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Abstract. Ophthalmologic data have traditionally posed challenges for sta-

tistical modelling and inference. First there is the potential association between

pairs of eyes. Then there is the situation where data is available on one eye for

some persons and on both eyes for others. Measurement of multivariate outcomes

also occur time and again in ophthalmologic studies, usually because the diseases

are related or form a constellation as a syndrome. It is often of clinical interest to

model the inter-correlation not only between an outcome and risk factors, but also

between different outcomes. We develop a computationally tractable likelihood-

based approach that would allow for the detection of correlation between bivariate

dichotomous outcomes, modeled simultaneously with the between-eye correlation

with and without covariate effects.
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1. Introduction

The nature of ocular measurements poses a long-standing question to researchers

when developing joint inference on the paired nature of data. Newcombe & Duff

(1), Murdoch et al (2) and others have highlight on the methodological challenges.

Generally, vision research studies involve the examination of eyes for a variety of

clinical signs or measurements and unlike other paired organs such as the kid-

neys or lungs, both eyes are easily accessible for assessment and are frequently

assessed. However, in some situations data from one eye may be unavailable or

”ineligible” for several reasons, resulting in datasets with information on only one

eye for some persons and on both eyes for others. If information is available on

both eyes, the findings in one eye are likely to be similar to those in the fellow eye.

However, the degree of similarity between pairs of eyes are likely to vary consid-

erably from person to person for a multitude of reasons, including environmental

and genetic factors. For certain extreme situations, the finding in one eye almost

perfectly predicts a similar finding in the fellow eye. For example, blepharitis,

a condition characterized by chronic inflammation of the eyelid, almost always

affect both eyes bilateral 95% of the time (3). At the other extreme, there are

conditions that characteristically will occur in only one eye. This tends to be more

likely when the disease is rare. An example is choroidal melanoma which occurs

in only one eye in 98% of cases (4,5). The majority of ophthalmologic conditions

lie between these two extremes. Furthermore, the classification of case definition

varies from diseases to disease: whiles some required the presence of a clinical

phenotype to be present in one eye for characterization, others may require the

presence of a phenotype in both eyes. For example, characterization of Category
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4 Age-related Macular Degeration, AMD, require presence of geographic atrophy,

GA, and/or neovascular, NV, in at least one eye, whiles classification of severe

glaucoma requires the presence of optic nerve damage with loss of vision in both

eyes. Besides, measurement of multiple outcomes are frequent in ophthalmo-

logic research, because diseases are related or form a constellation as a syndrome.

For example, category 4 AMD, is classified by the presence of GA and/or NV,

conditions that are related. In such situations, it is often of scientific interest to

model the inter-correlation, not only between an outcome and risk factors, but

also between different outcomes.

The use and development of novel statistical methodology is therefore nec-

essary to realize the full potential for analyzing and making appropriate inference

for the different data structures that arise from paired ocular measurements, and

designs involving observational, clinical trials and longitudinal study to genome

wide association studies. Whether data from only one eye or both eyes are used

depends on the study hypotheses and clinical relevance. Glynn & Rosner(6) doc-

umented across a range of study designs and various scales of measurement of

outcome variables, and showed that when the correlation between paired-eyes is

ignored, the p-values and width of confidence intervals are under-estimated, with

a consequence would be inaccurate inference and improper recommendation. In

a perspectives, Fan et al (7), discussed with details various statistical application

for ophthalmology research and noted that most studies adopted use of simple an-

alytical methods, many ignoring the correlation structure between pairs of eyes.

Karakosta et al(8) noted that, out of 112 published studies, 38% had measure-

ments from both eyes that used inferential techniques. Regrettably, only 7% of

such studies used statistical methods appropriate for correlated outcomes and 74%
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made no mention of possible correlation structures.

Some of the novel advances for assessing correlation for paired-eye data have

been proposed by Rosner (9) and Dallal (10). Rosner proposed a constant R model

that took the intra- correlation between the paired eyes into account. He assumed

that the probability of an outcome at the left eye given a response at the right eye

was proportional to the disease rate and showed that it was invalid to treat each

eye as an independent random variable in the presence of intra-class correlation.

Dallal pointed out that, Rosner’s model would perform badly if the attribute is

almost certain to occur bilaterally. Dallal then proposed that the probability of an

outcome at one eye given a response at the other eye to be a constant parameter.

However, both Rosner and Dallas methods do not allow for inclusion of eye-specific

covariates. Model based approaches for analysis of ophthalmologic data that have

been used include the conditional logistic model (11), mixed effects models (12),

where the disease outcome is modeled as a function of measurable characteristics

of the eye and individual, and the effect of unmeasurable characteristics of the

individual which give rise to the between eye correlation is modeled implicitly.

Another approach is the use of GEE, where the outcome in each eye is modeled

as a function of the risk factors and the correlation with the other eye is modeled

separately and explicitly(13,14).

Regression models with the eye as the unit of analysis and consideration of

the correlation between paired eyes offers optimal use of available data, enhanced

interpretability of covariate-effects, and efficient use of information from persons

who contribute only data on one eye to the analyses. However, when data from a

combined paired- and single- eyes are present, there are limited likelihood based

approaches available, and the existing methodology ignore the dependence struc-
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ture between the paired eyes. The significance and novelty of our proposed

methodological development is that, it provides a practical joint distribution for

the analysis of different data facets encountered in ophthalmologic research with

interpretable parameters.

Of the 2415 DNA specimens available from the AREDS trial(15), 940 were

from disease-free subjects and 1475 were from subjects with early or intermediate

AMD in one or both eyes. Clearly, the data presents a situation in which excess

number of zero pairs of responses occur in some persons. The overall distribution

of disease occurrence in such data or similar outcomes should appropriately be a

mixture.

We proposed a finite mixture latent class model for clustered binary data in

which extra probability is given to events in which all binary outcomes in a clus-

ter unit have a zero probability of occurrence(16,17). We adopt the approach to

develop a computationally tractable likelihood-based model that would allow for

the detection of correlation between bivariate dichotomous outcomes, modeled si-

multaneously with the between-eye correlation with and without covariate effects.

2. Modeling Consideration

Suppose data are composed of N clusters, each of size ni, i = 1, ....., N and

a vector of binary responses Yi = (Yi1, ...., Yini)
T measured on it. Let Y =

(Y1,Y2, ...,YN)T , then the Y′is are independently distributed vectors. Let Π0

and Π1 represent two latent classes where Π0 is the class (of families) whose

members do not manifest the attribute under study and Π1 the class (of families)

whose members are susceptible to the attribute under study. In other words,
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we consider a data situation whose distribution is characterized as resulting from

mixing groups from two (latent) populations. We shall call Π0, the ”zero-vector

state”. Furthermore, suppose given a cluster (or family) from the class, Π1,

the probability of an outcome on a member follows a Bernoulli distribution with

probability of success, δij. We shall call Π1 the ”Bernoulli state”.

We define the unobserved random variable, Zi(Zi = 0, 1), i = 1, ...N , such that

Zi =

{
0, with probability 1− αi
1, with probability αi

Suppose further that Zi = 0 when Yi is generated from the ”zero-vector state”

and Zi = 1 when Yi comes from the ”Bernoulli state”. Thus 1 − αi is the

probability that a randomly choosing cluster (family) comes from the ”zero-vector

state”, Π0, and αi, the probability that it comes from the ”Bernoulli state”, Π1.

Then for the j-th outcome in the i-th cluster, Yij,

Yij =

{
0, with probability 1− αi
Ber(δij), with probability αi

so that

δij = P (Yij = 1|Zi = 1)

With this, we deduce via mixture formulation(16,17) that the joint distribution of

the i-th cluster can be based on,

P (Yi1 = yi1, ..., Yini = yini) = (1− αi)
ni∏
j=1

(1− yij) + αi

ni∏
j=1

δ
yij
ij (1− δij)1−yij

We notice that for δij = P (Yij = 1|Yij = 1), j 6= j′. And so is simply the

conditional probability of the outcome of one member given another member from

the cluster has the attribute. We adapt the approach to vision-data and develop

a general likelihood framework for bivariate binary outcomes.
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3. Models for Paired Data

Consider a collection of N persons each with a pair of ”eligible” eyes under study.

Here the individual represents a clustering unit and the eyes the unit of analysis.

The pair of eyes on a person form a cluster. Let i = 1, ..., N index the ith

individual and j, (j = [L,R]) be the Left or Right eye from the individual. For

the ith individual, define Yij such that

YiL=

{
1, if the left eye is diseased

0, if the left eye is not diseased

and

YiR=

{
1, if the right eye is diseased

0, if the right eye is not diseased

Then the disease vector, Di, for the ith individual is:

Di= {Y iL,Y iR} = [(0, 0), (0, 1), (1, 0), (1, 1)], i = 1, ...., N

Let

µij= E(Y ij) = Pr (Y ij= 1), i = 1, 2, ....,N ; j= [L,R].

Then µij is simply a measure of the population disease rate. For the ith person,

let

αi =
P (YiL = 1)P (YiR = 1)

P (YiL = 1, YiR = 1)
, i = 1, 2, ...., N

If αi = 1, then the outcomes on the left and right eyes are randomly determined.

Thus αi can be viewed as a measure of the between eye correlation.

Let

δij = P (Yij = 1|Yij′ = 1), j 6= j′ = [L,R]

7

JSM 2016 - Biometrics Section

3463



then δi is simply interpreted as the probability of the outcome on the left (right)

eye given the right(left) eye has the attribute. With the above definitions, the

joint distribution for the ith person can be based on

P (YiL, YiR) = (1− αi)
∏

j=[L,R]

(1− yij) + αi
∏

j=[L,R]

δyijij (1− δij)1−yij (1)

Kwagyan(16) showed that the joint distribution is reproducible. That is the mar-

ginal distribution of outcomes on an eye has the same form as the joint distri-

bution of the pair of eyes. In other words, the interpretation of the parameters

would not be affected regardless of number of eligible eyes under consideration in

a person(18,19). Hence the situation where a person presents data on a single-eye

or paired eyes causes no problem should this approach be adopted. For this

reason, the methodology can be applied to data structures involving single-eyes,

paired-eyes or combined unpaired/paired data structures.

We note that, µij = P (Yij = 1) = αiδij. And so an alternative parameteri-

zation of the joint distribution with interpretable parameters in terms of µij and

3b1i is given as

P (YiL, YiR) = (1− αi)
∏

j=[R,L]

(1− yij) + αi
∏

j=[L,R]

(
µi
αi

)yij
(

1− µi
αi

)1−yij
(2)

With this parameterization, we can model the mean, µij, directly on person-

specific covariate, Z, and eye-specific covariates, X, without having to stratify the

analysis of response of one eye on the other eye whiles still accounting for between

eye correlation. In a similar manner, we can model the correlation parameter,

3b1i, directly on person-specific covariates.
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4. Distribution of Number of Diseases Eyes

Let Ai =
∑2

j=1 yij represent the number of disease eyes in a person. Then the

distribution of number of diseased eyes , ai =
∑2

j=1 yij, is given as,

P (Ai = ai) =
∑
Ai=ai

(1− αi)
∏

j=[L,R]

(1− yij) + α
∏

j=[L,R]

(
µi
αi

)yij(1− µi
αi

)1−yij

 .

In the absence of eye- specific and person -specific covariates, or if they are not of

interest, we set µi = µ and αi = α, as constants. Then

P (Ai = ai) =

{ 1− α + α(1− µ

α
)ni , if ai = 0(

ni
ai

)
α(
µ

α
)a(1− µ

α
)ni−ai , if ai > 0

(3)

The mean and variance of the number of disease eyes becomes, respectively,

E(Ai) = 2αδ = 2µ

var(Ai) = 2µ(1− µ) + 2µ2(
1

α
− 1)

The first term of the variance may be thought of as the binomial component (the

independent component) and the second term the extra-binomial variation due

to dependence within the clusters analogous to that described in Williams(20) and

Moore(21,22). If µ < α < 1, var(A) exceeds that of the binomial and so we have

positive clustering. In the case of independence α = 1, and δ = µ and so the

equations reduces to

P (Ai = ai) =

(
2

ai

)
µai(1− µ)2−ai , if ai = 0, 1, 2

9
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We obtain the classical binomial distribution with probability of success µ.The

variance reduces to that of the binomial, so that α may be interpreted as a measure

of overdispersion with respect to the corresponding binomial distribution.

4.1. Model for Grouped Data

Let a (=0,1,2) be the number of diseased eyes in a person and suppose that

data are collected from a random sample of persons and that the distribution of

outcomes under study are represented as in Table 1.

Table 1: Distribution of eligible by no. of affected eyes

No. Diseased Eyes (a)

Eligible Eyes (s) 0 1 2 Total

1 n10 n11 n1+

2 n20 n21 n22 n2+

Total n+0 n+1 n+2 n

The quantities nsa denotes the number of persons of s ”eligible” eyes with a

dieseased: s = 1, 2; a = 0, ..., s. so that ns0 will represent the number of persons

with s ”qualified” eyes with no affected eye, ns1 with 1 affected, and so on. n =∑2
s=1

∑s
a=0 nsa is the total number of persons under study. n+a =

∑m
s=1 nsa is the

total number of persons with a affected diseases and ns+ =
∑s

a=0 nsa is the total

number of persons with s qualified eyes. We wish to find estimators for µ,which

is the population disease rate, and α, a measure of between eyes correlation.

The number of affected eyes, a in a person are independent and assumed to be

identically distributed with the same parameters so that the likelihood of the data

can be derived from Equation 3. The likelihood function based on the data is

given by the product
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L(., .|a) =

2∏
s=1

[
{P (a = 0)}ns0

s∏
a=1

{P (a > 0)}nsa
]

The likelihood function is

L(µ, α) =
2∏
s=1

{
1− α + α(1− µ

α
)s
}ns0 s∏

a=1

(
s

a

){
α(
µ

α
)a(1− µ

α
)s−a

}nsa
The likelihood is analogous to the constant R model proposed by Rosner(9) and

the constant parameter model by Dallal(10). Inferential procedures of the joint

distribution are within the framework of the likelihood theory and can be devel-

oped.

4.2. Parametrization For Regression Analysis

Suppose data consists of persons each with possibly a pair of binary responses

Yj = (YL, YR)T on the eyes. Suppose the ith person has a vector of person-specific

covariates, Z = (Z1, Z2, . . . Zp) and q eye-specific covariates X = (X1, X2, . . . , Xq)

measured on it. The scientific objective is to characterize the dependence of Yi on

Z and X. Because the outcomes are binary it seems natural to consider a logit

transform and so will be studied in detail. Using the framework of generalized lin-

ear model (23−27), we model the logit of the parameters, as presented in Equation

(1) as,

log it[δij(Z)] = log it[P (Yij = 1|Yi = 1,Zij)] = β0 + βZij + γi

where γi v N(0, σ2), is an unobservable random effect assumed to have a Gaussian

distribution with mean zero, and variance σ2, to account for excess variation across

cluster.
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log it[αi(X)] = log it[P (Zi = 1|Xi)] = λ0 + λXi

In a similar manner, we can model the logit of the parameters, as presented in

Equation (3).

The joint distributions are computationally tractable and can be quickly fit-

ted to data using computer programs for numerical optimization. Inferential

procedures are within the framework of the likelihood theory and can easily be

developed. Maximum likelihood using Newton-Raphson algorithm can be used

to estimate the parameters. One could also use an EM algorithm combined with

Gaussian quadrature, but notably, the EM has the disadvantage of not readily

providing standard errors of the parameter estimates.

We developed likelihood-based approach that would allow for the detection

of correlation between bivariate dichotomous outcomes, modeled simultaneously

with the between-eye correlation with and without covariate effects. The model

have very attractive properties. The construction of the joint distribution of the

model is based on simple analytic formulations. They are likelihood based and as

such require the complete specification of the joint distribution. They have broad

applications based on fewer restrictive assumptions. In particular they are suit-

able for analyzing clusters with unequal sizes and for both ordered and unordered

data structures. The joint distributions are computationally tractable and can

be quickly fitted to data using computer programs for numerical optimization.

Inferential procedures are therefore within the framework of the likelihood theory

and can be developed.

In this paper, we only intend to accomplish the first stage of Fisher’s paradigm
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for the development of statistical methods, namely, the specification of the model

which is the joint distribution (or likelihood function) for the data. Future studies

will include simulation studies to evaluate the small sample properties of the

likelihood ratio test for evaluating the hypotheses of independence of outcome

within a cluster. Others will include assessment of goodness-of-fit of the proposed

model. A common feature in the study of clusters is the existence of multiple

groups with levels of nesting within it. An example is the study of outcomes of

eye patients in hospitals in multicenter clinical trials. Two levels of nesting exist

in this data. The eye patients are nested within the hospitals and the hospitals are

nested within the centers. A second example is the study of patients with retinitis

pigmentosa, an eye disease in families seen in an outpatient clinic (Berson, Rosner

and Simonoff, 1980). Two levels of nesting exist in these data. Subjects are

nested within families and two eyes are nested within each subject. Thus there

are family-specific, patient-specific, and eye-specific covariates. Extensions and

applications to two-way hierarchical layout can be considered for future studies.

In conclusion, we remark that the proposed finite mixture model for correlated

binary data is suitable are computationally tractable for the regression analysis

of clusterd binary data with and without covariate effects.
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