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Abstract
In medical studies, prior knowledge can often be used to constrain inference to clinically or

biologically relevant alternative hypotheses, leading to substantial power gains relative to an
unconstrained approach. For example, in cancer pharmacogenomics studies, researchers may
be interested in markers for which the gene effect is present only when exposed to drug. Often
the space of interesting alternatives can be described by the boundary or closure of a double
cone. While closed convex cone alternatives have been well-studied, previous studies of closed
double cone alternatives have been limited to empirical investigations of the type I error. Here
we present a detailed treatment of inference for double cone alternatives. We derive explicit
mathematical formulas for calculating type I and type II error rates and illustrate how these rates
relate to geometric features of the acceptance region. We provide numerical algorithms for
approximating the error rates and evaluate their performance through simulations studies.
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1. Introduction

In statistical study, researchers often have clear expectations about the direction of
the parameters in their statistical model. For example, in a cancer pharmacogenomics
study, researchers may only interested in markers for which the gene effect is absent
when unexposed to drug or when exposed to drug. Thus the parameter space need
not to be the whole Euclidean space. The alternative region by taking the additional
knowledge into account might introduce larger hypothesis testing power.

The restricted alternative region can be closed convex cone or closed double cone.
Where closed convex cone Cs ∈ Rp is defined as "A convex set that consists of infinite
straight lines starting from the origin" [Silvapulle and Sen [2011]]. Thus if x,y ∈ Cs, then
λ1x+λ2y ∈ Cs, for all λ1 ≥ 0, λ2 ≥ 0. The closed double cone C ∈ Rp in this paper is
the set such that if x,y ∈ C, then λ1x+λ2y ∈ Cs, for all λ1, λ2 ∈ R. Figure 1 illustrates
the closed convex cone and closed double cone in two dimensional parameter space.

There is an extensive body of literature on the single closed, convex cone statistical
inference. Tsai [1992] shows that for a multivariate normal vector X with known covari-
ance matrix σ, the restricted likelihood ratio test (LRT) for H0 : µ = 0 versus the orthant
alternative HA : µ ≤ 0 is uniformly more powerful than the test against HA : µ ∈ Rp.
Praestgaad [2012] studies the power superiority in a more general situation. He proved
that the restricted LRT for H0 : µ ∈ L versus HA : µ ∈ Cs/L is uniformly more powerful
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Figure 1: The figure showing the closed convex cone and double cone. Where the
shaded region in (a) illustrate the closed convex cone and the shaded region in (b)
illustrate the closed double cone. γ is the vertex angle for both closed convex cone
and closed double cone. In (a), we test H0 : µ1 = µ2 = 0 versus HA : µ2 ≥ 0, µ2 −
µ1 tan γ ≥ 0; in (b), we test H0 : µ1 = µ2 = 0 versus HA : µ2(µ2 − µ1 tan γ) ≤ 0

than the unconstrained test. At here, L is a linear subspace of the closed convex cone
Cs.

As for the power function. Hu and Wright [1994] shown that for a multivariate normal
model with known covariance matrix, the restricted LRT for H0 : µ ∈ L versus HA : µ ∈
Cs/L will have non-decreasing power on each line segment in Cs starting at a point in L.
Iwasa [1998] proves the power functions’ directional monotonicity properties for closed
convex cone restricted hypothesis of normal means. A partial ordering "≤Cs" has been
defined in the paper, and the author proved that the power function is increasing in ≤Cs .

The closed convex cone restricted LRT’s asymptotic distribution is a mixture of chi-
square distribution [Silvapulle and Sen, 2011]. To study the effect of the weight on the
critical points and the power function, Nüesch [1966] provided an numerical study for
the weight effect on the critical points and the power function in multivariate normal
model. Gourieroux et al. [1982] also provides the numerical study for the weight effect
on the critical points in linear model.

There are much less study for the closed double cone restricted LRT. Although it also
has a bright prospect to be applied in medical research. Sen and Meyer [2016] de-
veloped the restricted LRT under multi-dimensional double cone alternatives. They
computed the critical points for fixed level α via simulation and shown that the power
of the test will converge to 1 when sample size increases. McCarthy et al.[2014] de-
veloped the closed double cone restricted LRT and score test to test for the genetic
effects related to HIV-1 acquisition. Since when considering the HIV-1, HRSN (high-risk
seronegatives), and population control samples together, researcher are clear that risk
alleles will neither enriched nor depleted in both HIV-1 and HRSN group. The param-
eter space for a gene’s effects on two diseases will be a double cone. They find that
the constrained testing approach will have about 10-28% power gain compared to the
typical unconstrained test.
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In the McCarthy et al’s paper, they shown that the distribution for the closed double
cone restricted LRT is still a mixture of distribution. Thus the distribution is a weighted
sum of different distribution. Nüesch [1966] also provide an numerical treatment for the
weight function’s effect on the critical points under the closed double cone restricted
alternatives. To the best of our knowledge, there is no following study for weight effect
on the critical points and power under this case.

In two dimensional parameter space, there is an surjective mapping between cone’s
vertex angle and the weight function. Our study will focus on the bivariate normal dis-
tribution with identity covariance matrix.

In this paper, we consider inference on two types of restricted alternative regions: a
closed double cone and its boundary. First, we provide a detailed outline of the two
hypotheses, including a geometric representation of two corresponding regions. For
a fixed type I error probability, we establish the relationship between the vertex an-
gle of the double cone with the critical point of the likelihood ratio test and its power.
These relationships are formulated both analytically and geometrically. We compare
the power of the restricted tests to that of an unrestricted test. While the discussions
are presented in the context of standard bivariate normal distribution, we will outline
the extension to an asymptotically bivariate normal distribution with an arbitrary positive
definite covariance matrix. Finally, we discuss future extensions.

2. Method

2.1 Model and Hypothesis

The observation is drawn from N(µ, I), a bivariate normal distribution with mean µ =
(µ1, µ2)

T and identity variance. We are interested in testing the null hypothesis H0 :
µ = (0, 0)T versus the alternative H1 : µ ∈ C, where C ⊂ R2. We are specifically
interested in the case where C is a closed double cone, to be denoted by C1, and the
boundary of closed double cone, to be denoted by C2. We can define these two sets as

C1 = {µ ∈ R2 : (µ2 − µ1 tan γ1)(µ2 − µ1 tan γ2) ≤ 0},

and
C2 = {µ ∈ R2 : (µ2 − µ1 tan γ1)(µ2 − µ1 tan γ2) = 0}

respectively, where 0 ≤ γ1 ≤ γ2 ≤ π. In the two dimensional space, the boundaries
for both C1 and C2 are two straight lines. Since the normal distribution with identity
variance is rotationally invariant, we can simplify the problem by rotating the distribution
and alternative region, so that one of the boundaries of the alternative region will always
be the x-axis (Figure 2). The region for the C1 and C2 can be presented as

C1 = {(µ1, µ2)T ∈ R2 : µ2(µ2 − µ1 tan γ) ≤ 0},

where γ ∈ [0, π], and

C2 = {µ ∈ R2 : µ2(µ2 − µ1 tan γ) = 0},
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Figure 2: Illustration of the parameter spaces of hypotheses 1 and 2. The shaded
region in panel (a) corresponds to the double cone shaped parameter space C1, for
hypothesis 1. The red lines in panel (b) correspond to the parameter space C2 for
hypothesis 2. In each case, the null space is denoted by a green dot.

where γ ∈ [0, π/2]. Here γ = |γ2 − γ1| is the vertex angle of the double cone.

2.2 Test Statistics and Distribution

We define the likelihood ratio statistic for testing H0 : µ ∈ C0 = (0, 0)T versus H1 :
µ ∈ C as T = 2

[
maxµ∈C `(µ) −maxµ∈C0 `(µ)

]
, where `(µ) denotes the log-likelihood

function. For the maximum likelihood estimator (MLE) restricted to C, µ̃ = (µ̃1, µ̃2)
T =

arg maxµ∈C `(µ), we have that

T = ‖(X,Y )T ‖2 − ‖(X − µ̃1, Y − µ̃2)T ‖2

= ‖(µ̃1, µ̃2)T ‖2 + 2(X − µ̃1, Y − µ̃2)(µ̃1, µ̃2)T .

If ((X,Y )T 6∈ C), then (µ̃1, µ̃2)
T is on the boundary of the restricted region C. Oth-

erwise, if (X,Y )T ∈ C, then (µ̃1, µ̃2)
T = (X,Y )T . In either case, as (µ̃1, µ̃2)

T is a
projection of (X,Y )T onto the restricted region C, (X− µ̃1, Y − µ̃2)(µ̃1, µ̃2)T = 0. Con-
sequently, T = ‖(µ̃1, µ̃2)T ‖2, which implies that the restricted likelihood ratio statistics
is the square of the length of the projection of (X,Y )T onto C.

For the unconstrained case, where C = R2, the test statistic is trivially observed to be
T0 = X2 + Y 2. Under the null, it follows a chi-square distribution with two degrees
of freedom to be denoted by χ2

2. Recalling that the boundary of a double cone in R2

consists of two straight lines, we let U and V denote the projections of (X,Y )T onto
these two lines respectively. Then the square of the length of the projections of (X,Y )T

onto C is max{‖U‖2, ‖V ‖2}.

For hypothesis 1, the test statistic is

T1 = (X2 + Y 2)1{(X,Y )T ∈ C1}+ max{‖U‖2, ‖V ‖2}(1− 1{(X,Y )T ∈ C1}).
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Its null sampling distribution is given by

Pr(T1 ≤ c) = (
γ

π
) Pr(W ≤ c) + (1− γ

π
) Pr(‖U‖2 ≤ c, ‖V ‖2 ≤ c|(X,Y ) /∈ C1),

where W is distributed according to χ2
2. For hypothesis 2, the test statistic is T2 =

max{‖U‖2, ‖V ‖2}. Its sampling distribution is

Pr(T2 ≤ c) = Pr(‖U‖2 ≤ c, ‖V ‖2 ≤ c|(X,Y ) /∈ C2) = Pr(‖U‖2 ≤ c, ‖V ‖2 ≤ c).

As (U, V )T is a linear transformation of (X,Y )T it follows a bivariate normal distribution.

3. Angle Effect for Critical Point and Power

In this section, we conduct numerical studies of the angle effect on both the critical point
and power for hypotheses 1 and 2. The integrals are approximated numerically using
the R package cubature [Johnson and Narasimhan [2013]]. The type I error probability
and power are approximated using 100, 000 Monte Carlo replicates.

3.1 Critical Point

We defined the critical point r as the maximum acceptable length of the projection of
observed point (x, y)T onto the restricted region. The acceptance regions for hypothe-
sis 1 and 2 are denoted by G1 = G1(r, γ) and G2 = G2(r, γ), respectively. As shown in
Figure 3, G1 is a compass needle shaped region while G2 is a diamond shaped region.
For a fixed angle γ, the size for the acceptance region

µ(Gk) =

∫
Gk(γ,r)

1

2π
exp{−x

2 + y2

2
}dxdy,

, where k ∈ {1, 2}, is an increasing function in r.

Here, we fix the type I error α = 0.05 and angle γ, and then numerically solve the
equation Pr(Gk(r, α)) = 1−α for the critical point r using bisection. The mathematical
details to show that for a fixed α, r is increases as the angle γ increased are provided
in Appendix A. The results are shown in Table 1 for hypotheses 1 and 2. As noted
previously, for hypothesis 1, the angle ranges from 0 to π while for hypothesis 2, it is
bounded above by π

2 . As expected, for both hypotheses, the critical point r increases
as the angle γ increases.

3.2 Power

For hypotheses 1 and 2, the power can be presented as

power = 1−
∫
Gk

f(x−µ1, y−µ2)dxdy = 1−
∫
Gk

1

2π
exp{−(x− µ1)2 + (y − µ2)2

2
}dxdy,
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Figure 3: This figure illustrates the acceptance region for hypotheses 1 and 2. The
compass needle shaped region in panel (a) corresponds to the acceptance region G1

while the diamond shaped region in panel (b) corresponds to the acceptance region
G2.

Table 1: Critical points r and empirical type I error for hypothesis 1 and 2. For a given
angle, the critical point r is approximated numerically using bisection at the nominal
α = 0.05 level. Next, for the given angle and approximated critical point r, the type I
error is confirmed empirically through simulation (α̂).

Hypothesis
Angle (γ)

0 π/6 π/3 π/2 2π/3 5π/6 π

Hypothesis 1
r 1.960 2.134 2.258 2.352 2.415 2.443 2.448
α̂ 0.0498 0.0496 0.0498 0.0497 0.0504 0.0502 0.0498

Hypothesis 2
r 1.960 2.126 2.212 2.236 - - -
α̂ 0.0498 0.0503 0.0497 0.0499 - - -

where k ∈ {1, 2}. The numerical and empirical study on power is conducted on dif-
ferent distances: d ∈ {1, 2.5, 4}. For hypothesis 1, we assume the true parameter
(µ1, µ2) = (d cos(γ2 ), d sin(γ2 )), where γ ∈ {0, π/6, π/3, π/2, 2π/3, 5π/6, π}. Note that
the restricted test with γ = π is actually the unrestricted test in hypothesis 1. As for
hypothesis 2, the study is on different angles: γ ∈ {0, π/6, π/3, π/2}. We also assume
the true parameter (µ1, µ2) = (d, 0).

Table 2 and Table 3 show the numerical study results for hypothesis 1 and 2, respec-
tively. We observe that the power is decreasing when γ increasing under both of the
hypothesis 1 and 2 when the distance is fixed. Comparing to the unrestricted test, the
restricted test will always have larger power than the unconstrained test in hypothesis 1.
While for the hypothesis 2, restricted test is more powerful in most of the scenario. The
only exception appeals when distance d = 1 and angle γ = π

2 , where the unrestricted
test is slightly more powerful than the restricted test.
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Table 2: Power for hypothesis 1. For a fixed distance d ∈ {1, 2.5, 4}, the power is
approximated numerically as a function of the angle at the nominal α = 0.05 level. The
approximated critical points from Table 1 are used.

Distance (d)
Angle (γ)

0 π/6 π/3 π/2 2π/3 5π/6 π Unconstrained
1 0.170 0.167 0.158 0.147 0.138 0.133 0.133 0.133

2.5 0.705 0.695 0.669 0.639 0.616 0.605 0.603 0.603
4 0.979 0.977 0.971 0.965 0.960 0.957 0.957 0.957

Table 3: Power for hypothesis 2. For a fixed distance d ∈ {1, 2.5, 4}, the power is
approximated numerically as a function of the angle at the nominal α = 0.05 level. The
approximated critical points from Table 1 are used.

Distance (d)
Angle (γ)

0 π/6 π/3 π/2 Unconstrained
1 0.170 0.160 0.141 0.131 0.133

2.5 0.705 0.678 0.634 0.614 0.603
4 0.979 0.974 0.966 0.962 0.957

4. Discussion

In this report, we have studied the angle effect on the type I and type II error rates for
two types of constrained hypotheses. For both cases, we show that as the angle γ
increases, the critical point r will increase (to the maximum point) and illustrate these
properties through numerical examples. For these examples, we observe that the power
decreases as the angle increases and that the restricted test for hypothesis 1 has larger
power than the unrestricted test. For hypothesis 2, under most scenarios, the restricted
test has larger power than the unrestricted test.

Our study is based on a bivariate normal distribution with identity variance. We can
easily, as shown in Appendix B, extend our study to a asymptotically bivariate normal
distribution with arbitrary positive definite covariance matrix. More effort is needed to
extend the study to higher dimensions. More specifically, a new geometric feature in
stead of the angle needs to be found. Furthermore, in a two-dimensional parameter
space, the closed double cone will always be the circular cone, but in higher dimensions,
the closed double cone can be circular, polyhedral or other types.
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A. Relationship between Vertex Angle and Critical Points

In this section, we provide a mathematical study of the angle impact on critical point
r is provided. For both hypotheses 1 and 2, we prove that, for a fixed significance
level α, the critical point r is an increasing function of the angle γ, where γ ∈ [0, π] for
hypothesis 1 and γ ∈ [0, π2 ] for hypothesis 2.

As previously defined G1 and G2 denote the acceptance regions for hypotheses 1 and
2. The size of the acceptance region, under H0, is then obtained as

1− α = µ(Gk) =

∫
Gk

1

2π
exp{−x

2 + y2

2
}dxdy,

where the k=1,2.

A.1 Hypothesis 1

Y
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Figure 4: The compass needle shaped region G1 in (a) is the acceptance region for
hypothesis 1 under significance level 1 − µ(G1). The diamond shaped region in panel
(b) is obtained by rotating the region in panel (a) through the angle γ

2 ∈ [0, π2 ] in a
clockwise direction.

Based on the rotational symmetry of the standard bivariate normal distribution, when
γ and r are fixed, the diamond regions in panels (a) and (b) in (Figure 4) have same
Gaussian measure. Thus it is sufficient to prove that the critical point r is increasing
when the angle β = γ

2 increases under the fixed Gaussian measure of the region in
panel (b).

Here, we use polar coordinates to simplify the calculation. For a given point (x, y) in
panel (a), we represent the corresponding point in panel (b) as (x′, y′) = (ρ cos θ, ρ sin θ),
for some ρ ∈ R and θ ∈ [0, 2π]. In terms of these polar coordinates, when the significant
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level is fixed at α ∈ [0, 1], we have:

π

2
(1− α) =

∫ β

0

∫ r

0
exp{−ρ

2

2
}ρdρdθ +

∫ π
2

β

∫ r
cos(θ−β)

0
exp{−ρ

2

2
}ρdρdθ

=β(1− exp{−r
2

2
}) +

∫ π
2

β
1− exp{− r2

2 cos2(θ − β)
}dθ.

To find r′ = dr
dβ implicitly, we first differentiate both sides of the equation above to get

0 =
d

dβ

[
β(1− exp{−r

2

2
}) +

∫ π
2

β
1− exp{− r2

2 cos2(θ − β)
}dθ
]

=βr exp{−r
2

2
}r′ −

∫ π
2

β

d

dβ
exp{− r2

2 cos2(θ − β)
}dθ

=

[
βr exp{−r

2

2
}+

∫ π
2

β
exp{− r2

2 cos2(θ − β)
} r

cos2(θ − β)
dθ

]
r′

−
∫ π

2

β
exp{− r2

2 cos2(θ − β)
}r

2 sin(2(θ − β))

2 cos4(θ − β)
dθ.

When θ ∈ (β, π2 ), we have sin(2(θ − β)) > 0 and so∫ π
2

β
exp{− r2

2 cos2(θ − β)
}r

2 sin(2(θ − β))

2 cos4(θ − β)
dθ > 0.

Since it is trivial to find

βr exp{−r
2

2
}+

∫ π
2

β
exp{− r2

2 cos2(θ − β)
} r

cos2(θ − β)
dθ > 0,

we get

r′ =

∫ π
2
β exp{− r2

2 cos2(θ−β)}
r2 sin(2(θ−β))
2 cos4(θ−β) dθ

βr exp{− r2

2 }+
∫ π

2
β exp{− r2

2 cos2(θ−β)}
r

cos2(θ−β)dθ
> 0

Thus the critical point r is an increasing function in β = γ
2 ∈ [0, π2 ] and consequently in

γ ∈ [0, π].

A.2 Hypothesis 2

Similar to the discussions for Hypothesis 1, it is sufficient for us to show that r is
an increasing function in γ

2 when the size of the region in panel (b) in (Figure 5) is
fixed. We set β = γ

2 ∈ [0, π4 ] and use the polar coordinate transformations (x′, y′) =
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Figure 5: The diamond shaped region G2 in (a) is the acceptance region for hypothesis
2 at the significance level 1−µ(G2). The diamond shaped region in panel (b) is obtained
by rotating the region in panel (a) through the angle γ

2 ∈ [0, π4 ] in a clockwise direction.

(ρ cos θ, ρ sin θ). For a fixed significance level α ∈ [0, 1], we get

π

2
(1− α) =

∫ β

0

∫ r
cos(β−θ)

0
exp{−ρ

2

2
}ρdρdθ +

∫ π
2

β

∫ r
cos(β−θ)

0
exp{−ρ

2

2
}ρdρdθ

=

∫ β

0
1− exp{− r2

2 cos2(β − θ)
}dθ +

∫ π
2

β
1− exp{− r2

2 cos2(θ − β)
}dθ

=
π

2
−
∫ π

2

0
exp{− r2

2 cos2(θ − β)
}dθ

We find r′ = dr
dβ implicitly, by differentiating both side of the equation above with respect

to β,

0 =− d

dβ

∫ π
2

0
exp{− r2

2 cos2(β − θ)
}dθ

=

∫ π
2

0
exp{− r2

2 cos2(β − θ)
}
[

r

cos2(β − θ)

]
r′dθ

+

∫ π
2

0
exp{− r2

2 cos2(β − θ)
}
[
r2 sin(2(β − θ))

2 cos4(β − θ)

]
dθ.

to get

r′ = −

∫ π
2
0 exp{− r2

2 cos2(β−θ)}
[
r2 sin(2(β−θ))
2 cos4(β−θ)

]
dθ

∫ π
2
0 exp{− r2

2 cos2(β−θ)}
[

r
cos2(β−θ)

]
dθ

=
exp{− r2

2 cos2 β
} − exp{− r2

2 sin2 β
}∫ π

2
0 exp{− r2

2 cos2(β−θ)}
[

r
cos2(β−θ)

]
dθ

.

Since β ∈ [0, π4 ], we have cos2 β ≥ sin2 β. As exp{− r2

2∗t} is a monotone increasing
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function in t, we conclude that

exp{− r2

2 cos2 β
} − exp{− r2

2 sin2 β
} ≥ 0,

where the equality holds only if β = π
4 .

Since exp{− r2

2 cos2(β−θ)}
[

r
cos2(β−θ)

]
> 0, we have

∫ π
2

0
exp{− r2

2 cos2(β − θ)
}
[

r

cos2(β − θ)

]
dθ > 0,

to conclude that

r′ =
exp{− r2

2 cos2 β
} − exp{− r2

2 sin2 β
}∫ π

2
0 exp{− r2

2 cos2(β−θ)}
[

r
cos2(β−θ)

]
dθ

≥ 0.

Since the equality only holds when β = π
4 , we can draw the conclusion that r is an

increasing function for β ∈ [0, π4 ).
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B. Extensions to Asymptotic Bivariate Normal Distribution

The observation (Xn, Yn)T is drawn from an asymptotic bivariate normal distribution
with mean µ = (µ1, µ2)

T and positive definite variance Σ. We also assume that there
exists a sequence of positive definite covariance matrices Σn

p→ Σ. We are interested
in testing the null hypothesis H0 : µ = (0, 0)T versus the alternative H1 : µ ∈ C,
where C ∈ R2. To simplify the problem, we apply the linear transformation (X∗n, Y

∗
n )T =

Σ
− 1

2
n (Xn, Yn)T . Then (X∗n, Y

∗
n )T is from an asymptotic bivariate normal distribution with

mean µ∗ = Σ
− 1

2
n µ and identity variance. Equivalent to testing H0 : µ = (0, 0)T versus

H1 : µ ∈ C, we can test H0 : µ∗ = (0, 0)T versus H1 : µ∗ ∈ C∗, where C∗ ∈ R where
C∗1 and C∗2 are defined as

C∗1 = {(µ∗1, µ∗2)T :∈ R2 : (µ∗2 − µ∗1 tan γ∗1)(µ∗2 − µ∗1 tan γ∗2) ≤ 0},

and
C∗2 = {(µ∗1, µ∗2)T :∈ R2 : (µ∗2 − µ∗1 tan γ∗1)(µ∗2 − µ∗1 tan γ∗2) = 0}.
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