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Abstract

Analyzing gene expression data rigorously requires taking assumptions into consid-
eration but also relies on using information about network relations that exist among
genes. Combining these different elements cannot only improve statistical power, but
also provide a better framework through which gene expression can be properly an-
alyzed. We propose a novel statistical model that combines assumptions and gene
network information into the analysis. Assumptions are important since every test
statistic is valid only when required assumptions hold. We incorporate gene network
information into the analysis because neighboring genes share biological functions.
This correlation factor is taken into account via similar prior probabilities for neigh-
boring genes. With a series of simulations our approach is compared with other ap-
proaches. Our method that combines assumptions and network information into the
analysis is shown to be more powerful.

Keywords: Bayesian Spatial Network, Gene Expression, Multiple Testings

1 Introduction

Gene expression data are generally analyzed in a multiple testing setting. The validity of
each test depends on the underlying distributional assumptions of the test. A proper analysis
of gene expression data requires taking assumptions, usually normality into consideration
(Pounds and Rai, 2009, Pounds and Fofana, 2012). In addition to incorporating distribu-
tional assumptions into the overall testing, it may also be informative to incorporate any
prior knowledge of association between entities (Bowman and George, 1995), such asso-
ciation are often recorded by graphical networks (Wei and Pan, 2008). Combining these
different elements, besides gaining statistical power, provides a framework through which
analysis of gene expression data can be improved. We propose a novel statistical approach
that incorporates testing for distributional assumption validity with prior information pro-
vided by gene graphical network. In particular, we use graphical networks to incorporate
spatial dependence into the analysis of gene expression data. The spatial correlation is
taken into account by assuming similar prior probabilities for neighboring genes. We com-
pare our approach with other methods through a series of simulations, and demonstrate that
hybrid-network leads to an improvement on power over other approaches in most of the
settings.

The network analysis we use is the conditional autoregressive (CAR) model. CAR models
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are commonly used to represent spatial autocorrelation in data relating to a set of non-
overlapping areal units. Those models are typically specified in a hierarchical Bayesian
framework, with inference based on Markov chain Monte Carlo (MCMC) simulation. The
most widely used software to fit CAR model is WinBUGS or OpenBUGS. In our work,
we use an R package BUGS that helps run OpenBUGS inside R software. Lee (2013)
describes another R package, CARBayes, that can be used for Bayesian spatial modeling
with conditional autoregressive priors. Using CARBayes the spatial adjacency information
can be specified as a neigbourhood matrix, whereas, with BUGS, the user has to specify an
adjacent matrix.

2 Hybrid Testing and Network Analysis

Network information can be represented by directed or undirected graphs. Graphs are struc-
tures of discrete mathematics and have found applications in scientific disciplines that con-
sider networks of interacting elements, such as genes that interact by sharing some bio-
logical resemblances. A graph consists of a set of nodes and a set of edges that connect
the nodes. Usually the nodes are the entities of interest. For instance, each gene can be
considered a node and the edges the relationships among the genes. A graph can be used
in a practical way by developing software to translate between representations, a process
sometimes referred to as “coercion”.

In data analysis, graphs provide a data structure for knowledge representation, for exam-
ple in the Gene Ontology (GO). Many studies incorporate gene network information in
data analysis through the Gene Ontology project. Graphs provide a computational object
that can easily and naturally be used to reflect physical objects and relationships of in-
terest. Graphs are important to statistical methodology for exploratory data analysis. A
knowledge-representation graph can be juxtaposed with observed data to guide the dis-
covery of important phenomena in the data. In statistical inference, inferential statements
about relations between genes due to significantly frequent co-citation, or relation between
gene expression and protein complex can be made, Wei and Pan (2008). A graph may be
directed or undirected. A directed edge is an ordered pair of end-vertices that can be rep-
resented graphically as an arrow drawn between the end-vertices. In such an ordered pair
the first vertex is called initial vertex or tail and the second the terminal vertex or head. An
undirected graph disregards any sense of direction and treats both head and tail identically,
see Figure 1 and [5].

3 Statistical Models for Hybrid Testing

Consider the following multiple hypothesis testings

Hog : θ g = θ og vs H1g : θ g 6= θ og,g = 1, · · · ,G. (1)

Suppose two test procedures, M1 and M2, can be used to perform these statistical tests.
When M1 is used, let T1 = {T11, · · · ,T1G} represent the test statistics and P1 = {P11, · · · ,P1G}
the corresponding set of p-values, and let T2 = {T21, · · · ,T2G} and P2 = {P21, · · · ,P2G} be
the corresponding quantities for procedure M2.

Let Ag = i be an indication that procedure Mi is correct for testing Hog vs Hag, i = 1,2. For
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Figure 1: Undirected Graphs

testing
HogA : Ag = 1, g = 1, · · · ,G, (2)

let Ta = {Ta1, · · · ,TaG} be the test statistics obtained from Ag with the corresponding set
of p-values Pa = {Pa1, · · · ,PaG}. And then, from this method, we define an appropriate
summary statistic and denote it by P = {P1, · · · ,PG} with

Pg =

{
P1g, if Ag = 1
P2g, if Ag = 2

g = 1, · · · ,G.

The following theorem states the distribution of Pg under the null hypothesis Hog of equation
(1).

Theorem 1 (Hybrid P-values). Suppose there are two different procedures M1 and M2 that
can be used to test the null hypothesis

H0 : θ = θ 0. (3)

Let P1 be the p-value obtained if the method M1 is used for testing the null hypothesis H0,
and P2 be the p-value if the method M2 is used instead. Let P be defined by

P =

{
P1, if M1

P2, if M2.

Then P is uniformly distributed under the null hypothesis H0.

Proof. Under the null hypothesis (H0) of primary interest (gene is expressed say), both P1
and P2 are uniformly distributed (0,1).
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P(P < p | H0) = P{(P < p)∩ [M1∪M2] | H0}
= P{(P < p)∩M1 | H0}+P{(P < p)∩M2 | H0}
= P(P < p | M1,H0)P(M1 | H0)+

P(P < p | M2,H0)P(M2 | H0)
= P(P1 < p | H0)P(M1 | H0)+P((P2 < p) | H0)P(M2 | H0)
= pP(M1 | H0)+ pP(M2 | H0)
= pP(M1 | H0)+ p(1−P(M1 | H0))
= p.

Thus P is uniformly distributed under H0.

Now transform the p-values by
Zg = Φ

−1(1−Pg), (4)

where Φ is the cumulative distribution function of the standard normal distribution N(0,1),
and Pg is the p-value corresponding to test g. The null distribution of Zg is exactly the stan-
dard normal under Hog of equation (1). Assume that under the alternative Zg ∼ N(µ1,σ

2
1 ),

then
f (zg) = π0φ(zg;0,1)+(1−π0)φ(zg; µ1,σ

2
1 ), (5)

where φ(·; µ1,σ
2
1 ) is the probability density function of N(µ1,σ

2
1 ).

4 Bayesian Hierarchical Models for Spatial Data

Conditional autoregressive (CAR) models are commonly used to represent spatial autocor-
relation in data relating to a set of non-overlapping areal units. Those data are prevalent
in many fields like agriculture (Besag & Higdon, 1999), and epidemiology (Lee, 2011).
There are three different CAR priors commonly used to model spatial autoregression. Each
model is a special case of a Gaussian Markov random field (GMRF) that can be written in
a general form as

φ ∼ N(0,τ2Q−1) (6)

where Q is a precision matrix that controls for the spatial autocorrelation structure of the
random effects, and is based on a non-negative symmetric G×G neighborhood or weight
matrix W, W = (wk j) where wk j = 1 if genes k and j are neighboring genes and wk j =
0 otherwise, and φ = (φ1, · · · ,φG), a set of random effects. CAR priors are commonly
specified as a set of G univariate fully conditional distributions ξ (φk | φ−k) for k = 1, · · · ,G
where φ−k = (φ1, · · · ,φk−1,φk+1, · · · ,φG), and G is the total number of genes. The first
CAR prior proposed by Besag, York, and Mollié (1991) is as

φk | φ−k ∼ N

(
∑

G
j=1 wk jφ j

∑
G
j=1 wk j

,
τ2

∑
G
j=1 wk j

)
. (7)

The conditional expectation is the average of the random effects in neighboring genes,
while the conditional variance is inversely proportional to the number of neighbors. The
inverse proportionality of conditional variance is due to the fact that if random effects are
spatially correlated then the more neighbors a node has the more information there is from
its neighbors about the value of its random effect (subject-specific effect). This first CAR
prior is used to implement the hybrid-network methodology as in Wei & Pan (2008). The
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second CAR prior proposed by Leroux, Lei, and Breslow (1999) is given by

φk | φ−k ∼ N

(
ρ ∑

G
j=1 wk jφ j

ρ ∑
G
j=1 wk j +1−ρ

,
τ2

ρ ∑
G
j=1 wk j +1−ρ

)
, (8)

while the third CAR prior proposed by Stern and Cressie (1999) is defined by

φk | φ−k ∼ N

(
ρ ∑

G
j=1 wk jφ j

∑
G
j=1 wk j

,
τ2

∑
G
j=1 wk j

)
, (9)

where ρ is a spatial autocorrelation parameter, with ρ = 0 corresponding to independence
and with ρ = 1 corresponding to a strong spatial autocorrelation. A uniform prior on the
unit interval is specified for ρ, that is ρ ∼ ∪(0,1), while the usual uniform prior on (0,Mτ)
is assigned to τ2, with the default value being Mτ = 1000. The intrinsic CAR prior by Besag
et al. (1991) is obtained from the second and third CAR priors when ρ = 1, while when
ρ = 0 the difference is on the denominator in the conditional variances.

5 Standard and Spatial Normal Mixture Model

Multiple testing is often an essential step in the analysis of high-dimensional data, such
as genomic or proteomic data. The data analysis can be based on p-values, z-scores, t-
scores, etc. These test statistics are obtained from data reduction techniques. The hybrid
p-values discussed in section 3 is an example. Consider for example a test statistic Z. We
can assume that across hypotheses g = 1, · · · ,G the test statistic Zg follows a two-component
mixture with density f as in (5). From this two-component mixture two different types of
mixture models, the standard and spatial normal mixture models are considered. While
spatial normal mixture models consider network information in the analysis, the standard
normal mixture models do not.

5.1 Standard Normal Mixture Model

In a standard two-component mixture model, Zg has a density of the form

f (zg) = π0 fo(zg)+(1−π0) f1(zg), (10)

where π0 is the proportion of genes that are not expressed (null hypothesis), fo is the distri-
bution of Zg under the null hypothesis, and f1 is the distribution of Zg under the alternative
hypothesis.

5.2 Spatial Normal Mixture Model

In a spatial normal mixture model, one defines gene-specific prior probabilities

πgs = P(Tg = s) for g = 1, · · · ,G and s = 0,1, (11)

where Tg is defined by

Tg =

{
1 if gene g is expressed
0 if gene g is not expressed
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therefore, the marginal distribution of Zg is

f (zg) = ∑
1
s=0 f (zg | Tg = s)P(Tg = s)

= πg0 fo(zg)+πg1 f1(zg),
(12)

where zg is the expression value of gene g for g = 1, · · · ,G, and πg1 = 1−πg0. It is believed
that genes on the same network, that is a group of genes with the same function, share the
same prior probability of expression while different networks have possibly varying prior
probabilities. The prior probabilities πgs, based on a gene network, are related to two latent
Markov random fields xs = {xgs;g = 1, · · · ,G}, s = 0,1 by a logistic transformation:

P(Tg = s) = πgs =
exp(xgs)

exp(xg0)+ exp(xg1)
. (13)

Each of the G−dimensional latent vectors xs is distributed according to an intrinsic Gaus-
sian conditional auto-regression model (ICAR) (Besag and Kooperberg, 1995). The distri-
bution of each spatial latent variable xgs conditional on x−gs = {xks;k 6= g} depends only on
its direct neighbors. To be more specific,

xgs | x−gs ∼ N

(
1

mg
∑

l∈δg

xls,
σ2

cs

mg

)
(14)

where δg is the set of indices for the neighbors of gene g, and mg is the corresponding
number of neighbors. The other model specifications are articulated in this way

(Zg | Tg = s)∼ N(µs,σ
2
s ), (15)

g = 1, · · · ,G and s = 0,1 Network structure is summarized in a matrix format called an
adjacent matrix: Ad j = (ai j), i = 1, · · · ,G; j = 1, · · · ,G, where

ai j =

{
1, if i 6= j and genes i and j are related
0, otherwise.

5.3 Prior Distributions

In a standard normal mixture model, a beta distribution is often assumed as the prior dis-
tribution for π0. In a spatial normal mixture model, gene-specific prior probabilities are
introduced. For the spatial normal mixture model, the prior probabilities for πgs, based on
a gene network, are related to two latent Markov random fields (MRFs), as mentioned pre-
viously. From equation (14), we assume priors on the variance components σ2

cs ∼ Inverse
Gamma(0.01,0.01), the corresponding precision 1

σ2
cs

has Gamma(0.01,0,01) with mean 1

and variance 100. σ2
cs acts as a smoothing parameter for the spatial field and consequently

controls the degree of dependency among the prior probabilities of the genes. The size of
σ2

cs determines how similar the πgs are. The smaller the σ2
cs are the more similar the πgs.
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5.4 Maximum Likelihood Estimation

A frequentist estimation of a standard mixture model via maximum likelihood estimation
is used to show the effectiveness of Bayesian estimation for mixture models. Consider a
standard mixture model, equation (10), with

Z ∼ N(µs,σ
2
s ) (16)

with θ s = (µs,σ
2
s ), s = 0,1 and Z is gene expression test statistic. A direct approach to

estimate π0, π1, θ 0, and θ 1 is to compute the likelihood function

L(π0,π1,θ 0,θ 1) = ∏
n
k=1 ∏

G
g=1 f (zgk)

= ∏
n
k=1 ∏

G
g=1[π0 fo(zgk,θ 0)+π1 f1(zgk,θ 1)]

(17)

and the log likelihood as

l(π0,π1,θ 0,θ 1) =
n

∑
k=1

G

∑
g=1

log[π0 fo(zgk,θ 0)+π1 f1(zgk,θ 1]. (18)

Obtaining MLE’s of the parameters directly is not possible. To estimate the parameters the
expectation-maximization (EM) algorithm may be used. In order to use the EM algorithm,
define latent variables v = {(vgk,zgk) | k = 1, · · · ,n and g = 1, · · · ,G} where

vgk =

{
1, if g ∈ G1

0, if g ∈ G0

with G0 (genes not expressed) and G1 (expressed genes) are null hypothesis and alternative
groups respectively, n is sample common to all genes. If we include latent variables we
get complete data, the observed z′s and the unobserved v′s. The likelihood function for the
complete data is

Lc(π0,π1,θ 0,θ 1 | z,v) =
n

∏
k=1

G

∏
g=1

[π0 fo(zgk,θ 0)]1−vgk [π1 f1(zgk,θ 1)]vgk . (19)

Taking the log on equation (19) we get the log likelihood function as

lc(π0,π1,θ 0,θ 1 | z,v) =
n

∑
k=1

G

∑
g=1

[
(1− vgk)log[π0 fo(zgk,θ 0)]+ vgklog[π1 f1(zgk,θ 1]

]
. (20)

The EM algorithm is used to obtain MLE’s of π̂0, π̂1, θ̂ 0 and θ̂ 1.

Since there is a graphical network among genes, (z1k,z2k, · · · ,zGk) are not independent. In
order to take into account gene graphical network a Bayesian methodology as developed
in section 5.2 is used. Network analysis is brought into the analysis by generating latent
variables according to Gaussian Markov random Fields as in equation (14). After assigning
prior distributions to the parameters, posterior distributions can be found using partial Gibbs
sampler and some Metropolis Hasting algorithm. We use OpenBugs software to get the
MLE’s of π̂0, π̂1, θ̂ 0, and θ̂ 1.
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5.5 Statistical Inference

The decision rule and acceptance of null hypotheses is based on probabilities from posterior
distributions. For each gene g, the point estimate of p(H0g | Data) is computed and com-
pared to a threshold τ, for g = 1, · · ·G. H0g is rejected when p̂(H0g | Data), point estimate,
of p(H0g | Data) is less than a threshold τ.

The p-values pg obtained from the hybrid method are transformed, and the transformed
statistics zg = Φ−1(1− pg) are used, with Φ−1 standard normal quantile function. Through
Bayesian modeling, network information is added to the analysis. With the Bayesian infer-
ence these posterior estimates are π̂g0 = p̂(H0g | Data). Inferences for the Bayesian hier-
archical models are obtained using MCMC simulations, with a combination of Gibbs sam-
pling and Metropolis steps. Gibbs sampling is used to do MCMC simulation for fully con-
ditional posteriors with closed forms. For those that are not in closed forms the Metropolis-
Hasting algorithm is used.

6 Simulations

To compare the hybrid-network method with other methods, we conducted simulation stud-
ies designed to mimic real data analysis. We conducted standard two-group comparison
studies (treatment vs control), k-group (k > 2) comparison (ANOVA), and regression anal-
ysis. The k-group comparison is directly applicable to a genomic study comparing human
ependymoma, a brain tumor that occurs in three distinct anatomic regions: Posterior Fossa
(PF), Spine (SP), and Supratentorial (ST). Regression analysis is often useful to determine
whether, for example, gene expression levels are related to a particular covariate such as
DNA synthesis rate (INHIBO).

For each of the three types of analyses conducted in the simulation studies, two different
tests can be used. The first one requires the normality assumption while the second may
be appropriate when the normality assumption does not hold. For the two-group compari-
son the hybrid-network method chooses between the standard t-test for normally distributed
data and the Wilcoxon test when the normality assumption fails. For k-group (k > 2) com-
parison, the hybrid-network method chooses between the standard ANOVA test and the
Kruskal-Wallis test. For the regression analysis, the Pearson test for linear dependency is
chosen when the normal assumption holds and the Spearman test if the normality assump-
tion does not hold.

6.1 Two-group Comparison Study

In a group comparison study, gene expression data can be modeled as:

Ygi j = µg + τgi + εgi j, (21)

where Ygi j is expression level for gene g of the jth individual in the ith group,

g = 1, · · · ,G, i = 1, · · · ,k; j = 1, · · ·ni,
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k is the number of groups, ni is the sample size of group i, and

εgi j ∼ N(0,1) or εgi j ∼ t(ν), or εgi j ∼ another distribution.

For 2-group comparison (k = 2), interest is in statistical tests of the form

Hg0 : µg1 = µg2 vs HgA : µg1 6= µg2, (22)

g = 1, · · · ,G. Some gene expression levels may be normally distributed while others are
not normally distributed. In the two-group comparison study, two tests are often used. The
t-test is used when the normality assumption holds and Wilcoxon test (Wilcoxon,1945), a
non parametric test, is often used when the normality assumption does not hold. For each
gene g, a t-test, a Wilcoxon-Mann-Whitney rank sum test, and a Shapiro-Wilk test (Shapiro
and Wilk, 1965) statistics are computed. Diagnoses for adequacy of the t-test statistics are
made through residuals. We compute the residuals from the t-test statistic. We define the
residuals on observation, j, in treatment, i, for gene ,g, as

egi j = Ygi j − Ŷgi j (23)

where Ŷgi j is an estimate of the corresponding observation Ygi j obtained as follows:

Ŷgi j = µ̂g + τ̂gi

= Ȳg··+(Ȳgi·− Ȳg··)
= Ȳgi·.

(24)

If the model is adequate, residuals should be structure-less; that is, they should contain
no obvious patterns. Through an analysis of residuals, many types of model inadequacies
and violations of the underlying assumptions can be discovered. We use the residuals to
check for normality. A probit plot of residuals is an extremely useful procedure to test for
normality. If the underlying error distribution is normal, this plot will resemble a straight
line. Also outliers can be detected through residuals. Outliers show up on probability plots
as being very different from the main body of the data. Plotting the residuals in time order
of data collection is helpful in detecting correlation between the residuals. This is useful
for checking independence assumptions on the errors.

To compare the hybrid-network method with other methods, we perform a simulation study.
In this setup, there are two groups of sample size varying from 5, 10, 25, and 50. The
number of gene expressions having a normal distribution, N(µ,1), is 30. For these gene
expressions, µ = 0 for the null hypothesis and µ = 1 for the alternative. The remaining
gene expressions have Log-normal distribution, Log− normal(µ,1), with µ = 0 in some
cases and µ = 1 in other cases. And a graphical network, figure 2, is built among genes
with 212 number of edges. We translate this graphical network into an adjacent matrix.

The results are presented in Table 1, they show that hybrid-network procedure dominates
the other methodologies in most of the settings, since the hybrid-network test specificities
are higher than the specificities of the other methods. When the sample size is equal to 5,
for instance, the specificity corresponding to the t-test is 0.571726, the specificity corre-
sponding to the Wilcoxon test is 0.557244, and the specificity for the hybrid-network test
is 0.575314.
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Figure 2: Simulation Network

Table 1: 2−Group Simulation Specificity Comparison

Sample size (ni) T-test Wilcoxon test Hybrid-Network test
5 0.571726 0.557244 0.575314
10 0.689223 0.69797 0.716146
25 0.884244 0.918197 0.921273
50 0.9839 0.994575 0.994575

sp ≡ specificity

6.2 Hybrid ANOVA-Kruskal Wallis Study

In a k-group comparison study, a statistical model can be written as equation (21). For the
model (21), µg is a parameter common to all treatments for gene g called the overall mean,
and τgi is a parameter unique to the ith treatment for gene g called the ith treatment effect.
Consider the following multiple hypothesis tests

Hg0 : µg1 = µg2 = · · ·= µgk vs HgA : µgi 6= µgl for at least one pair (i, l) (25)

or equivalently, by using the effects models

Hg0 : τg1 = τg2 = · · ·= τgk = 0 vs HgA : τgi 6= 0 for at least one i. (26)

The hypotheses may be tested using an ANOVA test or the Kruskal-Wallis depending on the
normality assumption. If the normality assumption is valid, ANOVA test is more powerful
than Kruskal-Wallis; and the latter may be more powerful when the normality assumption
does not hold. The proposed methodology, hybrid-network, combines test of assumptions
and graphical network information into the analysis. For each gene g, an ANOVA p-value,
pa

g, a Kruskal-Wallis p-value, Pw
g , and a Shapiro-Wilk p-value, Ps

g are computed. We define
a hybrid p-value, Ph

g , as

Ph
g =

{
Pa

g , if Ps
g ≥ α

Pk
g , if Ps

g < α,
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for g = 1, · · · ,G where α is a given threshold. The hybrid p-value Ph
g is transformed into a

hybrid z-statistic, zh
g, as follows:

zh
g = Φ

−1(1−Ph
g ). (27)

We use zh
g to build a CAR model from the given network with the marginal distribution of

zh
g given by

f (zh
g) = πg0 fo(zh

g)+πg1 f1(zh
g), (28)

where zh
g is the expression value for gene g, g = 1, · · · ,G.

The prior probabilities πgs, based on a gene network, are related to two latent Markov
random fields xs = {xgs;g = 1, · · · ,G}, s = 0,1 by a logistic transformation:

P(Tg = s) = πgs =
exp(xgs)

exp(xg0)+ exp(xg1)
. (29)

The distribution of each spatial latent variable xgs conditional on x−gs = {xks;k 6= g} de-
pends only on its direct neighbors. The proposed CAR prior distribution from Besag and
Kooperberg (1995) is used as

xgs | x−gs ∼ N(
1

mg
∑

l∈δg

xls,
σ2

cs

mg
), (30)

where δg is the set of indices for the neighbors of gene g, and mg is the corresponding
number of neighbors.

The hybrid-network methodology, through a series of simulations, is compared to other
methods. The setup of these simulations consists of three groups of sample size varying
from 5, 10, 25, and 50. The number of genes with the normal distribution N(µ,1), µ = 0
for the null hypothesis and µ = 1 for the alternative, is 30. The number of genes with the
Log-normal distribution, Log−normal(µ,1), with µ = 0 in some cases and µ = 1 in other
cases, is 7 and the number of genes with the Cauchy distribution, Cauchy(θ ,1), with θ = 0
in some cases and θ = 1 in other cases, is 7. A graphical network is built among genes with
212 edges. We present the simulations results in Table 2. They show that hybrid-network
procedure dominates other procedures in most of the cases. When the sample size is 25, for
instances, the specificities from the ANOVA test, the Kruskal Wallis and the hybrid-network
test are 0.89141, 0.918197, and 0.929054, respectively.

Table 2: 3−Group Simulation Specificity Comparison

Sample size (ni) ANOVA test Kruskal-Wallis test Hybrid-Network test
5 0.579557 0.57232 0.585729
10 0.668287 0.668287 0.684932
25 0.89141 0.918197 0.929054
50 0.92437 0.9839 0.985663
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6.3 Regression Analysis

In microarray regression analysis, a statistical model can be written as

Yg j = βg0 +Xg jβg1 + εg j (31)

where Yg j is the gene expression level for the gth gene in the jth individual with

g = 1, · · · ,G, j = 1, · · ·n

and some
εg j ∼ N(0,1) or εg j ∼ t(ν), or εg j ∼ another distribution.

The question is whether a response variable and a covariate are correlated. To test for
correlation between gene expression with a covariate such as a phenotype, the analysis can
be based on Pearson test p-values (Pp), and on Spearman test p-values (Psp). We can use
Shapiro-Wilk p-values (Ps) to test for the normality assumptions. Consider, the regression
analysis in matrix format

Yg = Xgβ g + εg (32)

where

Yg =


Yg1
Yg2

...
Ygn

 ;Xg =


1 Xg1
1 Xg2
...

...
1 Xgn

 ;β g =
[

βg0
βg1

]
;εg =


εg1
εg2
...

εgn

 . (33)

We denote the least squares estimators of β g as bg

bg = (Xg
′
Xg)−1Xg

′
Yg. (34)

Let the vector of the fitted values Ŷgi be denoted as Ŷg, and the vector of the residual terms
egi = Ygi− Ŷgi be as eg. The fitted values are represented by

Ŷg = Xgbg (35)

and the residuals by
eg = Yg− Ŷg. (36)

For each gene g, compute its Pearson p-value, Pp
g , compute its Spearman p-value, Psp

g , and
from the residuals from Pearson test, a Shapiro-Wilk test of normality is performed, and for
each gene g a p-value, Ps

g , is calculated. Finally, a hybrid p-value, Ph
g is computed as

Ph
g =

{
Pp

g , if Ps
g ≥ α

Psp
g , if Ps

g < α

where α is a given threshold.

Each hybrid p-value, Ph
g , is transformed into a hybrid z-statistic, zh

g, as follows:

zh
g = Φ

−1(1−Ph
g ). (37)
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Using zh
g, the marginal distribution of zh

g is given as

f (zh
g) = πg0 fo(zh

g)+πg1 f1(zh
g), (38)

where zh
g is the expression value of gene, g, g = 1, · · · ,G. The prior probabilities πgs, are

defined as in equation (29).

We compare the hybrid-network with the other procedures through a simulation setup. The
setup consists of a sample size of 25. The number of genes with the normal distribution ,
N(µ,1), is 30, µ = 0 for the null hypothesis and µ = 1 for the alternative, and the number
of genes with the Log-normal distribution, Log− normal(µ,1), with µ = 0 in some cases
and µ = 1 in other cases, is 14. We vary the cutoff point, τ, as in Wei & Pan (2008). And
a graphical network is built among genes with 212 number of neighbors. The results of the
analysis are presented in Figure 3. They show that the hybrid-network performs better than
the other competing procedures.
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Figure 3: Comparison of AUC

6.4 Application to Human Ependymoma Microarray

We compare the hybrid-network procedure with t-test and Wilcoxon test using human
ependymoma data. The data consists of gene expression levels, gene annotation, sample
annotation, and gene graphical network. Figure 4 illustrates a graphical network of the
genes under consideration, and Table 3 is a subset of the human ependymoma expression
data. In this analysis, there are two groups, the sample sizes are n1 = 37 for group1, n2 = 42
for group2, with the total number of genes of 102, and the number of edges is 196.

Using Shapiro-Wilk p-values, it appears that some of the expression data are normally dis-
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tributed and the others are not, with Shapiro-Wilk test p-values less than α = 5% for some
genes. Figure 5 shows histograms of t-test p-values, rank sum test p-values and the Shapiro-
Wilk test p-values, respectively. The last graph of Figure 5 presents the plot of the t-test
p-values with respect to the corresponding rank sum test p-values. Using the t-test when the
normality assumption is assumed, and the Wilcoxon test otherwise. We apply the hybrid-
testing procedure to analyze the data. We incorporate a graphical network to accommodate
interactions between genes, as these have been noted to play a crucial role in cell functions
(Shojaie & Michailidis, 2009).

In order to compare the hybrid-network procedure with the other procedures, we report
results for the first six genes. We use box plots as visual methods of comparing groups.
Under each Box plot, we report the results, π̂·0, with t representing the t-test statistic , rs for
Wilcoxon test statistic, and hybN for hybrid-network statistic. We also present the Shapiro
Wilk test p-value (Shp) under each box plot. The results are reported on Figure 6.

With a cutoff point of τ = 0.1, all the three methods find that genes AKT 1, AT F2, and
CDC25B are not expressed. Only the hybrid-network test finds that the other three genes,
ARHGEF2, BDNF and BRAF are expressed. This finding is in accordance with the box
plot results.

Figure 4: Gene Graphical Network
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Table 3: Human Ependymoma Microarray Data

Genes Gr1 Gr1 · · · Gr2 Gr2 · · ·
AKT1 12.48167 11.75317 · · · 10.95536 11.51737 · · ·

ARHGEF2 14.99632 13.81004 · · · 13.45263 14.02982 · · ·
ATF2 12.93096 13.14289 · · · 13.44182 12.72238 · · ·
BDNF 3.392317 4.542258 · · · 4.716991 5.738768 · · ·
BRAF 9.111918 10.3433 · · · 10.07682 9.107217 · · ·

CDC25B 10.33114 11.04207 · · · 11.7139 11.76408 · · ·
...

...
...

...
...

...
...

This shows the human ependymoma expression data: genes as gene annotation, groups (Gr1 and Gr2) as sample annotation and real
values as gene expression levels.
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Figure 5: Tumor Data 2-Group Comparison

7 Conclusion

Hybrid-network procedures are introduced as a general class of methods that can incorpo-
rate procedure-selection, account for multiple-testing, and incorporate a graphical network
information into the analysis. This new method shows good performance in simulations,
and in real data analysis. Hybrid-network procedures can be applied to group comparison
analysis and to regression analysis.
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Figure 6: Tumor Data: Analysis Results
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