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Abstract: Even though air travel is considered a safe means of transporta-
tion, when aviation accidents do occur they often result in fatalities. For-
tunately, the most extreme accidents occur rarely. However, 2014 was the
deadliest year in the past decade causing 111 plane crashes, and among them
worst four crashes cause 298, 239, 162, 116 deaths. In this study we want
to assess the risk of the catastrophic aviation accident by studying histori-
cal aviation accidents. Applying a generalized Pareto model we predict the
maximum fatalities from an aviation accident in future. The fitted model
is compared with some of its competitive models. The uncertainty in the
inferences are quantified using simulated aviation accident series, generated
by bootstrap resampling and Monte Carlo simulation.
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1 Introduction

Aviation accidents cause enormous loss of life and massive monetary costs
worldwide. In 2002-2011 there were a total of 250 worldwide fatal accidents,
which resulted in 7,148 fatalities (CAA, 2014). And among these 250 fa-
tal accidents around 20% accidents each cause more than 50 fatal injuries.
Although there is an overall decreasing trend in the number of fatal acci-
dents (Tolan et al., 2015), there is no trend in the number of extreme fatal
accidents which cause huge fatality. Quantification of the large accidents
which have far reaching effect (fatality) would provide objective guidance in
long-term planning and response for manufacturers, insurers and re-insurers.

Every year different organizations like Federal Aviation Administration (FAA),
International Civil Aviation Organization (ICAO), Civil Aviation Author-
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ity (CAA) of UK as well as different manufacturer corporations like Boeing,
Airbus give valuable reports on aviation accident. These reports mainly fo-
cus on descriptive accident statistics like number as well as rate of worldwide
fatal accident and fatalities by year, nature of flight, aircraft age and weight
group (Boeing, 2013 and Airbus, 2014). Sometimes they make analysis on
different causal factors for these accidents (CAA, 2014). Some research on
aviation accident focus on behaviors that are associated with Loss-of-Control
(LOC) events (Lasek et al., 2010). Some others calculate the occurrence
probabilities of serious incidents using safety critical measures runway over-
run, which indicate the actual landing distance (Wang et al., 2014). But
there is no well known research which focuses on modeling the number of
fatal injuries in individual aviation accident. Using different tail models
(power law, stretched exponential and log-normal), one can assess the like-
lihood of a large event like serious aviation accident (Clauset and Woodard,
2013). The classical extreme value theory, for example, generalized Pareto
distribution (GPD) can also be used to model extreme events like serious
aviation accident (Reich and Porter, 2013).

In this paper we study aviation accidents from 1982 to 2014, their pattern
within the period, the number of fatalities from them, etc. A prediction
of possible number of fatal injuries for an extreme aviation accident in the
future is made using peaks over threshold method (i.e., generalized Pareto
distribution approach). We compare the the fitted generalized Pareto distri-
bution (GPD) model with other long tail models to select better model for
aviation accident using different measure of goodness of fit. We also quan-
tify the uncertainty in the inferences using data generated by bootstrap
resampling and Monte Carlo simulation. The overall aim of this paper is to
measure the risk of aviation accident in terms of fatal injury. The challenge
is in selecting reasonable tail model for this data as well as in measuring
uncertainty in the inferences.

Rest of the paper is organized into five sections: the Section 2 introduces a
brief description of the extreme value models and the generalized Pareto dis-
tribution (GPD); Section 3 proposes a GPD model for aviation fatal injury;
Section 4 describes different uncertainty measurements in the inference of
extreme fatalities through simulated accident series; Section 5 analyze good-
ness of fit of the fitted model and also made a comparison among different
possible model in this situation; and finally, conclusions appear in Section
6.

2 Extreme Value Model and Generalized Pareto
Distribution(GPD)

In many statistical applications, the interest is centered on estimating some
population characteristics such as average or median of a process based on
random samples taken from a population under study. However, in extreme
value analysis, we are not interested in estimating the average but rather
we want to quantify the behavior of the process at unusually large or small
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levels, such as we are interested in estimating the maximum or the mini-
mum. Extreme value theory (EVT) deals with the extreme deviations from
the median of probability distributions and seeks to assess, from a given
ordered sample of a given random variable, the probability of events that
are more extreme than a certain large value. Usual bulk statistics tries to
describe main part of distribution; may ignore outliers. But EVT tries to
characterize the tail of the distribution; keeps only the extreme observations
(Fig. 1).

Quantile

De
ns

ity

Bulk statistics

Extremes

Figure 1: Extreme Value Model

Let X1, X2, · · · , Xn be a sequence of independent and identically distributed
(iid) random variables with common distribution function F . Extreme value
analysis focuses on the statistical behavior of the maximum value observed,
i.e.,

Mn = max{X1, X2, · · · , Xn}

In applications, the Xi usually represent values of a process measured on
a regular time-scale at time i such as hourly measurements of sea level, or
daily mean temperature so that Mn represents the maximum of the process
over n time units of observation (Coles, 2001). If n is the number of obser-
vations in a year, then Mn corresponds to the annual maximum.

Using the fact that X1, X2, · · · , Xn are iid random variables

Pr(Mn ≤ z) = Pr{X1 ≤ z, · · · , Xn ≤ z}
= Pr{X1 ≤ z} × · · · × Pr{Xn ≤ z}
= {F (z)}n

(2.1)
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In practice, we might not know the distribution function F but according
to the extremal types theorem (Fisher and Tippett, 1928), if there exist
sequences of constants {an > 0} and {bn} such that

Pr{(Mn − bn)/an ≤ z} −→ G(z) as n −→∞

with G being a non-degenerate distribution function, then G belongs to the
following family of of models having a distribution function of the form :

G(z) = exp

{
−

[
1 + ξ

(
z − µ
σ

)]−1/ξ}
(2.2)

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, where the parameters satisfy
−∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞. This is the generalized extreme
value (GEV) family of distributions. The model has three parameters: a
location parameter, µ; a scale parameter, σ; and a shape parameter, ξ. The
shape parameter ξ governs the tail behavior of the distribution. The sub-
families defined by ξ → 0, ξ > 0 and ξ < 0 correspond, respectively, to
the Gumbel, Frechet and Weibull families (Coles, 2001). This method is
commonly known as block maxima (BM) approach.

However, BM is a wasteful method because maxima in some blocks (years)
can be much below several high-order statistics in other blocks (years).
Thus, in many practical applications an important part of the information
such as large values other than the maxima occurring during the same year
would be lost if we use only annual maximum value (Castillo et al., 2004).
Consequently, the BM method was extended (Smith and Weissman, 1994;
Smith, 1986; Arns et al., 2013) in order to include more than one inde-
pendent observations from each block such as r > 1/year into the sample.
However, if the inter-block variability is large such as if one year contains
more extremes than another then incorporating more of the observed ex-
treme data (r-largest observation per block) in the analysis can be wasteful
(Coles, 2001).

In contrast to BM approach, it is more useful (efficient) to analyze the val-
ues of random variables that exceed a given threshold value if an entire
time series of, say, hourly or daily observations is available. This method is
commonly known as peaks over threshold (POT) Approach. Hence, a POT
derived sample comprises not only one or a fixed number of events per year.
It rather allows for a more rational selection of events fulfilling the criteria
of being “extreme”.

In POT approach observations that exceed a given threshold µ are called
exceedances over a threshold. Pickands (1975) demonstrates that for large
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enough µ the observations x, provided x > µ, approximately follow a gen-
eralized Pareto distribution(GPD) with distribution function:

F (x) = 1−
(

1 +
ξ(x− µ)

σ

)−1/ξ
(2.3)

for some σ > 0 and ξ, where σ and ξ are scale and shape parameters, respec-
tively. If ξ < 0, the distribution of excesses has an upper bound of −σ/ξ; if
ξ > 0 the distribution has no upper limit. And when ξ → 0, GPD reduces
to an exponential distribution with mean σ.

Different graphical approaches are used to select a threshold (µ) for a partic-
ular data set. Among them the mean residual life (MRL) plot is commonly
used. If the tail data follow a GPD with a lower bound of µ, then the
MRL plot should be approximately linear for values above µ. Therefore, the
recommendation is to select the smallest µ which gives a linear MRL plot.
Having determined a threshold, the parameters of the GPD can be estimate
by the maximum likelihood method.

It can be derived from Eq. 2.3 (Coles, 2001) that for x > µ,

F̄ = Pr{X > x} = ζµ

[
1 + ξ

(
x− µ
σ

)]−1/ξ
(2.4)

where ζµ = Pr(X > µ). Hence, the level xm that is exceeded on average
once every m observations is the solution of

ζµ

[
1 + ξ

(
x− µ
σ

)]−1/ξ
=

1

m
(2.5)

Rearranging,

xm =

{
µ+ σ

ξ [(mζµ)ξ − 1] for ξ 6= 0,

µ+ σ log(mζµ) for ξ = 0,
(2.6)

providedm is sufficiently large to ensure that xm > µ. xm is them−observation
return level. However, it is often more convenient to give return levels on
an annual scale, so that the N−year return level is the level expected to
be exceeded once every N years. If there are ny observations per year, this
corresponds to the m−observation return level, where m = N × ny. Hence,
the N−year return level is defined by
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xN =

{
µ+ σ

ξ [(Nnyζµ)ξ − 1] for ξ 6= 0,

µ+ σ log(Nnyζµ) for ξ = 0,
(2.7)

Estimation of return levels requires the substitution of parameter values
by their estimates. For µ and ξ this corresponds to substitution by the
corresponding maximum likelihood estimates, but an estimate of ζµ, the
probability of an individual observation exceeding the threshold µ, is also
needed. This has a natural estimator of ζ̂µ = k/n, the sample proportion of
points exceeding µ. Since the number of exceedances of µ follows the bino-
mial Bin(n, ζµ) distribution, ζ̂µ is also the maximum likelihood estimate of
ζµ (Coles, 2001).

3 Modeling Aviation Fatalities with Generalized
Pareto distribution (GPD)

The objective of this study is to develop a predictive model which will give
estimates of potential fatal injuries for an extreme aviation accident in the
future. Data are obtained from the National Transportation Safety Board
(NTSB). The NTSB aviation accident database contains information within
the United States, its territories and possessions, and in international wa-
ters. The data consists of 15,187 aviation accidents from 1982 to 2014 which
causes one or more fatal injuries. Figure 2 demonstrates time series plots of
fatal injuries from aviation accident from from 1982 to 2014. The plot shows
that 27 accident caused more than 150 fatalities and 5 of which exceeds 250
fatalities. The plot does not show any obvious trend in the data.

The histogram of fatal injuries (Fig. 3) shows that 15144 accidents, which
is 99.72% of total accidents, are responsible for between 1 to 25 fatalities.
There are 28 accidents with 26 to 50 fatal injuries, and after that frequencies
gradually decrease with the number of fetal injuries. The histogram also in-
dicates that the data follow a long tailed distribution. GPD is commonly
used to model a long tailed distribution. The observations that exceed a
given threshold, µ, in the tail of the distribution approximately follow GPD.
However, a crucial step in this analysis is to select an appropriate threshold
µ. If µ is too small, then the GPD will not fit the tail distribution and the
estimates of the parameters (σ, ξ) may be biased. On the other hand, if µ
is too large, the GPD may fit well, but fewer observations will be available
to estimate the parameters and the estimates will suffer from increased vari-
ance.

We want to select the smallest µ in mean residual life (MRL) plot (Fig. 4)
above which the MRL plot will be approximately linear. The MRL plot
shows that the reasonable threshold should be around 25. Parameter stabil-
ity plots (Fig. 5) have also been used to identify an appropriate threshold.
In practice, the threshold µ should be chosen where the shape and modified
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Figure 2: Numbers of fatal injuries from aviation accidents, 1982 - 2014.
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Figure 3: Histogram of fatal injuries from aviation accidents.

JSM 2016 - Section on Risk Analysis

3423



0 20 40 60 80 100 120 140

0
20

40
60

80
10

0

Mean Residual Life Plot

Threshold

Me
an

 Ex
ce

ss
15187 128 64 32 26

Number of Excesses

Figure 4: Mean residual life plot.

scale parameters remain constant in parameter stability plot after taking
the sampling variability into account. Parameter stability plots also suggest
to select threshold around 25.

However, instead of considering one threshold we fit the GPD model with
different thresholds within the range of 15 to 50. The fitted models are
summarized in Table 1, which shows, for different thresholds, the number
of observations and proportion of the data beyond the threshold as well as
the maximum likelihood estimates (MLE) of the GPD parameters (µ and
ξ). However, Fig. 6 shows that all the QQ-plots for µ = 24, 35 and 50 are
approximately 45−degree line but the plot for µ = 15 has a clear deviation
from 45−degree line. Therefore Fig. 6 suggests that the models for µ = 24,
35 and 50 appear to provide a better fit than µ = 15.

Table 3.1: Table 1: Estimates from the GPD model for different threshold
values µ.

Threshold (µ) 15 24 35 50

#intail 162 127 107 95
Pr(X > µ) 0.011 0.008 0.007 0.006
σ̂ 72.57 93.39 99.89 90.34

ξ̂ −0.039 −0.186 −0.232 −0.198
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Figure 5: Parameter stability plots.
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Figure 6: QQ-plots of the GPD models for different thresholds.

Now considering 24 as the threshold the extreme quantile (xN ) which is
expected to exceed on average once every N y years can be obtained by Eq.
2.7. Table 3 summarizes the N−year return levels (x̂N ) for different values
of N . For example, 10 year return level is 273 fatal accident, which means
that 273 or more fetal injuries is likely to occur once every 10 years.
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Table 3.2: Table 2: Estimated fatal injuries expected to be exceeded once
every m years.

m (Year) Fatal injury

5 237
10 273
20 303
30 319
50 338

4 Uncertainty quantification

Estimating the probabilities of the extreme aviation accidents or estimating
the extreme quantiles is very important to manufacturers, insurers and re-
insurers. However, models do not provide a perfect representation of reality,
and the inference what we draws from the models are not certain. Thus
in many cases assessing uncertainties is very important, especially when we
extrapolate the observed data.

Several methods have been proposed to quantify different sources of uncer-
tainties in the extreme value statistics (Muller et al., 2015; Wehner, 2010).
In this paper, we focus on uncertainties in model parameters and model
misspecification due to threshold selection.

4.1 Uncertainty from estimate of the model parameters

A main source of uncertainty in quantifying extreme aviation accident statis-
tics comes from uncertainty in the fit of the GPD parameters. This uncer-
tainty is usually measured by standard error, coefficient of variation (CV)
and confidence level of the parameter of interest. Coefficient of variation
(CV), is defined as the ratio of the standard deviation to the mean, is a
standardized measure of dispersion of a distribution. The estimated confi-
dence level is claimed to include the true parameter value with a specified
probability.

In the previous section we obtained the estimates of an N−year return level
for different values of N . Now we want to calculate their uncertainties on
the basis of their standard error, coefficient of variation (CV) and confi-
dence interval. However, a standard 95 percent confidence interval for xN
depend on the asymptotic normality of (x̂N ). This asymptotic normality
assumption is questionable for data with small observations (Carpenter and
Bithell, 2000). Accordingly, we may want to construct a confidence interval
that does not depend on this assumption. Bootstrapping provides a ready,
reliable way to do this. Here confidence intervals for xN are obtained by

JSM 2016 - Section on Risk Analysis

3426



non-parametric bootstrap approach (Dey and Das, 2015).

Table 4.1: Table 3: Mean, standard Error, Coefficient of Variation and 95%
Confidence Intervals for Fetal Injury from Bootstrap Resampling.

Year Mean Standard Coefficient of 95% Lower 95% Upper
(m) Fatal injury error variation Limit Limit

5 234.9109 15.77122 6.713702 202.3180 264.3762
10 268.9248 20.27671 7.539917 225.5305 304.3111
20 298.7887 25.73977 8.614707 242.7753 344.2439
30 314.5683 29.28162 9.308511 251.3096 367.3089
50 332.8647 34.01564 10.219058 259.4316 394.0819

In brief, the original data set consists of 127 observations above the threshold
µ = 24. A random sample of size 127 is selected with replacement from the
original data set to obtain a bootstrap data set. From this bootstrap data set
the maximum likelihood estimates σ̂ and ξ̂ of the parameters are calculated
and using these estimates the return level XN is determined for each return
period N =5, 10, 20, 30, and 50.
This procedure is repeated 2,000 times. Therefore, for each return period
(N) we have 2,000 values of return level. From this set of 2,000 values the
mean return level, standard error, coefficient of variation, and 95% confi-
dence intervals are calculated. The information is summarized in Table 5.
Results in Table 5 shows that the standard error, the coefficients of varia-
tion and 95% confidence intervals for return level increase with the return
period. This means uncertainty increases with the model extrapolation.

4.2 Uncertainty from model misspecification

The GPD approach can fail because the assumptions of strict independent
and identically distributed random variables are violated, but even if they
are fulfilled, the chosen threshold parameter µ may be inappropriately small,
thereby leading to a poor extreme-value approximation.

Although in this study we have chosen 24 as the threshold, from section 3
we can see 35 and 50 are also good candidates. So the main potential source
of misspecification here is threshold selection (Süveges and Davison, 2010).
Here our aim is to assess the biases incurred by the estimated parameters
and when a GPD distribution with threshold 24 is fitted to data from GPD
distribution with threshold 15, 24, 35, and 50 (Dupuis and Tawn, 2001).

A suitable method to analyze such misspecification problems is through a
simulation study. Data, generated from different generalized Pareto models
(Table 1) using Monte Carlo simulation, are fitted GPD with threshold
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µ = 24. Standard bias and standard root mean square error (RMSE), are
defined by

Standard bias =
E(θ̂)− θ

θ
(4.1)

Standard RMSE =

√
E((θ̂ − θ)2)

θ
(4.2)

where, θ̂ is an estimate of θ (parameter or return level).

Table 4.2: Table 4: Standard Bias and Standard RMSE (Bracket) on pa-
rameters and return levels (10 & 20 years).

Model σ ξ x10 x20
GPD(15, 72.57,−0.039) 0.017[0.122] 0.574[−2.297] −0.023[0.103] −0.023[0.123]
GPD(24, 93.39,−0.186) 0.024[0.123] 0.129[−0.471] −0.018[0.076] −0.018[0.086]
GPD(35, 99.89,−0.232) 0.235[0.272] 0.523[−0.648] 0.028[0.071] 0.009[0.073]
GPD(50, 90.34,−0.198) 0.556[0.578] 1.148[−1.238] 0.110[0.131] 0.069[0.104]

Bias and RMSE (Bracket) on parameters and return levels (10 & 20 years)
are calculated from 2,000 replications for each case. For example, in the first
case, a sample of size 162 is generated from GPD(15,72.57,-0.039). GPD
with threshold 24 is fitted from this data. Using this estimated parameters
we calculate return levels for 10 & 20 years. This procedure is repeated 2,000
times. Therefore for each parameter and return level we have 2,000 values.
Then the standard bias and standard RMSE on each parameter and return
level can be easily calculated from 2,000 repeated values. It is seen from
Table 6 that bias and RMSE for parameters and return levels are negligible
for all given cases. This implies the fitted GPD model with threshold µ = 24
is robust for GPD model with threshold 15, 24, 35, and 50.

5 Goodness of Fit

A models is only an approximation of reality. So it is very important to
determine whether our model is good enough to fit the aviation accident
data. The most common graphical methods that are used for model valida-
tion are Quantile−Quantile (Q-Q) plot and the Probability−Probability
(P-P) plot. Figure 7 shows that both the P-P plot and Q-Q plot are approx-
imately 45−degree line. This implies that the GPD model is a reasonable
fit for modeling this data set.
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Figure 7: Diagnostic plots for the fitted GPD model.

One useful technique to check the goodness of fit of a model is to compare
the model with its competitors. The two special cases of GPD is exponential
distribution and Pareto distribution. So it is important to check whether or
not the GPD model performs better than it’s special cases. We can fit the
Pareto model and exponential model from the data above threshold 24. For
Pareto distribution the MLE of shape and scale parameters are 0.827 and
25, respectively. Again for exponential distribution the MLE of rate param-
eter is 0.00972. Figure 8 compares the data density with different model
densities and it is seen from the figure that exponential and Pareto model
understate the probabilities of fatal injuries in the near tail and overstate in
the far tail. But GPD shows better fit in both near tail and far tail. Figure
9 shows that distribution function (cdf) of exponential and Pareto model
overstates the empirical distribution function in near tail and understates in
far tail. Again GPD gives better fit in both near tail and far tail.
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Figure 8: Models vs. data density plot.
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Figure 9: Models vs. data cdf plot.

Another approach to the model selection problem is to formulate the prob-
lem into a hypothesis testing framework. Table 7 summarize the results
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of two commonly used goodness of fit tests. The p−values of Kolmogorov-
Smirnov (KS) test and Anderson-Darling test (Klugman et al., 2008) for
both exponential and Pareto model are less than 0.001. This implies that ex-
ponential and Pareto model are not appropriate for this data. And because
the p−values for GPD are greater than 0.05, at a 5% level of significance
GPD is a plausible model for this data.

Table 5.1: Table 5: p−values of goodness of fit tests for different models.

Kolmogorov-Smirnov Anderson-Darling
Model (KS) Test (AD) Test

GPD(24,−0.186, 93.39) 0.1667 0.2174
Pareto(24, 0.827, 25) < 0.001 < 0.001
Exponential(0.00972) < 0.001 < 0.001

Though we have illustrated our methodology in detail only for the threshold
24, we have also applied the technique to data for thresholds µ =35, and 55.
These analysis are summarized in Table 8 and Table 9. It is seen that for
thresholds 35 and 50, the probabilities of exceeding different fatal injuries
(Table 8) and return level estimates (Table 9) do not differ greatly. This
implies the model gives similar results for any threshold value between 24
and 50.

Table 5.2: Table 6: Estimated fatal injuries expected to be exceeded once
every m years based on GPD model for different thresholds (µ).The 95%
bootstrap confidence intervals are given in the brackets.

m(Year) µ = 35 µ = 50

5 240[207, 267] 238[204, 265]
10 274[228, 304] 272[226, 304]
20 302[243, 337] 302[243, 342]
30 317[251, 356] 318[249, 363]
50 333[258, 376] 336[258, 389]

The entire data analysis is done by statistical programming language R
with commonly used R packages for extreme value analysis such as evmix
(Scarrott, 2014) , POT (Ribatet, 2012), extRemes (Gilleland, 2011).
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6 Conclusion

The assessment of risks of extreme aviation accident is highly interesting
issue and challenging question. This study highlights the formulation of a
model to predict the possible fatal injuries associated with a future aviation
accident. We presented the GPD approach that is able to obtain the rele-
vant figures based on NTSB aviation accident data. The fitted model gives
probable fatal injuries from an aviation accident which is expected to be
exceeded once in a certain period (years). Bootstrap resampling and Monte
Carlo simulation are used generate data to quantify the uncertainties in the
estimates. It is demonstrated from different measures of goodness of fit that
GPD gives better approximation of the observed data that other models.
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