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Abstract 
In recent years, with the rise of Electronic Medical Records (EMRs), there has been a 
dramatic increase of text to analyze. While the selection and tuning of the outperforming 
algorithm, which are intertwined to the scalability and robustness of the algorithm itself, 
can be implemented in ready-to-use systems, the pre-processing is still not an automated 
step of the analysis. The importance of the pre-processing relies on the fact it serves as the 
basis of any further analysis and a poor pre-processing can hamper the performance even 
of the best tuned algorithm. In this work, we studied the impact of the most common text 
pre-processing steps, such as stripping white space, removing stop-words, stemming or 
building n-Grams, on classification. The motivating example is the classification of EMRs. 
The pre-processing is assessed in conjunction with neural networks, support vector 
machines and boosting to highlight their synergistic impact and the importance of the order 
in which the single steps are carried out. 
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1. Introduction 

 
In recent years, with the rise of Electronic Medical Records (EMRs), there has been a 
dramatic increase of text to analyze. Pre-processing the data is the process of cleaning and 
preparing the text for classification. The classification task is typically accomplished by 
Machine Learning Techniques (MLTs) which are tools used for analyzing large and 
complex data sets called Data Mining aimed at discovering knowledge in an automatic or 
semi-automatic process1. While the selection and tuning of the outperforming MLT, which 
are intertwined to the scalability and robustness of the algorithm itself, can be implemented 
in ready-to-use systems, the pre-processing is still not an automated step of the analysis2 3. 
 
Narrative EMRs fields usually contain lots of uninformative words which represent noise. 
Keeping those words makes the dimensionality of the problem high and the classification 
more difficult. Having the data properly pre-processed stems from the need to reduce the 
noise in the text to help improve the performance of the classifier and speed up the 
classification process. 
 
This study aims to assess several different pre-processing tasks in text mining, and to what 
extent the order they are carried out can affect the performance of machine learning 
algorithms for text classification. The study is conducted on a large corpus of EMRs on 
infectious diseases. Text Mining (TM) narrative EMRs data to investigate disease burden 
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is a relatively new and promising approach in the field of infectious diseases, where manual 
review of narrative fields is the current form of text exploration 4. 
 
Our objective is to assess and compare the overall performance of different pre-processing 
strategies given a MLT, chosen according to the benchmark suggested by the literature5-7. 
Secondarily, we aim at disentangling the pre-processing impact from the specific MLT 
impact on the classification/prediction accuracy8. 
 

2. Materials and Methods 

 
2.1 Data source 
The source of data is primary care records maintained by general practitioners on visits, 
diagnosis, prescriptions, hospitalizations and specialist visits over a 10-year span. The aim 
was to identify incident infectious diseases out of 1,230,355 entries. At the time of writing, 
authors are not entitled for confidentiality reasons to disclose all the data information. 
 
2.2 Pre-processing procedures 
At first, a simple regular expression match and a fast manual review were implemented to 
identify in a semi-supervised way a subset to be used for training the machine on out-of-
doubt positives/negatives. More in detail, pattern matching was used for each infectious 
disease of interest only into the short-text fields and an independent researcher was asked 
to select only the most obvious positive cases out of them. Negatives were defined as 
patients not matching any of the above patterns in any field of any of their entries. The 
excluded records were marked as “doubt” and are the base on which the final performance 
statistics were computed. 
 
The pre-processing procedures considered fall in three main groups: reducing, 
modificating and enriching procedures. The first group is about “removing something”, 
like extra non wanted white spaces or symbols, numbers or even words we do not need the 
MLT take care about. Mainly, this procedure removes noise. We selected “remove non-
word text”, “remove stop-words” and “strip whitespace” procedures. 
 
The second group concerns “merging something”, like different inflection or counts (i.e. 
singular or plural) of the same words, different kinds of typing nouns or words at the 
beginning of a sentence with capital letters but even words with the same field of semantic 
action. Mainly, this procedure merges concepts we think could be lost otherwise with the 
risk to allow important information to become noise. We selected “lowering” and 
“stemming” procedures. 
 
The last group is about “producing something”, like “new words”. To be more precise, in 
the context of text analyses we distinguish from human words called simply “words” and 
computer words called “tokens”9. Normally each word is considered as a token as well as 
the opposite. Using this procedure, we are able to consider (and so they are passed to the 
algorithms as they are a single indivisible piece of information) a group of words, in the 
case of n-Gram a consecutive sequence of exactly n words. Mainly, this procedure 
produces new tokens useful (hopefully) to bring information which could be lost otherwise, 
e.g. negations. We selected “producing n-Grams9”, limiting n∈ {1, 2, 3} and considering 
only increasing subsets of them, i.e. only 1-gram (i.e. no generation of tokens, other than 
the words just considered), 1-gram ∪ 2-gram (i.e. all the words plus all the consecutive 
couple of words) and 1-gram ∪ 2-gram ∪ 3-gram. 
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All strategies are listed in table 1 with the following criteria: procedures executed on the 
same strategy are identified, in each row, by the same letter. Moreover, procedures 
belonging to the same strategy are executed in order from the leftmost one to the right when 
there were the same or no number near the letter, otherwise they are executed according to 
the numbering. For examples on the third line “two groups” f1-f3 and f2 will be executed 
on the same pre-processing strategy (which executes no procedure in the merging groups), 
ordered as follows: removing non-words, stop-words and next the extra white space + 
producing 2-Gram + removing non-words, stop-words and finally the extra white space. 
 
 

Executing  Removing group   Merging group Producing group 
 

          
 

 non-word white space stop-words  lower stem 2-Gram 3-Gram  
 

         
 

one procedure a b c 
 

d e f g 
 

 
 

one group  a   b  c d 
 

two groups a b c d2 e2 f1-f3 g1-g3  a h i  b d1 f2 h c e1 g2 i 
 

all groups a b c3 d3 e1-e4 f1-f4  a b c2 d2 e2 f2 a c1 e3 b d1 f3 
 

           

 
Next the various types/sequences of functions and procedures identified for the pre-
processing are applied on the whole database and the selected metrics are registered at each 
step. 
The final analysis is carried out transforming the resulting output of each pre-processing 
step into a Document-Term Matrix (DTM) filled using the term frequencies - inverse 
document frequencies weights and passing it to each of the chosen algorithms. For each 
pre-processing strategy we record and compute the following metrics: i) computational 
time to asses each single pre-processing step, to assess the overall pre-processing procedure 
and to perform the training each MLT; ii) maximum ram needed to asses each one of the 
overall procedures from the pre-processing to the training of the MLT; iii) confusion matrix 
of the predicted results with computation of sensibility, precision, specificity, accuracy and 
F1 score. 

 

2.3 Machine Learning techniques 
2.3.1 Artificial Neural Network with one hidden layer 

Artificial Neural Networks10 11 are models inspired by the structure and/or function of 
biological neural networks. They are a class of pattern matching that are commonly used 
for regression and classification problems but are really an enormous subfield comprising 
hundreds of algorithms and variations. The one we have selected is the perceptron with one 
hidden layer. This model may be considered as a logistic regression where the covariates 
are pre-processed using a non-linear transformation projecting the input data in a space 
(intermediate hidden layer) where it becomes linearly separable. 
 
2.3.2 Support-Vector Machine (SVM) 

SVM12 is a supervised learning method useful for classification and regression analysis. 
The method is based on the construction of one or more hyperplanes in high or infinite 
dimension leading to separate the data according to output variable. For this purpose, the 

Table 1:  Strategies implemented: strategies are identified by letters. Numbers gives 
the ordering of the procedures applied to each strategies. If none or same number, the 

order of execution is from left to right. 
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better hyperplane has the largest distance to the nearest data belonging to class, they are 
the functional margin, for greater margin the classification error is lower. 
 
2.3.3 Boosting 

The Boosting is a general approach for improving the accuracy of any given learning 
algorithm. Here we considered an adaptation by Tuszynski13 of the logitboost algorithm14 
aimed at speeding-up the whole procedure when applied on very large data sets. The 
algorithm implements the standard boosting technique15, i.e. sequential use of a 
classification algorithm that is represented in this case by a decision tree. 
 
2.4 Software 
Analyses were performed using R software version 3.2.4 (now updated at the last version 
3.3.0) and the following packages were used: 

• RTextTools 1.4.2: Automatic Text Classification via Supervised Learning  
• tm 0.6-2: Text Mining Package  
• stringr 1.0.0: Simple, Consistent Wrappers for Common String Operations  
• RWeka 0.4-26: R/Weka Interface  
• SnowballC 0.5.1: Snowball stemmers based on the C libstemmer UTF-8 library  
• slam 0.1-32: Sparse Lightweight Arrays and Matrices 

 
 

3. Results 

 
At present we have carried out the strategy “e” as referred in the last rows of table 1, (i.e. 
the simpler one which includes all procedures). Preliminary results are reported below. 
After the first “globally-reached-the-end” execution, we are now working on fixing bugs 
and adopting patches as well as a defensive programming approach in order to be able to 
run a single loop-function which will automatically collect all the interested metrics for 
each of the selected sets of pre-processing procedures. For this reason, at the moment no 
metrics on computational time nor space complexity are rigorously collected. 
Approximately, on our 2 x 3.0 GHz quad-core server equipped with 128 GB of ram the 
whole performed procedure takes a couple of days to run.   
As preliminary results for Boosting algorithm, the procedure has identified in a couple of 
days 3,472 true positives out of 3,481 and no false positives, 4,150 true negatives and 9 
false negatives (table 2). 
 

  
Pre-processing group sensitivity specificity accuracy F-measure 

stopwords  g1  0.656 0.566 0.582 0.173 
spaces            g1   0.656 0.566 0.582 0.173 
non words  g1  0.656 0.566 0.582 0.173 
stemming  g2  0.656 0.565 0.58 0.173 
lowering  g2  0.996 0.429 0.524 0.207 
2-gram  0.812 0.577 0.617 0.208 
g1 + g2 + 2-gram  0.996 0.426 0.522 0.206 

Table 2:   Preliminary results for Boosting algoritmhs and strategy "e". 
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g2 + g1 + 2-gram  0.996 0.426 0.522 0.206 
2-gram + g2 + g1  0.987 0.453 0.542 0.210 
2-gram + g1 + g2  0.987 0.453 0.542 0.210 
g2 + g1 + 2-gram + g1  0.996 0.426 0.522 0.206 

 
 
 

4. Discussion 

 
Pre-processing text is a time consuming task when using MLTs for classifying EMRs and 
it is important to establish to what extent it is necessary. 
In this work we applied different pre-processing tasks and different strategies involving 
multiple pre-processing tasks to EMRs text with the aim to classifying records according 
to the presence of infectious diseases using MLTs. 
In a previous work, Goncalves et al16 applied stop word removal, stemming, replacing 
words with synonyms and pruning (i.e. removing too frequent words) and combination of 
them on MEDLINE documents. On a variety of MLTs they showed the effect of pruning 
in boosting accuracy of algorithms. However, they did not consider bi-grams among their 
set of pre-processing steps.  
Munkova and colleagues17 showed that when using algorithms for sequence rules 
extraction, removing stop-words has an impact on the quality of extracted rules.  
In our data, the pre-processing tasks that affected most the MLT sensitivity are lowering 
and bigrams. In general, while not performing lowering, using two or more pre-processing 
tasks along with bigrams gives a boost to MLT sensitivity. On the other hand, building 
bigrams is the pre-processing task that better improves the MLT accuracy with respect to 
not performing any kind of pre-processing task. 
Further analyses are required first to assess if the same results are observed also on different 
MLTs (like SVM, NN, decision trees, Bayes Net, K-nearest neighbours and ensemble 
algorithm), secondly if the value of lowering and bigrams pre-processing is not due to the 
peculiarity of the EMRs focused on infection disease classification. 
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