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Abstract 

It has long been known and there is ample literature in support of the notion that the 
presence of multicollinearity in a dataset can, and often will, have detrimental effects on 
one’s ability to determine which of the model predictors are actually responsible for, or 
contributing to, the variation in the measured/observed response (Montgomery, Peck, & 
Vining, 2001; Pedhazur, 1982). There also exist some  indications that the presence of 
multicollinearity in the data does not, or at least may not, impact one’s ability to accurately 
estimate or predict the value of the response variable for any specific set of 
measurements/observations on the predictors (Kutner, Nachtsheim & Neter, 2004; Weiss, 
2012). This idea, although seemingly logical on the face of it, is not widely present in 
regression textbooks, nor is there an abundance of research literature that supports it. The 
purpose of this study was to examine this relationship, or lack thereof, in a variety of 
situations that vary in the number of predictors, the strength of the association between the 
predictors and the response, the size of the sample, and the level of the multicollinearity 
among the predictors. 
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1. Introduction 

 

Virtually every statistics textbook that includes chapters on multiple regression at least 
touches on the concept of multicollinearity and the problems that it can cause in arriving 
at an acceptable model. The focus of these discussions is almost unilaterally restricted to 
the determination of which independent variables are needed/appropriate in an optimal 
model and which are unnecessary because of their inter-connectedness to other 
independent variables in the model (Adeboye, N. O., Fagoyinbo, I. S., & Olatayo, T. O., 
2014). Various procedures or “rules” are presented to aid the researcher in deciding which 
variables to keep and which ones can be discarded, always, and usually, in the context of 
arriving at a reduced model that will still adequately predict/explain the desired response 
with each independent variable making its own unique, “sizeable” contribution to that 
prediction or explanation (Montgomery, Peck, & Vining, 2001; Willis, C. E. & Perlack, R. 
D., 1978).  

Some textbooks differentiate between an effect that multicollinearity may have on the 
ability to determine an optimal set of predictors and an effect it may have on predicting or 
estimating the value of the response variable. When this distinction is addressed, the typical 
statement is somewhere along the lines of such an effect on the prediction of the response 
is negligible or non-existent (Kutner, Nachtsheim & Neter, 2004; Weiss, 2012; Frost, 
2013). It is rare to see any justification or empirical evidence in support of such claims. 
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Whereas it is not suggested here that these assertions either are, or may not be, true, it 
seems prudent to see if such claims can be supported by data or, if not, under what 
conditions, multicollinearity may have some effect on the ability to accurately predict or 
estimate the value of the response. This examination is not exhaustive of all possible 
regression scenarios involving multiple predictors at various levels of multicollinearity. 
Rather, it is a first step in an exploration of whether or not a potential effect of 
multicollinearity on prediction is something about which researchers and data analysts need 
to be concerned. 

2. Methods 

 

Two different regression models were investigated in this study. The first model was a two-
variable model in which a single variable, X2, which was collinear with the existing 
variable, X1, in a simple linear regression model, was added to the model to create a model 
in which both variables were relatively highly correlated with the response variable, Y, and 
also moderately to highly correlated with each other. These two models are respectively: 
Y = 0 + 1X1 +  and Y = 0 + 1X1 + 2X2 + . 

The second model was a three-variable model in which a single variable, X3, which was 
collinear with both of the existing variables, X1 and X2, was added to the model to create a 
model in which all three variables were relatively highly correlated with the response 
variable, Y; X1 was moderately correlated with both X2 and X3; and the correlation between 
X2 and X3 was varied from being relatively uncorrelated with each other to being very 
highly correlated with each other. These two models are respectively: Y = 0 + 1X1 + 2X2 
+  and Y = 0 + 1X1 + 2X2 + 3X3 + . 

In the two-variable model, correlations between Y and X1 were varied across the values 
0.8, 0.85, and 0.9; correlations between Y and X2 were varied across the values 0.7, 0.75, 
0.8, 0.85, and 0.9; correlations between X1 and X2 were varied across the values 0.3, 0.5, 
0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. The cases in which the values of the correlation between 
X1 and X2 were set at 0.3 and 0.5 were used as baseline conditions, in which the two 
independent variables were not collinear in an effort to better understand the effect of 
introducing an additional independent variable into a model which was collinear with the 
previous independent variable.  

In the three-variable model, correlations between Y and X1 were varied across the values 
0.8 and 0.9; correlations between Y and X2 were varied across the values 0.7, 0.75, and 
0.8; correlations between Y and X3 were varied across the values 0.7 and 0.75; correlations 
between X1 and X2 and between X1 and X3 were fixed at 0.5; and correlations between X2 
and X3 were varied across the values 0.3, 0.5, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. Again, the 
cases in which the values of the correlation between X1 and X3 were set at 0.3 and 0.5 were 
used as baseline conditions, in which the three independent variables were not collinear for 
the same reason as stated above with the two-variable model. 

Sample sizes were set at 20, 50, and 100 in all the scenarios investigated for both the two-
variable models and the three-variable models. 

Although it typically is probably not the case that a collinear variable is treated as being 
added to a model that already contains one or two independent variables; in order to control 
the conditions of this study, that method is what was employed. In conjunction with that, 
in order to see the effect of the additional collinear variable, the correlation between the 
independent variable(s) and Y had to be greater than or equal to the correlation between 
the collinear variable and Y in order for the correlation coefficient between the two 
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predicted values of Y to be comparable. It may seem that these conditions are limiting in 
terms of the generalizability of the findings, but it is merely an artifact of creating specific 
scenarios for comparison purposes. 

3. Data 

 

Initially, data were generated from a Multivariate Normal Distribution (MVN) with mean 
= 0, variance of Y = 25, variance of X1 = 9, variance of X2 = 4, variance of X3 = 16, and 
covariances determined by the given correlations. Then this distribution was “tainted” by 
initially replacing 5% of randomly selected observations with a new observation formed 
by adding to it a randomly generated quantity from a normal distribution with mean = 0 
and standard deviation = 8, thereby creating a distribution with somewhat heavier tails. A 
third distribution was also created in a similar manner with 10% of the original 
observations being replaced with a “tainted” value from a normal distribution with mean = 
0 and standard deviation = 8 resulting in a distribution which in turn had somewhat heavier 
tails than the first “tainted” distribution. 

For all the combinations of conditions described above in each of the three sample sizes 
previously mentioned and for each of the three distributions, 2000 replications were 
simulated using R (Mundfrom, Schaffer, Shaw, Preecha, Ussawarujikulchai, Supawan, & 
Kim, (2011). 

4. Results 

 

For the two-variable model and for each of the combinations of conditions, we used R to 
generate a matrix of results containing the original values of Y, X1, and X2, the predicted 
values of Y1 and Y2, the predicted values from the SLR model and the two-variable MLR 
model respectively, the endpoints of a confidence interval based on Y1, and the endpoints 
of a confidence interval based on Y2. The results in the following tables are selected 
representative results for a variety of treatment conditions. More complete results will be 
included in the final version. 
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Table 1. Two-Variable Model Results 

𝒚̂𝟏 =  𝜷̂𝟎 + 𝜷̂𝟏𝒙𝟏,      𝒚̂𝟐 =  𝜷̂𝟎 + 𝜷̂𝟏𝒙𝟏 +  𝜷̂𝟐𝒙𝟐 
𝝆(𝒚,𝒙𝟏) = 0.8, 𝝆(𝒚,𝒙𝟐) = 0.75       Average of 2000 Simulations 

  
Multivariate Normal 

Data 
SD(y)  = 4.964 

Multivariate Normal 

Data 
5% Tainted Data 

SD(y)= 5.261 

Multivariate Normal 

Data 
10% Tainted Data 

SD(y)= 5.545 

𝝆(𝒙𝟏,𝒙𝟐) n 𝒓(𝒚̂𝟏, 

𝒚̂𝟐) 
Mean[𝑪𝑰𝑾(𝒚̂𝟏) 

- 𝑪𝑰𝑾(𝒚̂𝟐)] 
𝒓(𝒚̂𝟏, 

𝒚̂𝟐) 
Mean[𝑪𝑰𝑾(𝒚̂𝟏) 

- 𝑪𝑰𝑾(𝒚̂𝟐)] 
𝒓(𝒚̂𝟏, 

𝒚̂𝟐) 
Mean[𝑪𝑰𝑾(𝒚̂𝟏) 

- 𝑪𝑰𝑾(𝒚̂𝟐)] 
0.3 20 0.826 1.673 0.806 0.427 0.803 -0.241 
0.3 50 0.829 1.012 0.823 0.127 0.821 -0.232 
0.3 100 0.830 0.717 0.833 0.048 0.837 -0.187 
0.5 20 0.881 0.351 0.843 -0.130 0.821 -0.514 
0.5 50 0.887 0.231 0.863 -0.125 0.846 -0.332 
0.5 100 0.891 0.152 0.876 -0.112 0.864 -0.253 
0.7 20 0.934 -0.373 0.881 -0.480 0.846 -0.683 
0.7 50 0.943 -0.226 0.900 -0.297 0.882 -0.425 
0.7 100 0.947 -0.153 0.912 -0.206 0.895 -0.294 
0.75 20 0.948 -0.513 0.886 -0.522 0.855 -0.724 
0.75 50 0.956 -0.304 0.906 -0.316 0.889 -0.440 
0.75 100 0.959 -0.212 0.921 -0.223 0.901 -0.303 
0.8 20 0.959 -0.637 0.894 -0.595 0.860 -0.732 
0.8 50 0.970 -0.381 0.917 -0.342 0.892 -0.440 
0.8 100 0.973 -0.268 0.930 -0.239 0.910 -0.312 
0.85 20 0.970 -0.735 0.904 -0.641 0.859 -0.762 
0.85 50 0.980 -0.443 0.928 -0.357 0.897 -0.434 
0.85 100 0.984 -0.310 0.938 -0.239 0.914 -0.304 
0.9 20 0.980 -0.835 0.913 -0.689 0.860 -0.755 
0.9 50 0.990 -0.495 0.933 -0.357 0.901 -0.439 
0.9 100 0.993 -0.344 0.945 -0.240 0.921 -0.307 
0.95 20 0.983 -0.865 0.917 -0.696 0.874 -0.765 
0.95 50 0.993 -0.513 0.935 -0.346 0.910 -0.447 
0.95 100 0.996 -0.356 0.949 -0.230 0.924 -0.304 

  

 

The same statistics were calculated for the three-variable model, where in these cases, the 
predicted values of Y1 and Y2, are the predicted values from the MLR model with two 
independent variables and the MLR model with three independent variables respectively. 

  

JSM 2016 - Section for Statistical Programmers and Analysts

3285



Table 2. Three-Variable Model Results 

𝒚̂𝟏 =  𝜷̂𝟎 + 𝜷̂𝟏𝒙𝟏 +  𝜷̂𝟐𝒙𝟐,    𝒚̂𝟐 =  𝜷̂𝟎 + 𝜷̂𝟏𝒙𝟏 +  𝜷̂𝟐𝒙𝟐 + 𝜷̂𝟑𝒙𝟑 
𝝆(𝒚,𝒙𝟏) = 0.8, 𝝆(𝒚,𝒙𝟐) = 0.75, 𝝆(𝒚,𝒙𝟑) = 0.7, 𝝆(𝒙𝟏,𝒙𝟐) = 0.5, 𝝆(𝒙𝟏,𝒙𝟑) = 0.5 

Average of 2000 Simulations 

  
Multivariate Normal 

Data 
SD(y)  = 4.966 

Multivariate Normal 

Data 
5% Tainted Data 

SD(y)= 5.265 

Multivariate Normal 

Data 
10% Tainted Data 

SD(y)= 5.549 

𝝆(𝒙𝟐,𝒙𝟑)  n 𝒓(𝒚̂𝟏, 

𝒚̂𝟐) 
Mean[𝑪𝑰𝑾(𝒚̂𝟏) 

- 𝑪𝑰𝑾(𝒚̂𝟐)] 
𝒓(𝒚̂𝟏, 

𝒚̂𝟐) 
Mean[𝑪𝑰𝑾(𝒚̂𝟏) 

- 𝑪𝑰𝑾(𝒚̂𝟐)] 
𝒓(𝒚̂𝟏, 

𝒚̂𝟐) 
Mean[𝑪𝑰𝑾(𝒚̂𝟏) 

- 𝑪𝑰𝑾(𝒚̂𝟐)] 

0.3 20 0.939 0.691 0.910 0.113 0.881 -0.167 
0.3 50 0.941 0.411 0.909 0.032 0.876 -0.135 
0.3 100 0.941 0.291 0.903 0.012 0.875 -0.118 
0.5 20 0.965 -0.003 0.928 -0.204 0.901 -0.408 
0.5 50 0.969 -0.004 0.930 -0.134 0.897 -0.254 
0.5 100 0.969 0.003 0.928 -0.095 0.892 -0.169 
0.7 20 0.984 -0.396 0.946 -0.445 0.916 -0.556 
0.7 50 0.987 -0.226 0.946 -0.237 0.909 -0.304 
0.7 100 0.989 -0.158 0.943 -0.157 0.905 -0.204 
0.75 20 0.987 -0.460 0.952 -0.491 0.915 -0.585 
0.75 50 0.991 -0.268 0.949 -0.257 0.912 -0.313 
0.75 100 0.992 -0.188 0.949 -0.174 0.910 -0.212 
0.8 20 0.990 -0.503 0.951 -0.497 0.919 -0.581 
0.8 50 0.994 -0.300 0.955 -0.276 0.917 -0.322 
0.8 100 0.995 -0.209 0.950 -0.176 0.913 -0.213 
0.85 20 0.992 -0.552 0.956 -0.543 0.917 -0.591 
0.85 50 0.997 -0.327 0.958 -0.287 0.919 -0.327 
0.85 100 0.998 -0.226 0.953 -0.179 0.917 -0.217 
0.9 20 0.993 -0.573 0.957 -0.530 0.916 -0.586 
0.9 50 0.997 -0.334 0.958 -0.280 0.918 -0.317 
0.9 100 0.999 -0.232 0.957 -0.179 0.919 -0.218 
0.95 20 0.989 -0.500 0.960 -0.536 0.921 -0.579 
0.95 50 0.993 -0.291 0.957 -0.255 0.920 -0.318 
0.95 100 0.994 -0.201 0.961 -0.175 0.919 -0.208 
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5. Conclusions 

 

It does not appear that the effect of multicollinearity on the value of the predicted response 
is as simple as the textbooks convey. Clearly, including a collinear variable will decrease 
the degrees of freedom for the squared error term by one while not significantly reducing 
the error. This loss of one degree of freedom for the error term is likely to have a larger 
effect, if any, with the smaller sample sizes.  

From these data it does appear that multicollinearity does have an effect on that prediction 
in at least some, if not most, of the scenarios studied. The basic struggle we faced is how 
to best quantify that effect. We are not sure that we have adequately conquered that 
struggle.  

Four outcomes, however, are quite clear from our data. One, the size of the sample has an 
effect, with larger samples appearing to mitigate, to some extent at least, the effect of the 
multicollinearity. Two, the non-normality of the “tainted” distributions also showed the 
collinearity having a larger effect on the predictions with smaller values for the correlation 
between the two predicted values. Third, there is an effect of the mean difference in the 
width of the confidence intervals based on the predicted values of Y1 and Y2, with the wider 
interval being associated with the “collinear” model. And, four, the presence of 
multicollinearity in the data appears to have a larger effect with fewer variables in the 
model. Specifically, the width of the confidence intervals for the mean difference between 
the predicted values for Y1 and Y2 were wider in the two-variable model than in the three-
variable model. 
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