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Abstract 
Power method (PM) polynomials have been used for simulating non-normal distributions 
in a variety of settings such as toxicology research, price risk, business-cycle features, 
microarray analysis, computer adaptive testing, and structural equation modeling. A 
majority of the applications associated with the PM polynomials are based on the method 
of matching conventional moments (e.g., skew and kurtosis). However, estimators of skew 
and kurtosis can be (a) substantially biased, (b) highly dispersed, or (c) influenced by 
outliers. To address this limitation, two families of third-order PM distributions are 
developed through the method of 𝐿𝐿-moments (Hosking, 1990) using a doubling technique 
(Morgenthaler & Tukey, 2000) and contrasted with the method of moments in the contexts 
of estimation of parameters. The methodology is based on simulating uniform- and 
triangular-based third-order PM distributions with specified values of 𝐿𝐿 -skew and 𝐿𝐿 -
kurtosis. Monte Carlo simulation results indicate that the estimators based on method of L-
moments are superior to their conventional moment-based counterparts.  
    

1.   Introduction 
The third-order power method (PM) polynomial is defined as (Headrick, 2010) 
 

𝑝𝑝(𝑉𝑉) = 𝑐𝑐0 + 𝑐𝑐1𝑉𝑉 + 𝑐𝑐2𝑉𝑉2 + 𝑐𝑐3𝑉𝑉3, 
 
(1) 

 
where 𝑉𝑉 is a random variable with probability density function (pdf) and cumulative 
distribution function (cdf) denoted as 𝜙𝜙(𝑣𝑣) and Φ(𝑣𝑣). If the random variable 𝑉𝑉 in (1) is 
drawn from a standard normal distribution, then the expression in (1) is the Fleishman’s 
(1978) third-order PM polynomial. The Fleishman’s PM polynomial in (1) has been used 
in a variety of contexts for the purpose of simulating non-normal distributions with 
specified values of skew and kurtosis. Some examples include: asset pricing theory 
(Affleck-Graves & MacDonald, 1989), business-cycle features (Hess & Iwata, 1997), 
microarray analysis (Powell, Anderson, Cheng, & Alvord, 2002), price risk (Mahul, 2003), 
multivariate analysis (Steyn, 1993), analysis of variance (ANOVA) (Berkovits, Hancock, 
& Nevitt, 2000; Lix & Fouladi, 2007; Keselman, Wilcox, Algina, Othman, & Fradette, 
2008), analysis of covariance (ANCOVA) (Harwell & Serlin, 1988; Headrick & 
Sawilowsky, 2000), regression analysis (Headrick & Rotou, 2001), item response theory 
(Stone, 2003), nonparametric statistics (Beasley & Zumbo, 2003), toxicology research 
(Hothorn & Lehmacher, 2007), and structural equation modeling (Henson, Reise, & Kim, 
2007).  

If the random variable 𝑉𝑉 in (1) is drawn from a standard logistic and standard 
uniform distributions, respectively, then the corresponding expressions in (1) are referred 
to as logistic-based and uniform-based PM polynomials (Hodis & Headrick, 2007; Hodis, 
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2008; Headrick, 2010). A triangular-based PM polynomial has been developed by 
considering the random variable 𝑉𝑉  from a standard triangular distribution and this 
triangular-based PM polynomial is contrasted with the normal-, logistic-, and uniform-
based PM polynomials (see Hodis, Headrick, & Sheng, 2012). For the PM polynomial in 
(1) to produce a valid pdf, it is required that the expression in (1) be a strictly increasing 
monotone function. This requirement implies that an inverse function (𝑝𝑝−1) exists. As such, 
the parametric forms of cdf and pdf associated with (1) can be expressed as (Headrick & 
Kowalchuk, 2007; Headrick, 2010) 

 
𝐹𝐹�𝑝𝑝(𝑉𝑉)� = �𝑝𝑝(𝑉𝑉),Φ(𝑉𝑉)� (2) 

 
𝑓𝑓�𝑝𝑝(𝑉𝑉)� = (𝑝𝑝(𝑉𝑉),𝜙𝜙(𝑉𝑉) 𝑝𝑝′(𝑉𝑉)⁄ ) (3) 

 
One of the limitations associated with the PM polynomials is that the non-normal 

distributions with values of skew and (or) kurtosis that lie in the upper right region of the 
skew-kurtosis boundary graph (e.g., Headrick, 2010, p. 20) can be excessively leptokurtic 
and thus may not be representative of real world data (Pant & Headrick, 2012). For example, 
Figure 1 (Panel A) shows a pdf of uniform-based PM polynomial with skew (𝛾𝛾3) of 1.2 
and kurtosis (𝛾𝛾4) of 1.2. This example illustrates the limitation that the PM can have in 
terms of excessive peakedness. 
  

 

𝑐𝑐0 = −0.332659, 𝑐𝑐1 = 0.116965,  

 𝑐𝑐2 = 0.635331,  and 𝑐𝑐3 = 1.177987 

 

 

𝐶𝐶ℒ = 2.558204,  

𝐶𝐶ℛ = 7.098050 

A B 
Figure 1. Probability density function (pdf) of a traditional third order uniform-based 
(Panel A) and a double-uniform (Panel B) PM distributions based on matching the 
conventional skew of 1.2 and kurtosis of 1.2. The values of coefficients 𝑐𝑐𝑖𝑖=0,1,2,3 for the 
distribution in Panel A were determined by solving the system of equations (2.26)—(2.29) 
from Headrick (2010, p. 16), whereas the values of 𝐶𝐶ℒ and 𝐶𝐶ℛ for the distribution in Panel 
B were determined by solving (9)—(10). 

Another limitation associated with the PM distributions is that the conventional-
moment-based estimators of 𝛾𝛾3 and 𝛾𝛾4 have unfavorable attributes insofar as they can be 
substantially biased, highly dispersed, or can be influenced by outliers (Hosking, 1990, 

JSM 2016 - Section on Statistical Computing

3506



 

 

1992; Hosking & Wallis, 1997), therefore, may not be good representatives of their 
corresponding parameters. Table 1 gives the parameters and sample estimates of skew (𝛾𝛾3) 
and kurtosis (𝛾𝛾4) for the distribution in Fig. 1 (Panel B). Inspection of Table 1 indicates 
that the bootstrap estimates (𝛾𝛾�3 and 𝛾𝛾�4) of skew and kurtosis (𝛾𝛾3 and 𝛾𝛾4) are substantially 
attenuated below their corresponding parameter values with greater bias and variance as 
the order of the estimate increases. Specifically, for the sample size of 𝑛𝑛 = 25, the values 
of the estimates are 96.92%, and 135.33% of their corresponding parameters, respectively. 
The estimates (𝛾𝛾�3 and 𝛾𝛾�4) of skew and kurtosis (𝛾𝛾3 and 𝛾𝛾4) in Table 1 were calculated based 
on Fisher’s 𝑘𝑘-statistics formulae (see, e.g., Kendall & Stuart, 1977, pp. 299-300), currently 
used by most commercial software packages such as SAS, SPSS, Minitab, etc., for 
computing the values of skew and kurtosis (where 𝛾𝛾3,4 = 0  for the standard normal 
distribution).  
 

Table 1: Conventional moment-based parameter values of skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) 
and 𝐿𝐿 -moment-based parameter values of 𝐿𝐿 -skew (𝜏𝜏3)  and 𝐿𝐿 -kurtosis (𝜏𝜏4)  with their 
corresponding estimates for the pdf  in Fig. 1 (Panel B). Each bootstrapped estimate 
(Estimate), associated 95% bootstrap confidence interval (95% C.I.), and the standard error 
(SE) were based on resampling 25,000 statistics. Each statistic was based on a sample size 
of 𝑛𝑛 = 25. 
 

Skew: 𝛾𝛾3 = 1.2 Kurtosis: 𝛾𝛾4 = 1.2 
Estimate: 𝛾𝛾�3 95% C.I. SE Estimate: 𝛾𝛾�4 95% C.I. SE 

1.163 1.1568, 1.1691 0.0031 1.624 1.5999, 1.6477 0.0121 
  𝐿𝐿-skew (𝜏𝜏3) = 0.2409 𝐿𝐿-kurtosis (𝜏𝜏4) = 0.2342 
Estimate: 𝜏̂𝜏3 95% C.I. SE Estimate: 𝜉𝜉4 95% C.I. SE 

0.2374 0.2362, 0.2385 0.0006 0.2466 0.2455, 0.2479 0.0006 
 

 In order to address above limitations, Pant and Headrick (2012) have characterized 
double-normal- and double-logistic-PM distributions using 𝐿𝐿-moment-based procedure 
and contrasted this procedure with the conventional-moment-based procedure. 
Additionally, to address the latter limitation, Headrick (2011) has characterized the PM 
distributions through the method of 𝐿𝐿-moments. The method of 𝐿𝐿-moments (Hosking, 
1990) is an attractive alternative to conventional moment-based method as it can be used 
in fitting theoretical and empirical distributions, estimating parameters, and testing of 
hypothesis (Hosking, 1990, 1992; Hosking & Wallis, 1997; Headrick, 2011).  In the 
context of PM distributions, some of the advantages that 𝐿𝐿-moment based estimators (of 
𝐿𝐿-skew and 𝐿𝐿-kurtosis) have over conventional moments are that they (a) exist whenever 
the mean of the distribution exists, (b) are nearly unbiased for all sample sizes and 
distributions, and (c) are more robust in the presence of outliers (Hosking, 1990, 1992; 
Hosking & Wallis, 1997; Headrick, 2011; Pant & Headrick, 2013).  

 For example, for the double-uniform-PM pdf in Fig. 1 (Panel B), the 𝐿𝐿-moment-
based estimates (𝜏̂𝜏3 and 𝜏̂𝜏4) of 𝐿𝐿-skew and 𝐿𝐿-kurtosis (𝜏𝜏3 and 𝜏𝜏4) in Table 1 are relatively 
closer to their respective parameter values with much smaller variance compared to their 
conventional moment-based counterparts. Inspection of Table 1 shows that for the sample 
size of 𝑛𝑛 = 25, the values of the estimates are on average 98.55% and 105.29% of their 
corresponding parameters. 

 In the context of the limitations described above, the main purpose of this study is 
to develop a double-uniform-PM and a double-triangular-PM distributions using a 
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doubling technique (Morgenthaler & Tukey, 2000), characterize these distributions 
through the method of 𝐿𝐿-moments, and contrast the estimates of 𝐿𝐿-moments with their 
conventional-moment-based counterparts. 

 The two families of double-uniform-PM and double-triangular-PM distributions 
can be derived by using a doubling technique (Morgenthaler & Tukey, 2000; Pant & 
Headrick, 2012) and special cases of PM polynomials in (1) as     

𝑝𝑝(𝑈𝑈) = �𝑈𝑈 + 𝐶𝐶ℒ 𝑈𝑈3,
𝑈𝑈 + 𝐶𝐶ℛ 𝑈𝑈3,

    for 𝑈𝑈 ≤ 0
    for 𝑈𝑈 ≥ 0

 
(4) 

 
 

𝑝𝑝(𝑇𝑇) = �𝑇𝑇 + 𝐶𝐶ℒ  𝑇𝑇3,
𝑇𝑇 + 𝐶𝐶ℛ 𝑇𝑇3,

    for 𝑇𝑇 ≤ 0
    for 𝑇𝑇 ≥ 0

 
(5) 

where the random variables 𝑈𝑈 and 𝑇𝑇 in (4) and (5) are drawn respectively from symmetric 
uniform- and triangular distributions: 𝑈𝑈~𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−�𝜋𝜋 2⁄ ,�𝜋𝜋 2⁄ ) and 𝑇𝑇~𝑇𝑇𝑇𝑇𝑇𝑇(−√2𝜋𝜋,√2𝜋𝜋). 
These specific uniform and triangular distributions are used so that the maximum height of 
the pdf associated with the double-uniform-PM and double-triangular-PM distributions in 
(4) and (5), respectively, is 1/√2𝜋𝜋, which is also the maximum height of standard normal 
pdf (see Pant & Headrick, 2012). 

 The remainder of the paper is organized as follows. In Section 2, the systems of 
equations for the conventional-moment-based skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) associated with 
these new families of double-uniform-PM and double-triangular-PM distributions are 
derived. Also provided in Section 2 is a methodology for solving the systems of equations 
for the shape parameters (𝐶𝐶ℒ and 𝐶𝐶ℛ) associated with these families of distributions. In 
Section 3, a brief introduction to 𝐿𝐿-moments is given. Section 3 also provides the derivation 
of the systems of equations for the 𝐿𝐿-moment-based 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) for 
the two families of PM distributions. Also provided in Section 3 is an 𝐿𝐿-moment-based 
methodology for solving the systems of equations for the shape parameters (𝐶𝐶ℒ and 𝐶𝐶ℛ) 
associated with the two families of distributions. In Section 4, a comparison between 
conventional-moment- and 𝐿𝐿-moment-based double-uniform- and double-triangular-PM 
distributions is presented in the context of estimation of parameters. The simulation results 
are provided for the comparison of estimates. In Section 5, the simulation results are 
discussed. 

  

2. Conventional-Moment-Based System 

2.1. Conventional-Moment-Based System for Double-Uniform-PM Distributions 

The conventional moments �𝜇𝜇𝑟𝑟=1,…,4� associated with (4) can be obtained from  

𝜇𝜇𝑟𝑟 = � (𝑢𝑢 + 𝐶𝐶ℒ𝑢𝑢3)𝑟𝑟
0

−�π 2⁄
𝜙𝜙(𝑢𝑢)𝑑𝑑𝑑𝑑 + � (𝑢𝑢 + 𝐶𝐶ℛ𝑢𝑢3)𝑟𝑟

�π 2⁄

0
𝜙𝜙(𝑢𝑢)𝑑𝑑𝑑𝑑. 

 
(6) 

 
 

The mean (𝜇𝜇), variance (𝜎𝜎2), skew (𝛾𝛾3), and kurtosis (𝛾𝛾4) of double-uniform-PM 
distributions can be given as (Kendall & Stuart, 1977): 

𝜇𝜇 =
(𝐶𝐶ℛ − 𝐶𝐶ℒ)𝜋𝜋3 2⁄

16√2
 (7) 
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𝜎𝜎2 =
𝜋𝜋
6

+
1

20
(𝐶𝐶ℒ + 𝐶𝐶ℛ)𝜋𝜋2 +

�25𝐶𝐶ℒ2 + 14𝐶𝐶ℒ𝐶𝐶ℛ + 25𝐶𝐶ℛ2�𝜋𝜋3

3584
 

(8) 

𝛾𝛾3 = −[6√105(𝐶𝐶ℒ − 𝐶𝐶ℛ )𝜋𝜋 �4480 + 9𝜋𝜋 �224(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 3𝜋𝜋�9𝐶𝐶ℒ2 +

          + 14𝐶𝐶ℒ  𝐶𝐶ℛ + 9𝐶𝐶ℛ2  ���]/[8960 + 3𝜋𝜋 �896(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 5𝜋𝜋�25𝐶𝐶ℒ2 +

          + 14𝐶𝐶ℒ  𝐶𝐶ℛ + 25𝐶𝐶ℛ2��]3 2⁄    

 

(9) 

𝛾𝛾4 = �6�−2296053760− 984023040(𝐶𝐶ℒ + 𝐶𝐶ℛ)𝜋𝜋

+ 512512�67𝐶𝐶ℒ2 − 966𝐶𝐶ℒ𝐶𝐶ℛ + 67𝐶𝐶ℛ2�𝜋𝜋2

+ 174720(𝐶𝐶ℒ + 𝐶𝐶ℛ)�491𝐶𝐶ℒ2 − 854𝐶𝐶ℒ𝐶𝐶ℛ + 491𝐶𝐶ℛ2�𝜋𝜋3

+ 165�65773𝐶𝐶ℒ4 + 26572𝐶𝐶ℒ3𝐶𝐶ℛ − 82290𝐶𝐶ℒ2𝐶𝐶ℛ2

+ 26572𝐶𝐶ℒ𝐶𝐶ℛ3 + 65773𝐶𝐶ℛ4�𝜋𝜋4��

/�143(8960 + 3𝜋𝜋(896(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 5𝜋𝜋(25𝐶𝐶ℒ2 + 14𝐶𝐶ℒ𝐶𝐶ℛ

+ 25𝐶𝐶ℛ2)))2� 

 

(10) 

2.2. Conventional-Moment-Based System for Double-Triangular-PM Distributions 

The conventional moments �𝜇𝜇𝑟𝑟=1,…,4� associated with (5) can be obtained from 

𝜇𝜇𝑟𝑟 = � (𝑡𝑡 + 𝐶𝐶ℒ𝑡𝑡3)𝑟𝑟
0

−√2𝜋𝜋
𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑 + � (𝑡𝑡 + 𝐶𝐶ℛ𝑡𝑡3)𝑟𝑟

√2𝜋𝜋

0
𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑. 

 
(11) 
 
 

The mean (𝜇𝜇), variance (𝜎𝜎2), skew (𝛾𝛾3), and kurtosis (𝛾𝛾4) of double-triangular-PM 
distributions can be given as (Kendall & Stuart, 1977): 

𝜇𝜇 =
(𝐶𝐶ℛ − 𝐶𝐶ℒ)𝜋𝜋3 2⁄

5√2
 (12) 

𝜎𝜎2 =
𝜋𝜋(350 + 280𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 3𝜋𝜋2(43𝐶𝐶ℒ2 + 14𝐶𝐶ℒ𝐶𝐶ℛ + 43𝐶𝐶ℛ2))

1050
 

(13) 
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𝛾𝛾3 = −[2√21(𝐶𝐶ℒ − 𝐶𝐶ℛ)𝜋𝜋�10725

+ 2𝜋𝜋�7315(𝐶𝐶ℒ + 𝐶𝐶ℛ)

+ 81𝜋𝜋(38𝐶𝐶ℒ2 + 49𝐶𝐶ℒ 𝐶𝐶ℛ + 38𝐶𝐶ℛ2)��]

/[11{�350 + 280𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ)

+ 3𝜋𝜋2(43𝐶𝐶ℒ2 + 14𝐶𝐶ℒ 𝐶𝐶ℛ + 43𝐶𝐶ℛ2)�}3 2⁄ ] 

(14) 

𝛾𝛾4 = [6{−1751750 + 1001000𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 200200𝜋𝜋2(55𝐶𝐶ℒ2

− 17𝐶𝐶ℒ𝐶𝐶ℛ + 55𝐶𝐶ℛ2) + 3640𝜋𝜋3(𝐶𝐶ℒ + 𝐶𝐶ℛ)(3887𝐶𝐶ℒ2

− 4074𝐶𝐶ℒ𝐶𝐶ℛ + 3887𝐶𝐶ℛ2) + 3𝜋𝜋4(1803829𝐶𝐶ℒ4

+ 502684𝐶𝐶ℒ3𝐶𝐶ℛ − 598026𝐶𝐶ℒ2𝐶𝐶ℛ2 + 502684𝐶𝐶ℒ𝐶𝐶ℛ3

+ 1803829𝐶𝐶ℛ4)}]

/[143(350 + 280𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 3𝜋𝜋2(43𝐶𝐶ℒ2 + 14𝐶𝐶ℒ𝐶𝐶ℛ

+ 43𝐶𝐶ℛ2))2] 

 

(15) 

The conventional-moment-based procedure for simulating the double-uniform- 
and double-triangular-PM distributions involves a moment-matching approach in which 
specified values of skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) are substituted on the left-hand sides of 
(9)—(10) and (14)—(15), respectively, and then these systems are simultaneously solved 
for the shape parameters (𝐶𝐶ℒ and 𝐶𝐶ℛ). The solved values of 𝐶𝐶ℒ and 𝐶𝐶ℛ can be substituted 
into (7)—(8) and (12)—(13), respectively, to determine the values of mean and variance 
associated with the double-uniform- and double-triangular-PM distributions. The solved 
values of 𝐶𝐶ℒ  and 𝐶𝐶ℛ  can be substituted into (3) to plot the pdfs associated with the 
corresponding distribution. For example, the pdf of double-uniform-PM distribution in Fig. 
1 (Panel B) was plotted by first substituting the solved values of 𝐶𝐶ℒ = 2.558204 and  
𝐶𝐶ℛ = 7.098050 into (4) for generating the double-uniform-PM distribution with 𝛾𝛾3 =
𝛾𝛾4 = 1.2, and subsequently substituting it into (3) for the parametric form of pdf.  

The boundary graphs plotted in |𝛾𝛾3|− 𝛾𝛾4 plane in Figure 2 (Panel A and Panel B) 
can be used for finding possible combinations of skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) associated 
with conventional-moment-based double-uniform- and double-triangular-PM distributions. 
Fig. 2 (Panel A) shows the boundary graph for possible combinations of skew (𝛾𝛾3) and 
kurtosis (𝛾𝛾4) associated with a valid double-uniform-PM distribution, where the values of 
|𝛾𝛾3| range between 0 and 2.0573 and those of 𝛾𝛾4 range between -1.2 to 3.2381. Fig. 2 
(Panel B) shows the boundary graph for possible combinations of skew (𝛾𝛾3) and kurtosis 
(𝛾𝛾4) associated with a valid double-triangular-PM distribution, where the values of |𝛾𝛾3| 
range between 0 and 3.5007 and those of 𝛾𝛾4 range between -0.6 to 13.6443. 
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A B 
Figure 2. Boundary graphs of the regions for possible combinations of (absolute value) 
skew (|𝛾𝛾3|) and kurtosis (𝛾𝛾4) for the double-uniform- (Panel A) and the double-triangular- 
(Panel B) PM distributions. 

3. 𝑳𝑳-Moment-Based Methodology  

3.1. General Definition  

𝐿𝐿-moments can be expressed as a linear combination of probability weighted moments 
(PWMs). Let 𝑋𝑋  be a random variable with the pdf  𝑓𝑓(𝑥𝑥) , cdf  𝐹𝐹(𝑥𝑥) , and the quantile 
function 𝐹𝐹−1(𝑥𝑥). Then, the PWMs associated with 𝑋𝑋 can be defined as (Hosking & Wallis, 
1997)   

𝛽𝛽𝑟𝑟 = �𝐹𝐹−1(𝑥𝑥)�𝐹𝐹(𝑥𝑥)�𝑟𝑟𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 (16) 

Then, the first four 𝐿𝐿-moments based on the first four PWMs �𝛽𝛽𝑟𝑟=0,1,2,3� from (16) 
are expressed in their simplified forms as (Hosking & Wallis, 1997, pp. 20-22) 

𝜆𝜆1 = 𝛽𝛽0 (17) 

𝜆𝜆2 = 2𝛽𝛽1 − 𝛽𝛽0 (18) 

𝜆𝜆3 = 6𝛽𝛽2 − 6𝛽𝛽1 + 𝛽𝛽0 (19) 

𝜆𝜆4 = 20𝛽𝛽3 − 30𝛽𝛽2 + 12𝛽𝛽1 − 𝛽𝛽0 (20) 

The notations 𝜆𝜆1 and 𝜆𝜆2 denote the location and scale parameters. In the literature 
of 𝐿𝐿-moments, 𝜆𝜆1 is called the 𝐿𝐿-location (which is equal to the arithmetic mean) and 𝜆𝜆2 
(> 0) is called the 𝐿𝐿-scale, which is one-half of Gini’s coefficient of mean difference 
(Kendall & Stuart, 1977, pp. 47-48). Dimensionless 𝐿𝐿-moment ratios (i.e., 𝐿𝐿-skew and 𝐿𝐿-
kurtosis) are defined as the ratios of higher-order 𝐿𝐿-moments (i.e., 𝜆𝜆3 and 𝜆𝜆4) to 𝜆𝜆2. Thus, 
𝜏𝜏3 = 𝜆𝜆3 𝜆𝜆2⁄  and 𝜏𝜏4 = 𝜆𝜆4 𝜆𝜆2⁄  are, respectively, the indices of 𝐿𝐿-skew and 𝐿𝐿-kurtosis. In 
general, these indices of 𝐿𝐿-skew and 𝐿𝐿-kurtosis are bounded such that |𝜏𝜏3| < 1 and |𝜏𝜏4| <
1, and as in conventional-moment theory, a symmetric distribution has 𝐿𝐿-skew (𝜏𝜏3) = 0 
(Headrick, 2011).  

Empirical 𝐿𝐿-moments for a sample (𝑛𝑛) of real data, are computed as a linear 
combination of the sample order statistics 𝑋𝑋1:𝑛𝑛 ≤ 𝑋𝑋2:𝑛𝑛 ≤ ⋯ ≤ 𝑋𝑋𝑛𝑛:𝑛𝑛. The unbiased sample 
estimates of the PWMs are given as (Hosking, 1990; Headrick, 2011): 

𝛽̂𝛽𝑟𝑟 =
1
𝑛𝑛
�

(𝑖𝑖 − 1)(𝑖𝑖 − 2) … (𝑖𝑖 − 𝑟𝑟)
(𝑛𝑛 − 1)(𝑛𝑛 − 2) … (𝑛𝑛 − 𝑟𝑟)

𝑛𝑛

𝑖𝑖=𝑟𝑟+1

𝑋𝑋𝑖𝑖:𝑛𝑛 (21) 
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where 𝑟𝑟 =  0, 1, 2, 3 . Here, 𝛽̂𝛽0  is the sample mean. The first four sample 𝐿𝐿 -moments 
(𝜆̂𝜆1, 𝜆̂𝜆2, 𝜆̂𝜆3, 𝜆̂𝜆4) are obtained by substituting 𝛽̂𝛽𝑟𝑟 instead of 𝛽𝛽𝑟𝑟 in equations (17)−(20). The 
symbols used for the sample 𝐿𝐿-moment ratios (i.e., 𝐿𝐿-skew and 𝐿𝐿-kurtosis) are 𝜏̂𝜏3 and 𝜏̂𝜏4, 
where 𝜏̂𝜏3 = 𝜆̂𝜆3 𝜆̂𝜆2⁄  and 𝜏̂𝜏4 = 𝜆̂𝜆4 𝜆̂𝜆2⁄ . 

3.2. 𝑳𝑳-Moment-Based System for Double-Uniform-PM Distributions 

The 𝐿𝐿-moment-based system of equations for the double-uniform-PM distributions can be 
derived by first defining the PWMs based on (16) in terms of 𝑝𝑝(𝑈𝑈) in (4) and the standard 

uniform pdf 𝜙𝜙(𝑢𝑢) = 1 √2𝜋𝜋⁄  and cdf Φ(𝑢𝑢) = �𝑢𝑢 + �𝜋𝜋 2⁄ � √2𝜋𝜋�  as 

𝛽𝛽𝑟𝑟 = � (𝑢𝑢 + 𝐶𝐶ℒ 𝑢𝑢3){Φ(𝑢𝑢)}𝑟𝑟𝜙𝜙(𝑢𝑢)𝑑𝑑𝑑𝑑
0

−�𝜋𝜋2

+ � (𝑢𝑢 + 𝐶𝐶ℛ 𝑢𝑢3){Φ(𝑢𝑢)}𝑟𝑟𝜙𝜙(𝑢𝑢)𝑑𝑑𝑑𝑑
�𝜋𝜋2

0
. (22) 

Integrating (22) for 𝛽𝛽𝑟𝑟=0,1,2,3 and substituting into (17)—(20) yields the first four 
𝐿𝐿-moments; which are eventually substituted into the formulae for 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-
kurtosis (𝜏𝜏4) to obtain the following system of equations: 

𝜆𝜆1 =
(𝐶𝐶ℛ − 𝐶𝐶ℒ)𝜋𝜋3 2⁄

16√2
 (23) 

𝜆𝜆2 =
√𝜋𝜋�20 + 3𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ)�

60√2
 (24) 

𝜏𝜏3 =
15(𝐶𝐶ℛ − 𝐶𝐶ℒ)𝜋𝜋

24(𝐶𝐶ℒ + 𝐶𝐶ℛ)𝜋𝜋 + 160
 (25) 

𝜏𝜏4 =
6(𝐶𝐶ℒ + 𝐶𝐶ℛ)𝜋𝜋

21(𝐶𝐶ℒ + 𝐶𝐶ℛ)𝜋𝜋 + 140
 (26) 

The solutions for 𝐶𝐶ℒ and 𝐶𝐶ℛ for a valid double-uniform-PM distribution can also 
be determined by evaluating the following expressions for specified values of 𝜏𝜏3 and 𝜏𝜏4: 

𝐶𝐶ℒ =
2(16𝜏𝜏3 − 35𝜏𝜏4)

3𝜋𝜋(7𝜏𝜏4 − 2)  (27) 

𝐶𝐶ℛ =
2(16𝜏𝜏3 + 35𝜏𝜏4)

3𝜋𝜋(2 − 7𝜏𝜏4)  (28) 

3.3. 𝑳𝑳-Moment-Based System for Double-Triangular-PM Distributions 

The 𝐿𝐿-moment-based system of equations for the double-triangular-PM distributions can 
be derived by first defining the PWMs based on (16) in terms of 𝑝𝑝(𝑇𝑇) in (5) and then by 
integrating the following integral: 
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𝛽𝛽𝑟𝑟 = � (𝑡𝑡 + 𝐶𝐶ℒ𝑡𝑡3){Φ(𝑡𝑡)}𝑟𝑟𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑
0

−√2𝜋𝜋
+� (𝑡𝑡 + 𝐶𝐶ℛ𝑡𝑡3){Φ(𝑡𝑡)}𝑟𝑟𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑

√2𝜋𝜋

0
. (29) 

where 𝜙𝜙(𝑡𝑡)  and Φ(𝑡𝑡)  are the standard triangular pdf and cdf, defined as:  𝜙𝜙(𝑡𝑡) =

�
�√2𝜋𝜋 + 𝑡𝑡� 2𝜋𝜋⁄ ,     for 𝑡𝑡 ≤ 0
�√2𝜋𝜋 − 𝑡𝑡� 2𝜋𝜋⁄ ,     for 𝑡𝑡 > 0  

 and Φ(𝑡𝑡) = �
�√2𝜋𝜋 + 𝑡𝑡�

2
4𝜋𝜋� ,     for 𝑡𝑡 ≤ 0

1 − �√2𝜋𝜋 − 𝑡𝑡�
2

4𝜋𝜋� ,     for 𝑡𝑡 > 0  
. 

Integrating (29) for 𝛽𝛽𝑟𝑟=0,1,2,3 and substituting into (17)—(20) yields the first four 
𝐿𝐿-moments; which are eventually substituted into the formulae for 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-
kurtosis (𝜏𝜏4) to obtain the following system of equations: 

𝜆𝜆1 =
(𝐶𝐶ℛ − 𝐶𝐶ℒ)𝜋𝜋3 2⁄

5√2
 (30) 

𝜆𝜆2 =
√𝜋𝜋�49 + 18𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ)�

105√2
 (31) 

𝜏𝜏3 =
53𝜋𝜋(𝐶𝐶ℛ − 𝐶𝐶ℒ)

72𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 196
 (32) 

𝜏𝜏4 =
1116𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 583

2376𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 6468
 (33) 

The solutions for 𝐶𝐶ℒ and 𝐶𝐶ℛ for a valid double-triangular-PM distribution can be 
determined by evaluating the following expressions for specified values of 𝜏𝜏3 and 𝜏𝜏4: 

𝐶𝐶ℒ =
(30899 + 176760𝜏𝜏3 − 342804𝜏𝜏4)

3816𝜋𝜋(66𝜏𝜏4 − 31)  (34) 

𝐶𝐶ℛ =
(30899 − 176760𝜏𝜏3 − 342804𝜏𝜏4)

3816𝜋𝜋(66𝜏𝜏4 − 31)  (35) 

  For specified values of 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) associated with the valid 
double-uniform- and double-triangular-PM distributions, the systems of equations (25)—
(26) and (32)—(33) can be simultaneously solved for the values of shape parameters (𝐶𝐶ℒ 
and 𝐶𝐶ℛ). Alternatively, the specified values of 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) associated 
with the valid double-uniform- and double-triangular-PM distributions can be directly 
substituted into (27)—(28) and (34)—(35), respectively, to obtain the values of 𝐶𝐶ℒ and 𝐶𝐶ℛ. 
The solved values of 𝐶𝐶ℒ  and 𝐶𝐶ℛ  can be substituted into (4) and (5), respectively, for 
generating the double-uniform- and double-triangular-PM distributions. Further, the solved 
values of 𝐶𝐶ℒ and 𝐶𝐶ℛ can be substituted into (23)—(24) and (30)—(31) to determine the 
values of mean or 𝐿𝐿-location (𝜆𝜆1) and 𝐿𝐿-scale (𝜆𝜆2) associated with the double-uniform- 
and double-triangular-PM distributions, respectively.  

 The boundary graphs in Figure 3 (Panel A and Panel B) can be used for finding 
possible combinations of 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) associated with the 𝐿𝐿-moment-
based valid double-uniform- and double-triangular-PM distributions. Fig. 3 (Panel A) 
shows the boundary graph for possible combinations of 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) 
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associated with a valid double-uniform-PM distribution, where the values of |𝜏𝜏3| range 
between 0 and 0.625 and those of 𝜏𝜏4 range between 0 and 0.2857. Fig. 3 (Panel B) shows 
the boundary graph for possible combinations of 𝐿𝐿 -skew (𝜏𝜏3)  and 𝐿𝐿 -kurtosis (𝜏𝜏4) 
associated with a valid double-triangular-PM distribution, where the values of |𝜏𝜏3| range 
between 0 and 0.7361 and those of 𝜏𝜏4 range between 0.0901 to 0.4697. 

  

A B 
Figure 3: Boundary graphs of the regions for possible combinations of (absolute value) 
𝐿𝐿-skew (|𝜏𝜏3|) and 𝐿𝐿-kurtosis (𝜏𝜏4) for the double-uniform- (Panel A) and the double-
triangular- (Panel B) PM distributions. 
 

 In the next section, examples are provided to demonstrate the aforementioned 
methodology and the advantages of 𝐿𝐿-moment-based procedure over the conventional-
moment-based procedure in the contexts of estimation of parameters.   

4.  Comparison of 𝑳𝑳-Moments with Conventional Moments: Estimation 

In the context of estimation of parameters, an example is provided in Figure 4 and Tables 
2-3 to demonstrate the advantages of 𝐿𝐿-moment-based procedure over the conventional-
moment-based procedure. Given in Fig. 4 (Panel B) are the pdfs of four distributions of 
which the first two (Distributions 1 and 2) are the double-uniform-PM and the last two 
(Distributions 3 and 4) are the double-triangular-PM distributions. The values of 
conventional-moment- and 𝐿𝐿-moment-based parameters of skew (𝛾𝛾3) and 𝐿𝐿-skew (𝜏𝜏3), 
kurtosis (𝛾𝛾4) and 𝐿𝐿-kurtosis (𝜏𝜏4) along with their solved values of shape parameters (𝐶𝐶ℒ 
and 𝐶𝐶ℛ) associated with these four distributions, are given in Fig. 4 (Panel A). The pdfs in 
Fig. 4 (Panel B) were plotted by first substituting the solved values of 𝐶𝐶ℒ and 𝐶𝐶ℛ into (4) 
and (5), respectively, to generate the double-uniform-PM and double-triangular-PM 
distributions and then substituting these into (3) to plot the parametric forms of pdfs 
associated with these four distributions. 

The advantages of 𝐿𝐿-moment-based procedure over the conventional-moment-
based procedure can be demonstrated in the context of estimation of parameters associated 
with the four distributions in Fig. 4 by considering the Monte Carlo simulation results 
associated with the indices for the percentage of relative bias (RB%) and standard error 
(SE) reported in Tables 2 and 3.  

Specifically, a Fortran (Microsoft, 1994) algorithm was written to simulate 25,000 
independent samples of size 𝑛𝑛 = 25, and the 𝐿𝐿-moment-based estimates (𝜏̂𝜏3 and 𝜏̂𝜏4) of 𝐿𝐿-
skew and 𝐿𝐿-kurtosis (𝜏𝜏3 and 𝜏𝜏4) and the conventional-moment-based estimates (𝛾𝛾�3 and 𝛾𝛾�4) 
of skew and kurtosis (𝛾𝛾3 and 𝛾𝛾4) were computed for each of the (2 × 25,000) samples 
based on the parameters and the values of shape parameters (𝐶𝐶ℒ and 𝐶𝐶ℛ) listed in Fig. 4 
(Panel A). The estimates (𝛾𝛾�3 and 𝛾𝛾�4) of 𝛾𝛾3 and 𝛾𝛾4 were computed based on Fisher’s 𝑘𝑘-
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statistics formulae (Kendall & Stuart, 1977, pp. 47-48), whereas the estimates (𝜏̂𝜏3 and 𝜏̂𝜏4) 
of 𝜏𝜏3 and 𝜏𝜏4 were computed by substituting sample estimates of PWMs from (21) into 
(17)−(20) for obtaining the sample estimates of 𝐿𝐿-moments and subsequently substituting 
these into the formulae for estimates 𝜏̂𝜏3 and 𝜏̂𝜏4. Bias-corrected accelerated bootstrapped 
average estimates (Estimate), associated 95% confidence intervals (95% C.I.), and standard 
errors (SE) were obtained for each type of estimates using 10,000 resamples via the 
commercial software package Spotfire S+ (TIBCO, 2008). Further, if a parameter was 
outside its associated 95% bootstrap C.I., then the percentage of relative bias (RB%) was 
computed for the estimate as 

RB% = 100 × (Estimate − Parameter)/Parameter 
 

(36) 
 

  In order to demonstrate the advantages of 𝐿𝐿-moment-based procedure over the 
conventional-moment-based procedure, the results of simulation are discussed in the next 
section.  

 
5. Discussion and Conclusion 

This study introduced an 𝐿𝐿 -moment based methodology for generating the double-
uniform- and double-triangular-PM distributions, which may be useful to researchers in 
any discipline for simulating non-normal distributions in their studies. One of the 
advantages of the 𝐿𝐿 -moment-based procedure over the conventional-moment-based 
procedure can be expressed in the context of estimation. Inspection of Tables 2 and 3 
indicates that the estimates of 𝐿𝐿-moment-based 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) are much 
less biased than the conventional-moment-based estimates of skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) 
when samples are drawn from the distributions with more severe departures from normality. 
For example, for samples of size 𝑛𝑛 =  25, the estimates of 𝛾𝛾3 and 𝛾𝛾4 for Distribution 4 in 
Fig. 4 were, on average, 81.06% and 65.67% of their associated parameters, whereas the 
estimates of 𝜏𝜏3  and 𝜏𝜏4  were 96.72% and 103.06% of their associated parameters. This 
advantage of 𝐿𝐿-moment-based estimates can also be expressed by comparing their relative 
standard errors (RSEs), where RSE = {(SE/Estimate) × 100}. Comparing Tables 2 and 3, 
it is evident that the estimators of 𝜏𝜏3  and 𝜏𝜏4  are more efficient as their RSEs are 
considerably smaller than the RSEs associated with the conventional-moment-based 
estimators of 𝛾𝛾3 and 𝛾𝛾4. For example, in terms of Distribution 4 in Fig. 4, inspection of 
Tables 2 and 3 (for 𝑛𝑛 =  25), indicates that RSE measures of: RSE (𝜏̂𝜏3) = 0.14% and 
RSE (𝜏̂𝜏4) = 0.19%  are considerably smaller than the RSE measures of: RSE (𝛾𝛾�3) =
0.20% and RSE (𝛾𝛾�4) = 0.41%. This demonstrates that the estimators of 𝜏𝜏3 and 𝜏𝜏4 have 
more precision because they have less variance around their bootstrapped estimates.  

In summary, the proposed 𝐿𝐿-moment-based procedure is an attractive alternative 
to the conventional-moment-based procedure in the context of double-uniform- and 
double-triangular-PM distributions. In particular, the 𝐿𝐿 -moment-based procedure has 
distinct advantages when distributions with large departures from normality are used. 
Finally, we note that Mathematica (Wolfram, 2012) source codes are available from the 
authors for implementing both the 𝐿𝐿 -moment-based and conventional-moment-based 
procedures.  
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Distribution 1 

𝜏𝜏3 = 0, 𝜏𝜏4 = 0.15 

𝐶𝐶ℒ = 𝐶𝐶ℛ = 1.1727 

𝛾𝛾3 = 0, 𝛾𝛾4 = −0.2398 

 
 

Distribution 2 

𝜏𝜏3 = 0.58, 𝜏𝜏4 = 0.28 

𝐶𝐶ℒ = 2.7587, 𝐶𝐶ℛ = 101.2225 

𝛾𝛾3 = 2.0210, 𝛾𝛾4 = 3.1005 

 
 

Distribution 3 

𝜏𝜏3 = 0, 𝜏𝜏4 = 0.22 

𝐶𝐶ℒ = 𝐶𝐶ℛ = 0.2253 

𝛾𝛾3 = 0, 𝛾𝛾4 = 1.1257 

 
 

Distribution 4 

𝜏𝜏3 = 0.6, 𝜏𝜏4 = 0.45 

𝐶𝐶ℒ = 1.1105, 𝐶𝐶ℛ = 14.7207 

𝛾𝛾3 = 3.3332, 𝛾𝛾4 = 12.5470 

 
 

A B 
Figure 4: The parameters of skew (𝐿𝐿-skew), kurtosis (𝐿𝐿-kurtosis), and the solved values 
of shape parameters (𝐶𝐶ℒ  and 𝐶𝐶ℛ) of the four distributions are shown in Panel A. The 
corresponding pdfs are shown in Panel B. Distributions 1 and 2 are the double-uniform-
PM distributions, whereas Distributions 3 and 4 are double-triangular-PM distributions.  
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Table 2. The estimates of 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) for the distributions in Fig. 4. 

Each estimate was based on a sample size of 𝑛𝑛 =  25. 
Dist. Parameter Estimate 95% C.I. SE RB% 

1 𝜏𝜏3 = 0 0.0005 -0.0005, 0.0015 0.0005 ----- 

 𝜏𝜏4 = 0.15 0.1564 0.1555,  0.1573 0.0005 4.27 

      2 𝜏𝜏3 = 0.58 0.5968 0.5956,  0.5980 0.0006 2.90 

 𝜏𝜏4 = 0.28 0.3145 0.3125,  0.3164 0.0010 12.32 

      3 𝜏𝜏3 = 0 0.0009 -0.0005,  0.0025 0.0008 ----- 

 𝜏𝜏4 = 0.22 0.2216 0.2207,  0.2226 0.0005 0.73 

      4 𝜏𝜏3 = 0.6 0.5803 0.5788,  0.5818 0.0008 -3.28 

 𝜏𝜏4 = 0.45 0.4638 0.4620,  0.4655 0.0009 3.07 

 
Table 3. The estimates of skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) for the distributions in Fig. 4. 

Each estimate was based on a sample size of 𝑛𝑛 =  25. 
Dist. Parameter Estimate 95% C.I. SE RB% 

1 𝛾𝛾3 = 0 0.0029 -0.0017,  0.0074 0.0023 ----- 

 𝛾𝛾4 = -0.2398 -0.0155 -0.0244,  -0.0069 0.0045 -93.54 

      2 𝛾𝛾3 = 2.0210 2.1030 2.0951,  2.1117 0.0042 4.06 

 𝛾𝛾4 = 3.1005 4.2020 4.1560,  4.2536 0.0249 35.53 

      3 𝛾𝛾3 = 0 0.0072 -0.0015,  0.0156 0.0043 ------ 

 𝛾𝛾4 = 1.1257 1.1190 1.1023,  1.1352 0.0084 -0.60 

      4 𝛾𝛾3 = 3.3332 2.7020 2.6911,  2.7120 0.0053 -18.94 

 𝛾𝛾4 = 12.5470 8.2400 8.1740,  8.3074 0.0340 -34.33 
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