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Abstract 
The proliferation of data, advances in statistical methods, and growth of computing power 
create a wealth of opportunities for optimization and optimal control under uncertainty to 
address large-scale problems involving stochastic systems. We consider a general 
approach, building on data and on statistics and moving from stochastic models of 
uncertainty to stochastic optimization/control, that provides a mathematical foundation for 
the optimal design and control of complex stochastic systems. A couple of examples serve 
to illustrate different instances of our overall approach, each involving general classes of 
resource allocation problems with broad applications. In one case, we devise a simulation-
based framework that yields optimal resource allocations in an efficient and effective 
manner, whereas in another case we derive an optimal control policy that includes easily 
and efficiently implementable algorithms for governing dynamic resource allocations over 
time. Computational experiments demonstrate the significant benefits of our approach of 
combining statistics and stochastic optimization/control over alternative methods 
previously published in the research literature. 
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1. Introduction 

 
Uncertainties abound throughout our world and unexpected things happen all the time. 
Nevertheless, we have to deal with uncertainty and risks in making the best decisions and 
defining the best strategies we can in every aspect of our lives, despite our limited ability 
to understand, learn, reason, optimize and control around these uncertainties. 
 
Critical decisions and strategies are often based on intuition, and even guessing, 
notwithstanding the deep complexities of uncertainty, risks and associated trade-offs. The 
significant lack of understanding and the underestimation of these complexities, however, 
result in poor decisions and strategies that are far from optimal, far from the best 
management of risks, and far from being robust. 
 
Even when analytics are used in decision making processes, the approach is more often 
based on averages, point predictions, worst-case scenarios, rules of thumb, or even ignoring 
uncertainties altogether. Such approaches are woefully inadequate to address the deep 
complexities of uncertainty, risks and associated trade-offs. They fail to take advantage of 
everything available and possible within the field of mathematics. 
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The proliferation of various sources and types of data, the significant advances in statistics 
and predictive analytics, and the considerable growth in computing power now create 
completely new opportunities to improve decision making and reasoning through 
mathematical optimization under uncertainty. At the same time, these tremendous 
opportunities bring even greater and deeply complex challenges. 
 
In this paper, we consider aspects of mathematical optimization under uncertainty from the 
perspective of combining statistics and stochastic optimization. The ultimate goal is to 
provide better decisions and strategies that fundamentally transform business, society and 
many aspects of our world by improving the management of uncertainty, risks and 
volatility and reducing the negative impact of such phenomena. 
 
The remainder of this paper is organized as follows. Section 2 provides additional 
motivation for opportunities to combine statistics and stochastic optimization, together 
with a high-level description of a general framework for mathematical optimization under 
uncertainty. Sections 3 and 4 then respectively present two examples of our general 
framework for optimization and optimal control under uncertainty. We close with some 
concluding remarks. 
 
 

2. Opportunities for Combining Statistics and Stochastic Optimization 

 
From a business perspective, many industries today exhibit very high degrees of 
uncertainty, risk and volatility arising from multiple diverse sources, as considered and 
discussed in the recent Harvard Business Review report [DFL, 2014] on the industries 
plagued by the most uncertainty. The report identifies numerous industries with very high 
degrees of uncertainty across two dimensions: so-called demand uncertainty (arising from 
the unknowns associated with customer demand for products/services) and so-called 
technology uncertainty (arising from the unknowns associated with technology and the 
ability to deliver desirable solutions). This creates a wealth of opportunities for the 
optimization and control of decision making processes under uncertainty and risks across 
a broad spectrum of industries and time horizons. 
 
From a technology perspective, some advanced analytics techniques are reaching a level 
of maturation whereas others are only starting to form the next disruptive technological 
wave, as considered and discussed in the recent Gartner report [L, 2015] on the so-called 
hype cycle for advanced analytics and data science. The report identifies predictive 
analytics and machine learning technologies as having past the peak of their expectation 
and reaching a plateau of productivity within a few years, while identifying prescriptive 
analytics and optimization technologies to be in their innovation phase with benefits 
expected to be reached within ten years. This creates a wealth of opportunities for 
combining statistics and stochastic optimization/control to significantly improve decision 
making processes under uncertainty and risks. 
 
The time is now ripe for a new wave of mathematical optimization under uncertainty 
technologies to create solutions that optimize and control decision making processes under 
uncertainty and risks at scale across industries, building on the proliferation of data, the 
advances in statistics and data analytics, and the growth in computational power. To realize 
this goal, our approach includes a general framework for combining statistics and 
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stochastic optimization that comprises two primary elements which are intimately related. 
The first concerns mathematical (probabilistic) models of how the system of interest and 
its associated decision making processes behave over the time horizon of interest, which 
are built upon the results of statistical analysis of various data sets to understand and 
characterize extrinsic sources of uncertainty (e.g., errors in data and noise in 
measurements) and inherent sources of uncertainty (e.g., demand, weather, economic 
conditions and success/failure risks). The second element concerns the mathematical 
(stochastic) formulation of the corresponding optimization or optimal control problem and 
the mathematical methods for solving this problem to determine a set of decisions that 
gives rise to the best possible rewards over the time horizon within the context of the 
probabilistic system models and subject to various constraints. 
 
The next two sections provide specific examples of our general mathematical optimization 
under uncertainty framework that combines statistics and stochastic optimization. 
 
 

3. Simulation-Optimization of Stochastic Networks 
 
One example, from the work of Dieker et al. [DGS, 2016], considers capacity planning of 
different types of resources that are connected and interact through a network structure 
given uncertainty around the demand for each path of the network of resources. In the 
context of cloud computing applications, the resources represent different computing 
servers, the stochastic network represents the topology of the cloud computing 
infrastructure together with the uncertainty of both the customer demand at each station 
of the network and the overall demand, and the performance metrics are related to the 
time for completing customer requirements; whereas in the context of business process 
management, the resources represent activities performed within an organization, the 
stochastic network represents the series of such activities to be performed to achieve a 
common business goal together with the uncertainty of both the activity demand at each 
station and the overall demand, and the performance metrics are related to the time for 
completing business process operations; refer to [DGS, 2016].  
 
The first key aspect of this example concerns the mathematical model of the system of 
interest. Since analytical solutions of stochastic (queueing) networks are mathematically 
intractable in general, simulation methods are often used to estimate system performance 
metrics as a function of the set of resource capacities. More specifically, for a given 
topology of the stations composing the stochastic network, let 𝑍𝑖

𝜷 denote the steady-state 
queue length at the 𝑖-th station (which can be alternatively replaced by steady-state 
sojourn times), where 𝜷 represent the vector of service rates for all stations. The 
dependence of each queue length on 𝜷 is made explicit since we are interested in 
comparing a functional of the steady-state vector 𝒁𝜷 as we change the service-rate vector 
𝜷. Further let  𝜸  represent the vector of effective arrival rates for all stations. (Additional 
parameters of the stochastic network model, such as the routing matrix and the external 
interarrival and service distributions, need not be specified to present our approach and 
thus we do not introduce them here.) 
 
The second key aspect of this optimization under uncertainty example concerns the 
mathematical optimization of a simulation model of stochastic networks to determine the 
capacity of every station that gives rise to the best possible rewards over the time horizon 
subject to various constraints. We consider a long-run time horizon modeled as a 
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stochastic network of multiple stations serving customers of a single class under 
uncertain demand for each path through the network, where simulation is used to 
determine steady-state performance metrics such as 𝒁𝜷. We formalize our approach in a 
setting where the goal is to minimize the sum of the weighted expected steady-state 
queue lengths subject to a budgetary cost constraint (or, alternatively, the dual 
formulation where the aim is to optimize the expectation of financial metrics subject to a 
bound on the sum of the weighted expected steady-state queue lengths). Let 𝑐𝑖 denote the 
cost for each unit of resource capacity at station i, with cost vector c, and let 𝐶 denote the 
total budget for allocating resources in the network. 
 
The following formulation of a corresponding stochastic optimization problem then can 
be expressed as 

(𝑂𝑃𝑇)                                     minimize
𝜷∈(0,∞)𝐿

       ∑ 𝑤𝑖𝔼𝑍𝑖
𝛽

𝐿

𝑖=1
 

                                                𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       〈𝒄, 𝜷〉  ≤ 𝐶 
                                                                            𝛽𝑖 >  𝛾𝑖 ,                   𝑖 = 1, … , 𝐿. 
In other words, we seek to minimize the expected steady-state queue lengths weighted by 
a vector w, subject to the constraints that the total costs cannot exceed the budget C and 
the queueing system is stable. We shall assume 〈𝑐, 𝛽〉 < 𝐶 throughout, so that the above 
optimization problem is feasible, where one can (correctly) expect the solution to satisfy 
〈𝑐, 𝛽〉 = 𝐶.  
 
Defining  𝜏𝑖(𝜷) ∶= (𝛽𝑖 − 𝛾𝑖)𝔼𝑍𝑖

𝛽, the objective function of (OPT) then takes the form 
𝑡(𝜷, 𝒘, 𝝉(𝜷)) for some function 𝜏(𝜷) where, for 𝜷 − 𝜸, 𝒘, 𝝉 > 0, we have 

𝑡(𝜷, 𝒘, 𝝉) = ∑ 𝑤𝑘

𝜏𝑘

𝛽𝑘 − 𝛾𝑘

𝐿

𝑘=1

 

.                                           (3.1) 

For any station in a single-class product-form network, 𝜏 is known to be equal to 𝛾 and 
1 for expected queue length and sojourn time, respectively. Furthermore, 

𝜏𝑘  correspondingly equals  γ(cA
2 +cS

2)

2
 and (cA

2 +cS
2)

2
 in a single-class Brownian product-form 

network of GI/GI/1 queues, where 𝑐A
2  and 𝑐𝑆

2 denote the second-order variation terms for 
the arrival and service process, respectively. However, in general stochastic networks, 
𝝉(𝜷) is mathematically intractable. The explicit incorporation of 𝛽𝑖 − 𝛾𝑖 in the 
denominator is motivated by the above product-form results and as a nearly universal 
phenomenon in stochastic networks under a wide range of queueing dynamics. 
 
By applying standard Lagrangian methods, the minimum of 𝑡(𝜷, 𝒘, 𝝉) over the feasible 
region of (OPT) is readily proven to be 𝜷∗(𝒘, 𝝉) where, for ℓ = 1, … , 𝐿, 

𝛽ℓ
∗(𝒘, 𝝉) =  𝛾ℓ + (𝐶 − 〈𝒄, 𝜸〉) 

  √𝑤ℓ𝜏ℓ 𝑐ℓ⁄

 ∑ √𝑤𝑖 𝜏𝑖𝑐𝑖 𝐿
𝑖=1

. 

This then becomes an essential ingredient in our analysis. More specifically, we 
determine the capacity allocation 𝜷∗ through the system of nonlinear equations 

𝛽ℓ
∗ =  𝛾ℓ + (C − 〈𝐜, 𝛄〉) 

√𝑤ℓ𝜏ℓ(𝜷∗)/𝑐ℓ

∑ √𝑤𝑖𝜏𝑖(𝜷∗)𝑐𝑖
𝐿
𝑖=1

, 

for ℓ = 1, … , 𝐿, which is guaranteed to have a unique solution for a certain precisely 
defined class of stochastic networks. 
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To numerically find a vector 𝜷∗ that satisfies the above equation, assuming existence, one 
can use the fixed-point iteration scheme with iterates {𝜷(𝑘): 𝑘 ≥ 0} given by 

𝛽ℓ
(𝑘+1)

=  𝛾ℓ + (C − 〈𝐜, 𝛄〉) 
√𝑤ℓ𝜏ℓ(𝜷(𝑘))/𝑐ℓ

∑ √𝑤𝑖𝜏𝑖(𝜷(𝑘))𝑐𝑖
𝐿
𝑖=1

, 

which implies  

𝛽𝑖
(𝑘+1)

− 𝛾𝑖

𝛽𝑗
(𝑘+1)

− 𝛾𝑗

= √
𝛽𝑖

(𝑘)
− 𝛾𝑖

𝛽𝑗
(𝑘)

− 𝛾𝑗

×
𝑤𝑖𝔼𝑍𝑖

𝜷(𝑘)

/𝑐𝑖

𝑤𝑗𝔼𝑍𝑗
𝜷(𝑘)

/𝑐𝑗

.                                (3.2) 

Equation (3.2) establishes an important connection with a resource capacity iteration 
algorithm based on observed queue-length information. Since we must allocate capacity 
of at least 𝛾𝑖 to station i, the ratio 𝛽𝑖−𝛾𝑖

𝛽𝑗−𝛾𝑗
 reflects the “additional” resource capacities 

allocated to stations i and j, respectively. This ratio is expressed by (3.2) in terms of the 
ratio of mean queue lengths, so that more capacity is allocated in the next iteration to 
stations with disproportionally long queue lengths in the current iteration. The right-hand 
side of (3.2) can be interpreted as the geometric mean of two fractions, which arises from 
the assumed functional form (3.1). The effect of building in the asymptote into our 
algorithm is that the iterates avoid the boundary of the feasible region. 
 
The above iterative algorithm based on (3.1) and (3.2) is shown to converge to a unique 
limit point [DGS, 2016], which is close to optimal in several network settings as 
indicated by computational experiments. These limit points can be used directly for basic 
searches of the entire design space. More generally, our approach leverages such limit 
points as nearly optimal starting points as input to a more standard stochastic gradient 
descent approach for very quick convergence to true optimal solutions. Computational 
experiments further demonstrate that our solution framework provides significant 
reductions in computation over a purely standard simulation-optimization approach based 
on stochastic gradient descent, including orders of magnitude computational reductions in 
several problem instances. Refer to [DGS, 2016] for additional details. 
 
 

4. Stochastic Optimal Control of Dynamic Resource Allocation 
 
Another example, from the work of Gao et al. [GLSSB, 2013], considers stochastic 
optimal control of the dynamic allocation of different types of resources in order to best 
serve uncertain demand so that expected net-benefit is maximized over a time horizon 
based on the rewards and costs associated with the different resource types. In the context 
of workforce management applications, the different resource types can represent 
different human capital sourcing options (e.g., internal, business partner, contractor) that 
are allocated to satisfy the time-varying and uncertain demand, the rewards can represent 
revenue and quality of service, and the costs can represent salary and other compensation 
together with resource allocation adjustment penalties; whereas in the context of energy-
aware computing environments, the different resource types can represent computing 
servers operating at different levels that are allocated to satisfy time-varying and 
uncertain demand, the rewards can be related to the performance properties of the server 
allocation levels, and the costs can be related to the energy consumption properties of the 
server allocations together with resource allocation adjustment penalties; refer to 
[GLSSB, 2013]. 
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The first key aspect of this example concerns the mathematical model of the system of 
interest. Here we use a stochastic control framework to model the system dynamics of the 
general resource allocation problem. To simplify the exposition, consider the stochastic 
model of satisfying demand over time with two types of resources, namely a primary 
resource allocation option that has the highest net-benefit and a secondary resource 
allocation option that has the lowest net-benefit. A dynamic control policy defines at 
every time 𝑡 ∈  ℝ+ the level of primary resource allocation 𝑃(𝑡) and the level of 
secondary resource allocation 𝑆(𝑡) that are used in combination to satisfy the uncertain 
demand 𝐷(𝑡), where 𝑆(𝑡) =  [𝐷(𝑡) − 𝑃(𝑡)]+. 
 
The demand process is defined by the linear diffusion model 

𝑑𝐷(𝑡) = 𝑏𝑑𝑡 + 𝜎𝑑𝑊(𝑡), 
where 𝑏 ∈  ℝ is the demand growth/decline rate, 𝜎 > 0 is the demand 
volatility/variability, and 𝑊(𝑡) is a one-dimensional standard Brownian motion, whose 
sample paths are nondifferentiable [KS, 1991]. The demand process is served by the 
combination of primary and secondary resource allocations 𝑃(𝑡) + 𝑆(𝑡). 
 
Let 𝑅𝑝(𝑡) and 𝐶𝑝(𝑡) respectively denote the reward and cost function associated with the 
primary resource allocation 𝑃(𝑡) at time 𝑡. The rewards are modeled as linear functions 
of the primary resource allocation and the demand, whereas the costs are modeled as 
linear functions of the primary resource allocation. Hence, we have 𝑅𝑝(𝑡) =  𝑟𝑝  ×
[𝑃(𝑡)  ∧  𝐷(𝑡)] and 𝐶𝑝(𝑡) =  𝑐𝑝  × 𝑃(𝑡) with reward and cost rates 𝑟𝑝  > 0 and 𝑐𝑝 > 0 
capturing all per-unit rewards and costs for serving demand with the primary resource 
allocation and 𝑟𝑝 > 𝑐𝑝. Observe that the risks associated with the primary resource 
allocation at time 𝑡 concern lost reward opportunities whenever 𝑃(𝑡) < 𝐷(𝑡) on one hand 
and concern incurred costs whenever 𝑃(𝑡) > 𝐷(𝑡) on the other hand. Define 𝑁𝑝(𝑡) ≔

 𝑅𝑝(𝑡) −  𝐶𝑝(𝑡). 
 
The corresponding reward and cost functions associated with the secondary resource 
allocation 𝑆(𝑡) at time 𝑡 are given by 𝑅𝑠(𝑡) =  𝑟𝑠 × [𝐷(𝑡) − 𝑃(𝑡)]+ and 𝐶𝑠(𝑡) =  𝑐𝑠 ×
[𝐷(𝑡) − 𝑃(𝑡)]+, respectively, with 𝑟𝑠  > 0 and 𝑐𝑠 > 0 analogous to 𝑟𝑝 and 𝑐𝑝. Observe 
that the secondary resource allocation at time 𝑡 is riskless in the sense that rewards and 
costs are both linear in the resources actually used. Define 𝑁𝑠(𝑡) ≔  𝑅𝑠(𝑡) −  𝐶𝑠(𝑡). 
 
Furthermore, any adjustments to the primary resource allocations have associated costs, 
where we write ℐ𝑝 and 𝒟𝑝 to denote the per-unit costs of increasing and decreasing the 
primary resource allocation 𝑃(𝑡), respectively. In other words, ℐ𝑝 represents the per-unit 
cost whenever the primary resource allocation is being increased while 𝒟𝑝 represents the 
per-unit cost whenever the primary resource allocation is being decreased. 
 
The second key aspect of this example of optimal control under uncertainty concerns the 
stochastic control problems associated with the above system model. This stochastic 
control problem allows the dynamic control policy to adjust its primary and secondary 
allocation positions based on the demand realization observed up to the current time, 
which we call the risk-hedging position of the dynamic control policy. More formally, the 
decision process 𝑃(𝑡) is adapted to the filtration ℱ𝑡 generated by {𝐷(𝑠) ∶ 𝑠 ≤ 𝑡}. The 
objective of the optimal dynamic control policy is to maximize the expected discounted 
net-benefit over an infinite horizon, where net-benefit at time 𝑡 consists of the difference 
between the rewards and costs from the primary resource allocation and the secondary 
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resource allocation minus the additional costs for adjustments to the decision process 
𝑃(𝑡).  
 
Let 𝑃̇(𝑡) denote the derivative of 𝑃(𝑡) with respect to time. We impose a lower-bound 𝜃𝑙 
and an upper-bound 𝜃𝑢 on this decision variable 𝑃̇(𝑡) at every time 𝑡 to capture the 
inability of the control policy to make unbounded adjustments in the primary resource 
allocation at any instant in time. Then the formulation of a corresponding stochastic 
optimal control problem can be expressed as 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒          𝔼 ∫ 𝑒−∝𝑡[𝑁𝑝(𝑡) +
∞

0

𝑁𝑠(𝑡)] 𝑑𝑡 −  𝔼 ∫ 𝑒−𝛼𝑡[ℐ𝑝 ∙  𝐼{𝑃̇(𝑡)>0}]𝑑𝑃(𝑡)
∞

0

       

−  𝔼 ∫ 𝑒−𝛼𝑡[𝒟𝑝 ∙  𝐼{𝑃̇(𝑡)<0}]𝑑(−𝑃(𝑡))
∞

0

                                                  (4.1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                −∞ < 𝜃𝑙  ≤  𝑃̇(𝑡) ≤  𝜃𝑢 <  ∞                     (4.2)  
                                                     𝑑𝐷(𝑡) = 𝑏𝑑𝑡 + 𝜎𝑑𝑊(𝑡),                               (4.3) 

where 𝛼 is the discount factor and 𝐼{𝐴} denotes the indicator function returning 1 if A is 
true and 0 otherwise. Note that the second expectation in (4.1) causes a decrease with rate 
ℐ𝑝 in the value of the objective function whenever the control policy increases 𝑃(𝑡), and 
the third expectation in (4.1) causes a decrease with rate 𝒟𝑝 in the value of the objective 
function whenever the control policy decreases 𝑃(𝑡).  
 
Suppose the per-unit cost for decreasing the primary resource allocation is strictly less 
than the corresponding discounted overage cost and suppose the per-unit cost for 
increasing the primary resource allocation is strictly less than the corresponding 
discounted shortage cost. Then, as rigorously established in [GLSSB, 2013], the solution 
to the stochastic optimal control problem (4.1), (4.2), (4.3) has the following simple form 
for governing the dynamic adjustments to 𝑃(𝑡) over time. Namely, there are two 
threshold values 𝐿 and 𝑈 with 𝐿 < 𝑈 such that the optimal dynamic control policy seeks 
to maintain 𝑋(𝑡) =  𝑃(𝑡) − 𝐷(𝑡) within a risk-hedging interval [𝐿, 𝑈] at all times 𝑡, 
taking no action as long as 𝑋(𝑡) ∈ [𝐿, 𝑈]. Whenever 𝑋(𝑡) falls below 𝐿, the optimal 
dynamic control policy pushes toward the risk-hedging interval at the fastest possible rate 
𝜃𝑢, thus increasing the primary resource allocation 𝑃(𝑡). Similarly, whenever 𝑋(𝑡) 
exceeds 𝑈, the optimal dynamic control policy pushes toward the risk-hedging interval at 
the fastest possible rate 𝜃𝑙, thus decreasing the primary resource allocation 𝑃(𝑡). Here, 
the optimal threshold values 𝐿 and 𝑈 are uniquely determined by two nonlinear equations 
that depend upon the parameters of the formulation, including 𝑏, 𝜎, 𝑟𝑝, 𝑐𝑝, 𝑟𝑠, 𝑐𝑠, ℐ𝑝, 𝒟𝑝. 
 
In the special case when the dynamic control policy incurs no costs for making 
adjustments in the primary resource allocation 𝑃(𝑡), the risk-hedging interval [𝐿, 𝑈] 
collapses to a single point 𝛿, for which explicit expressions can be derived, and then the 
optimal dynamic control policy seeks to maintain 𝑋(𝑡) =  𝑃(𝑡) − 𝐷(𝑡) at the position 𝛿 
at all time 𝑡. Whenever 𝑋(𝑡) falls below 𝛿, the optimal dynamic control policy increases 
the primary resource allocation 𝑃(𝑡) toward the critical point at the fastest possible rate 
𝜃𝑢. Similarly, whenever 𝑋(𝑡) exceeds 𝛿, the optimal dynamic control policy decreases 
the primary resource allocation 𝑃(𝑡) toward the critical point at the fastest possible rate 
𝜃𝑙. Refer to [GLSSB, 2013] for additional technical details on the above and related 
results. 
 
Computational experiments demonstrate that our optimal online dynamic control 
algorithm provides significant benefits in comparison with other dynamic resource 

JSM 2016 - Section on Statistical Computing

3716



allocation schemes proposed in the research literature. This includes outperforming, by as 
much as a factor of two and more, an optimal offline algorithm that consists of making 
optimal provisioning decisions in a clairvoyant anticipatory manner based on known 
average demand within each slot of a discrete-time model where the slot length is chosen 
to match the timescale at which the system can adjust its resource capacity and so that 
demand activity within a slot is sufficiently nonnegligible in a statistical sense. Refer to 
[GLSSB, 2013] for additional details.  
 
 

4. Conclusions 
 
We have considered in this paper a general approach that combines statistics and 
stochastic optimization/control to provide a mathematical foundation for the optimal 
design and control of complex stochastic systems. The two key elements of this 
framework consist of the stochastic models of the system of interest and the solution 
methods for the corresponding optimization or optimal control under uncertainty 
problem. Statistical analysis and learning from various sources of data play crucial roles 
in helping to understand and characterize the uncertainty, risks and associated trade-offs 
within the context of the stochastic system models and the stochastic optimization/control 
solution methods. This was illustrated through two examples of our overall approach, 
involving general classes of resource allocation problems with broad applications. In the 
example of simulation-optimization of stochastic networks, statistical analysis and 
learning techniques are applied to data in order to determine the properties and 
distributional parameters for the exogenous arrival processes and the service processes at 
each station, for the (probabilistic) routing matrix of customer flows through the network, 
and for the financial rewards, costs and penalties. Analogously, in the example of 
stochastic optimal control of dynamic resource allocation, statistical analysis and learning 
techniques are applied to data in order to determine the properties and distributional 
parameters for the exogenous demand process, for the upper and lower bounds on the 
resource allocation control variable, and for the financial rewards, costs and penalties. 
 
The application of statistical techniques to the relevant available data make it possible to 
develop high fidelity stochastic models and high fidelity stochastic optimization/control 
problem formulations. This in turn renders high quality solutions for decision making and 
reasoning under uncertainty across a wide variety of application domains. By effectively 
combining statistics and stochastic optimization/control, our general approach provides 
significant benefits over existing methods (such as those ignoring structural properties 
and those based on point predictions), which was clearly demonstrated and quantified by 
the representative computational experiments discussed herein. This includes orders of 
magnitude computational reductions in comparison with the most well-developed 
simulation-optimization approach and as much as a factor of two and more improvement 
in solution quality over a previously published offline-optimal dynamic resource 
allocation policy. 
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