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Abstract 
 
In a biomarker threshold study, the treatment effect estimated from a statistically optimal 
choice of threshold can be biased from the multiplicity of using data from the current 
study more than once. In this paper, we studied the bias of the treatment effect estimated 
from a biomarker threshold study, and methods to correct the bias in order to better 
understand the treatment effect in the selected population as well as for planning future 
studies. We have compared three bias correction methods for biomarker threshold 
studies: a heuristic estimator, a p-value based method and a bootstrap based method. 
Simulations were performed to study the bias and the performance of the three methods. 
Simulations showed that the treatment effect estimated from a biomarker threshold study 
can be biased. The amount of bias depends on several factors, including the sample size 
of the study, the size of any true treatment effect and biomarker by treatment interaction, 
and the number of thresholds investigated. In some settings, the magnitude of the bias 
was considerable even when only a few thresholds were considered. The three studied 
approaches, especially the p-value approach, perform well for various scenarios.  
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1. Introduction 
 
Identification of predictive biomarkers and subgroups of patients with enhanced 
treatment effect is of increasing interest. Biomarkers are often available in continuous 
scale, and the optimal cutoff for identifying the patients with the enhanced treatment 
effect may not be available.  
 
Jiang, et al (2007) proposed an adaptive threshold design (ATD) which finds the optimal 
threshold and tests the treatment effect in the identified subgroup. In a time to event 
setting, for each candidate biomarker cutoff value, a Cox proportional hazard model is 
fitted on the subset of patients based on the biomarker cutoff value and a log likelihood 
ratio (LR) statistic is performed. The maximum of the LR statistics is calculated as the 
test statistic and the corresponding biomarker cutoff value is an estimate of the optimal 
threshold.  
 
The treatment effect estimated from a statistically optimal threshold choice can be biased 
from the multiplicity of using data from the current study more than once. Adjusting for 
this bias is an important consideration to understand the treatment effect in the selected 
population as well as for planning future studies. For example, if the treatment effect at 
the optimally selected threshold is used directly in a sample size calculation for a future 

JSM 2016 - Biopharmaceutical Section

3497



study in the selected subpopulation, an over-optimistic treatment effect will be predicted, 
resulting in an underpowered study.  
 
The objective of this paper is to study the bias of the treatment effect estimated from a 
biomarker threshold study, and correct the bias using proper methods.  

 
2. Methods 

 
2.1 Adaptive Threshold Design Review 
 
Consider a trial that is designed to assess whether a new treatment is more effective than 
the standard care. In such a trial, patients are randomly assigned to receive the new 
treatment (experimental arm) or the standard care (control arm). The two treatment arms 
are compared with respect to time (t) to a clinical event, such as death or disease 
progression. Proportional hazards model are frequently used to model this type of time-
to-event data. The hazard function denotes the instantaneous risk of the event as a 
function of time t. When the data follow the proportional hazards assumption, the 
logarithm of the ratio of the hazard function for patients in the experimental arm to that 
for patients in the control arm is a constant independent of time. The model can be 
written as  

log�
ℎ𝐸(𝑡)
ℎ𝐶(𝑡)�

= 𝛽 

 
where hE(t) and hC(t) denote the hazard functions for experimental and control arms, 
respectively, and  β denotes treatment effect. The hazard ratio can be calculated as 
exp(β). To test the treatment effect, a log likelihood ratio test or a Wald test can be used.   
 
Now, suppose that the new treatment may be beneficial in only a subset of patients 
defined by a quantitative biomarker. That is, patients with biomarker levels below some 
unknown cutoff value may be beneficial. This can be represented in the following model: 
 

log�
ℎ𝐸(𝑡)
ℎ𝐶(𝑡)�

= �𝛽 for patients with biomarker value below c
0 for patients with biomarker value above c 

 
where c is a cutoff value of the biomarker. 
 
Jiang et al (2007) has proposed a very useful method to identify the optimal cutoff of the 
biomarker. For each candidate biomarker cutoff value, a Cox proportional hazard model 
is fitted on the subset of patients based on the biomarker cutoff value and a log likelihood 
ratio (LR) statistic is performed. The maximum of the LR statistics is calculated as the 
test statistic and the corresponding biomarker cutoff value is an estimate of the optimal 
threshold.  
 
However, the treatment effect estimated using such procedure may be biased due to 
multiplicity of using the same data more than once. Several bias correction methods are 
studied and compared in section 2.2.  
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2.2 Bias Correction Methods 
 
We have adapted three bias correction methods by Schumacher (1997) to biomarker 
threshold studies with some modifications: 
 

1. A heuristic estimator based upon the mean and variance of the treatment effect 
estimate; 

2. A p-value based method which derives a treatment effect based upon a 
multiplicity adjusted p-value; 

3. A bootstrap method based upon re-sampling the data and applying the threshold 
derived from the re-sampled data to the entire dataset. 

 
2.2.1 Heuristic Approach 
 
A heuristic estimator of the shrinkage factor was proposed by Van Houwelingen and Le 
Cessie (1990) and used by Schumacher (1997) in the cutpoint model. We have adapted 
this approach for biomarker threshold study.  
   
Let 𝜷� be the estimated log hazard ratio based on the cox proportional hazard model 
assuming a fixed optimal threshold and ignoring the variability caused by the estimation 
of the optimal threshold,  𝑽𝑽𝑽� (𝜷�) is the corresponding variance, and 𝒄�𝒉𝒉𝒉𝑽 is the 
estimated correction factor. We have  
 

𝒄�𝒉𝒉𝒉𝑽 =
𝜷�𝟐 − 𝑽𝑽𝑽� (𝜷�)

𝜷�𝟐
= 𝟏 −

𝑽𝑽𝑽� (𝜷�)
𝜷�𝟐

 

 
     𝜷�𝒄𝒄𝑽 = 𝒄�𝒉𝒉𝒉𝑽𝜷� 

 
 
This approach is quick and straightforward, but it does not use the correlation between 
the test statistics of a subpopulation and its mother population.   
 
 
2.2.2 P-value Approach 
 
To adjust for the multiple testing inherent in the construction of the test statistics in the 
biomarker threshold study, a permutation test was proposed to get the adjusted p-value in 
Jiang et al (2007). However, the permutation test can be time-consuming, and it may lead 
to lack of reproducibility by taking only a sample of all possible permutations.  We 
propose to use a Monte Carlo method to obtain the adjusted p-values. 
 
The Wald test statistic for testing the null hypothesis β=0 is                           . 
 
Alosh and Huque (2009) stated that the correlation between z-test statistics of a 
subpopulation and its mother population is sqrt(p), where p is the shared proportion of 
the population. Based on these correlations, the adjusted p-values can be calculated as 
follows: First, generate a large random sample, T∗, of minimums of sets of correlated 
normal random variables with the same covariance matrix as that for the subgroups; 
Second, calculate the corrected p-value by comparing minimal z-test statistic, T, to 

)ˆ(/ˆ ββ seZobs =
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percentiles of T∗. In our simulations, we have generated 50,000 random samples of 
correlated random samples. A larger random sample of normal variables is needed if the 
minimal Z-test statistic is small.   
   
Schumacher (1997) suggested that the shrinkage factor can be obtained based on the 
corrected p-value using a somewhat ad hoc approach in the cutpoint model. We have 
adapted this approach to the biomarker threshold study as follows:  
 
The observed Wald’s test statistic,         , is the minimum of a set of Z statistics for a set 
of correlated subgroups, and corresponds to the observed p-value. We also have the 
multiplicity corrected p-value based on the Monte Carlo approach, which corresponds to 
a Z test statistic        .  Assuming that the error of the estimated regression coefficient 
remains unchanged, the correction factor is                              .  Note that the assumption 
of the normal distribution under the null-hypothesis is not valid for Z cor.    
 
2.2.3 Bootstrap Approach 
 
The third approach is a bootstrap approach as proposed by Schumacher (1997) and 
Verweij and van Houwelingen (1993).  
 
To obtain one bootstrap sample, the complete patient's data is sampled with replacement 
out of the original data. In each of these bootstrap samples, the “optimal” cutoff point and 
the corresponding parameter estimate        was obtained. Then the “optimal” cutoff point 
obtained in a bootstrap sample was applied to the original data yielding a parameter 
estimate        .The amount of over-estimation, can be estimated by the difference               
                           
                  .  The parameter estimate can then be corrected by subtracting this amount of 
over-estimation.                                                          
 

3. Simulations 
 

Simulation studies are used to compare the three correction methods together with the 
uncorrected estimates. In our simulations, the threshold value that minimizes the Wald 
test statistics for the treatment effect in the biomarker subgroups based on the cox model 
is selected (similar to the LR statistic).    
 
3.1 Simulation Setting 
 
We have compared the three methods for various scenarios in a time to event setting, 
including scenarios with and without a biomarker by treatment interaction. We have 
varied sample sizes, hazard ratios, and number of cutoffs as follows.  
 
● Sample Size: 50, 100, 500 per group 
● Hazard Ratio (HR): 0.2, 0.5, 0.8, 1 
● Cutoff (4 cutoff widths, 0.4, 0.2, 0.1, 0.05) 

o 2 thresholds: (0.4,1) 
o 5 thresholds: (0.2,0.4,0.6,0.8,1)  
o 9 thresholds: (0.2, 0.3, 0.4, …, 0.9, 1) 
o 17 thresholds: (0.2,0.25, 0.3, 0.35, …, 0.95,1)  

● Biomarker effect (assuming biomarker is U(0,1)) 

obscorpvalue ZZc /ˆ =

bootβ̂

bootβ~

bootboot ββ ~ˆ −

obsZ

corZ
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o No biomarker effect   
 Same hazard ratio for all biomarker levels 

o With biomarker effect 
 Smaller hazard ratio for biomarker level <0.4  
 1 for biomarker level >=0.4  

 
3.2 Simulation Results 
 
Example scenarios are provided in Tables 1-4, with Tables 1 and 2 covering the case in 
which no biomarker by treatment interaction exists and Tables 3-4 covering the case in 
which a biomarker by treatment interaction does exist. Five hundred simulations were 
conducted for each scenario. Maximizing the treatment effect in the selected 
subpopulation was used as the optimality criterion. In Table 1 and Table 4, a total of 17 
thresholds were investigated including every 5th percentile starting from the 20th 
percentile (20% of population, 25% of population, and so on, up to 100% of the 
population). In Tables 2 and 3, a total of 5 thresholds were investigated including every 
20th percentile starting from the 20th percentile (20% of population, 40% of population, 
and so on, up to 100% of the population). 
 
3.2.1 No Biomarker Effect 

 
The biases observed in the unadjusted estimates are quite substantial for smaller sample 
sizes and effect sizes, with the amount of bias decreasing as sample size and effect size 
increase. See Table 1 for the results based on 17 thresholds and Table 2 for results based 
on 5 thresholds. Results for 5 thresholds were less biased, but only by a small amount. 
 

Table 1: Average Hazard Ratio at Optimal Threshold with No Biomarker Interaction  
(17 Thresholds) 

 
Sample size 
per arm 

Correction method True HR=1 True HR=.8 True HR=.5 

50 None .758 .619 .435 
  Heuristic Method .865 .731 .474 
  P-value Method .927 .758 .498 
  Bootstrap Method .864 .739 .508 
100 None .831 .675 .472 
  Heuristic Method .909 .750 .491 
  P-value Method .950 .771 .499 
  Bootstrap Method .957 .771 .512 
500 None .931 .768 .496 
  Heuristic Method .968 .786 .500 

 P-value Method .988 .797 .496 
 Bootstrap Method .987 .798 .502 

 
The p-value and bootstrap correction factors improve the amount of bias considerably in 
most cases. Only for the case with no treatment effect (HR=1) and smallest sample sizes, 
the bias is still of a meaningful magnitude.  
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Note that the simple heuristic correction does not account for the number of thresholds 
selected and, hence, tended to perform somewhat comparable to the p-value and 
bootstrap approaches when 5 thresholds were selected. It sometimes over-corrected for 
bias if only 2 thresholds were considered (data not shown). 
 

Table 2: Average Hazard Ratio at Optimal Threshold with No Biomarker Interaction  
(5 Thresholds) 

 
Sample size 
per arm 

Correction method True HR=1 True HR=.8 True HR=.5 

50 None .799 .647 .447 
  Heuristic Method .891 .760 .488 
  P-value Method .929 .751 .491 
  Bootstrap Method .865 .747 .507 
100 None .868 .706 .475 
  Heuristic Method .932 .787 .494 
  P-value Method .958 .780 .493 
  Bootstrap Method .975 .792 .504 
500 None .936 .781 .499 
  Heuristic Method .968 .800 .503 

 P-value Method .979 .803 .499 
 Bootstrap Method .980 .805 .502 

 
 
3.2.2 With Biomarker Effect 
 
For the scenario in which a true biomarker by treatment interaction exists, the accuracy of 
the correction is harder to summarize since the true HR for the selected population varies 
by the population selected. Therefore, to have a reasonable number of simulations 
selecting each threshold, we summarize the average estimated hazard ratio for two 
relevant groups separately. In this simulation, it was assumed 40% of the population has a 
hazard ratio <1 and the other 60% of the population has a hazard ratio of 1. Therefore, we 
look at the case when 40% or less of the population is selected (true treatment effect 
maximized) and the case when the entire population is selected. For context, in the case 
HR=.5 for 40% of the population (and HR=1 for the remainder), the true HR for the 
overall population is (40%*.5) + (60%*1) = .8. 
 
As we can see in Table 3, there is considerable bias in the unadjusted estimates for 
smaller sample sizes.  The amount of bias decreases as the sample size increases. All the 
three adjustment methods correct the bias reasonably well in the case of 5 thresholds. 
When there are more thresholds (for example, 17 thresholds, see Table 4) or less 
thresholds (for example, 2 threshold), the p-value and bootstrap correction methods tend 
to perform slightly better than the heuristic approach.  
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Table 3: Average Hazard Ratio at Optimal Threshold with Biomarker Interaction 
(5 Thresholds) 

 
Sample size 
per arm 

Number of simulations (out 
of 500) selecting  threshold  

Correction 
method 

Average HR 
(HR=.5 for 40% of pop, and 
HR=1 for the rest) 

 Sub-pop 
selected 1 

Overall 
selected2 

 Sub-pop 
selected1 

Overall  
selected2 

50 320 56 None .385 .646 
   Heuristic .475 .717 
   P-value .473 .717 
   Bootstrap .470 .761 
100 349 33 None .432 .662 
   Heuristic .478 .704 
   P-value .483 .708 
   Bootstrap .489 .736 
500 471 0 None .497 N/A3 
   Heuristic .506 N/A3 
   P-value .498 N/A3 
   Bootstrap .509 N/A3 
1Sub-pop: among simulations in which the selected population have true HR=.5.  
2Overall: among simulations in which the entire population was selected as optimal (true HR = .8 
overall) 
3No simulation selected overall population as the optimal. 
 

Table 4: Average Hazard Ratio at Optimal Threshold with Biomarker Interaction 
(17 Thresholds) 

 
Sample size 
per arm 

Number of simulations (out 
of 500) selecting  threshold  

Correction 
method 

Average HR 
(HR=.5 for 40% of pop, and 
HR=1 for the rest) 

 Sub-pop 
selected 1 

Overall 
selected2 

 Sub-pop 
selected1 

Overall  
selected2 

50 224 20 None .373 .648 
   Heuristic .464 .724 
   P-value .495 .748 
   Bootstrap .484 .789 
100 262 21 None .411 .675 
   Heuristic .456 .721 
   P-value .482 .740 
   Bootstrap .481 .778 
500 365 0 None .483 N/A3 
   Heuristic .492 N/A3 
   P-value .485 N/A3 
   Bootstrap .502 N/A3 
1Sub-pop: among simulations in which the selected population have true HR=.5.  
2Overall: among simulations in which the entire population was selected as optimal (true HR = .8 
overall) 
3No simulation selected overall population as the optimal. 
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4. Conclusion and Discussions 

 
Simulations showed that the treatment effect estimated from a statistically optimal choice 
of threshold is biased from the multiplicity of using data from the current study more than 
once. The amount of bias depends on several factors, including the sample size of the 
study, the size of any true treatment effect and biomarker by treatment interaction, and 
the number of thresholds investigated. Generally speaking, smaller studies will have 
more bias; Studies with no or small treatment effects will have more bias; The more 
thresholds investigated, the greater the bias. In some settings, the magnitude of the bias 
was considerable even when only a few thresholds were considered.  
 
In general, the p-value approach is recommended since it compensates for the great 
majority of the bias in both the interaction and no interaction scenarios, rarely 
overcompensates for bias, and is computationally faster than the bootstrap method. 
However, all three methods tended to produce similar values for moderate sample sizes 
and a moderate number of thresholds.  
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