been added on both levels. The residual variables have
been drawn from a multivariate normal distribution, such that ζwij ∼ N (0,Ψ+

w) with

Ψ+
w =

 0 0 0
0 0.75 0
0 0 0.25
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and ζbj ∼ N(0,Ψb) with

Ψb =

 0.25 0 0
0 0.25 0
0 0 0.25

 .
With this setup, the generated data set is based on a model structure with equal effects be-
tween and within level-1 and level-2 equations as well as equal level-2 error variances, but
differences in level-1 residual variation across equations. Finally, three binary (“observed”)
y variables have been drawn from a Bernoulli distribution, whereas P (y = 1) is determined
by the cumulative distribution function (cdf) of the standard normal distribution at η:2

yij ∼ B(1,Φ(ηij))

The simulation then consists of 1000 random draws from the population, whereas each
sample contains 100 level-2 units with 50 level-1 cases, respectively. With each sample,
a multilevel probit SEM (with respect to the binary y variables) has been estimated via
WLSM using Mplus (Version 7; Muthén / Muthén 1998–2012).3

3.2 Results

The simulation process produced 1000 Mplus results, which constitute a distribution of
estimates for each model component. The kernel density plots of these distributions are
illustrated in Figure A.1, A.2 and A.3.

Concerning the effects of the xw variables, the γ∗w estimates of the first equation cor-
respond to their predefined values (black lines in Figure A.1 and A.2). Specifically, the
mean values of the respective distributions each approximate the true effects, whereas
γ̄∗w11 = −0.512, γ̄∗w12 = 0.306, γ̄∗w13 = 0.203, γ̄∗w14 = −0.412, γ̄∗w15 = 0.206 and
γ̄∗w16 = 0.103.4 In contrast, the distributions of the γ∗w coefficients of the second equation
indicate substantial differences between the estimated coefficients and their predefined val-
ues in the data-generating model (red lines in Figure A.1 and A.2). Here, γ̄∗w24 = −0.387,
γ̄∗w25 = 0.233, γ̄∗w26 = 0.154, γ̄∗w21 = −0.309, γ̄∗w22 = 0.155 and γ̄∗w23 = 0.078. These
deviations can be ascribed to the elevated level-1 error variation in the second equation,
which in the multivariate probit case results in rescaled γ∗w2q coefficients. Thus, the Mplus
estimates falsely imply effect differences across Γw equations as a result of differences in
level-1 residual variation.

Similar mechanisms can be observed in Figure A.3. Here, the distribution of the γ∗b11
coefficients indicate a nearly unbiased xb effect in the first equation (γ̄∗b11 = −0.206),
whereas the mean of the γ∗b21 distribution does not reflect the true parameter value (γ̄∗b21 =
−0.144; Figure A.3a). Furthermore, it becomes clear that the level-2 variance components
are also affected by the specified level-1 error structure, which in this case results in an
underestimated level-2 error variance in the second equation (ψ̄∗b11 = 0.250, ψ̄∗b22 = 0.159;
Figure A.3b). Finally, Figure A.3c illustrates that the predefined differences in level-1 error
variation between the first two equations also lead to apparent effect differences between the
β∗w estimates within the third equation (β̄∗w31 = 0.380, β̄∗w32 = 0.471). These coefficients

2Consequently, the complete level-1 error structure is given by Ψw =

 1 0 0
0 1.75 0
0 0 1.25

.

3The simulation process has been implemented using R (Version 3.1.1; R Core Team 2014) and the R
package “MplusAutomation” (Hallquist / Wiley 2014).

4Deviations from the true parameter values are in this case a result of the defined model structure with
Bw 6= 0 and the specification of Ψ+

w as a diagonal matrix.
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are subject to two (potential) standardizations: On the one hand, both estimates are scaled
downwards as a result of the (modestly) elevated level-1 residual variation of the third
equation, whereas β∗w32 is additionally scaled upwards through the elevated level-1 error
variance of equation two (β∗w31 = σw1βw31

σw3
, β∗w32 = σw2βw32

σw3
; cf. section 2). As a result, the

β∗w coefficients cannot be compared directly within the third equation.
The results of a naive and a “λ-corrected” approach for effect comparisons between

the β∗w31 and β∗w32 coefficients are illustrated in Table 1. First, 1000 fully restricted Mplus
models have been estimated, in which all γ∗w and γ∗b coefficients have been constraint to be
equal across equations and the naive restriction β∗w32 = β∗w31 within the third equation has
been imposed (Model 1 in Table 1a). Subsequently, the latter restriction has been relaxed in
Model 2 such that both model specifications can be compared through (1000) SB-corrected
χ2 difference tests (Satorra / Bentler 2001). It becomes clear that this approach results in a
mean SB-corrected χ2 difference of 6.381, which in 59.0% of the conducted χ2 difference
tests leads to the false conclusion of significant effect differences between βw31 and βw32.

In contrast, Table 1b displays the results of (1000) SB-corrected χ2 difference tests be-
tween Model 3 and Model 4, in which the former restrictions have now been implemented
through the specification of non-linear parameter constraints (cf. section 2.2.). On this
basis, it can be seen that the relaxation of β∗w32 = λβ∗w31 leads to a mean SB-corrected
χ2 difference of 2.148, such that in this case only 18.2% of the χ2 difference tests suggest
significant differences between the βw coefficients. Thus, in the (ideal-typical) scenario at
hand, the specification of non-linear constraints protects against the false rejection of the
hypothesis of equal effects.

Table 1: Scaled χ2 difference tests†

(a) Naive restrictions

χ̄2
sc Median Rate

Model Restriction χ̄2 df Diff. p p <= 0.05
1 γ∗w11 = γ∗w24 ... γ∗w13 = γ∗w26, 213.5 18

γ∗w14 = γ∗w21 ... γ∗w16 = γ∗w23,
γ∗b11 = γ∗b21,
β∗
w32 = β∗

w31

2 γ∗w11 = γ∗w24 ... γ∗w13 = γ∗w26, 207.4 17 6.38 0.027 0.590
γ∗w14 = γ∗w21 ... γ∗w16 = γ∗w23,
γ∗b11 = γ∗b21

(b) Non-linear constraints

χ̄2
sc Median Rate

Model Restriction χ̄2 df Diff. p p <= 0.05 λ̄
3 γ∗w11 = λγ∗w24 ... γ∗w13 = λγ∗w26, 120.2 17 1.32

γ∗w14 = λγ∗w21 ... γ∗w16 = λγ∗w23,
γ∗b11 = λγ∗b21,
β∗
w32 = λβ∗

w31

4 γ∗w11 = λγ∗w24 ... γ∗w13 = λγ∗w26, 119.0 16 2.15 0.339 0.182 1.33
γ∗w14 = λγ∗w21 ... γ∗w16 = λγ∗w23,
γ∗b11 = λγ∗b21

† Satorra / Bentler (2001)
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4. Discussion

In this study, problems of effect comparisons have been discussed in the context of mul-
tilevel structural equation models with non-metric outcomes. It has been shown that the
level-1 and level-2 coefficients as well as level-2 variance components are subject to im-
plicit rescaling due to the fixation of residual variances on level-1. Thus, problems which
arise within standard single- and multilevel nonlinear models extend – in correspondence
with Kern / Stein (2015) – to the multivariate case, resulting in substantial difficulties of
effect comparisons between equations, which may be of particular interest e.g. in a dyadic
modeling framework (Kenny et al. 2006). Furthermore, comparisons of coefficients within
equations are complicated concerning coefficients of the Bw and Bb matrices. Against
this background, a multilevel extension of the method proposed by Sobel and Arminger
(1992) has been discussed, with which potential differences in level-1 residual variation
can be taken into account within the imposed equality restrictions through the specifica-
tion of non-linear parameter constraints. Using simulated data, it has been shown that
this approach enables the researcher to impose “robust” equality restrictions which are less
sensitive to apparent effect differences of e.g. β∗w coefficients.

However, it is important to note that this technique involves some limitations. Whereas
in the previous derivations λ was considered to represent differences in level-1 residual
variation between equations, it may likewise contain “true” effect differences in models
with homogeneously different effects across equations. Since the present technique rests
on the initial assumption of true effect equality (which may then be relaxed for specific
coefficients in a stepwise manner), the hypothesis of equal effects may be falsely main-
tained in models with specific – i.e. homogeneous – patterns of effect differences, because
these differences can be absorbed into λ besides differences in residual variation.5 On the
other hand, the implementation of non-linear constraints protects against the false rejec-
tion of the hypothesis of equal effects in nonlinear models with apparent effect differences
across and within equations due to differences in level-1 residual variation. Therefore, the
outlined procedure may be viewed as a flexible, supplementary tool in the context of mul-
tilevel structural equation modeling with categorical dependent variables. In any case, im-
plicit rescaling should be considered as a substantial drawback in mixed-effects (as well as
single-level) probit SEM’s, demanding particular caution when coefficients of such models
are compared.
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Figure A.1: Level-1 γ∗ coefficients 1
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Figure A.2: Level-1 γ∗ coefficients 2
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Figure A.3: Level-2 γ∗ coefficients, ψ∗’s & β∗’s
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