
Maximizing Text Mining Performance:
the Impact of Pre-Processing

Lanera C1, Berchialla P2, Baldi I1, Gregori D1
1Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic

and Vascular Sciences, University of Padova, V. Loredan 18, 35131 Padova, Italy

2Department of Clinical and Biological Sciences, University of Torino, Via Santena 5bis,
10126 Torino, Italy

Abstract
In recent years, with the rise of Electronic Medical Records (EMRs), there has been a
dramatic increase of text to analyze. While the selection and tuning of the outperforming
algorithm, which are intertwined to the scalability and robustness of the algorithm itself,
can be implemented in ready-to-use systems, the pre-processing is still not an automated
step of the analysis. The importance of the pre-processing relies on the fact it serves as the
basis of any further analysis and a poor pre-processing can hamper the performance even
of the best tuned algorithm. In this work, we studied the impact of the most common text
pre-processing steps, such as stripping white space, removing stop-words, stemming or
building n-Grams, on classification. The motivating example is the classification of EMRs.
The pre-processing is assessed in conjunction with neural networks, support vector
machines and boosting to highlight their synergistic impact and the importance of the order
in which the single steps are carried out.

Key Words: Pre-processing, Machine learning, Electronic Medical Records

1. Introduction

In recent years, with the rise of Electronic Medical Records (EMRs), there has been a
dramatic increase of text to analyze. Pre-processing the data is the process of cleaning and
preparing the text for classification. The classification task is typically accomplished by
Machine Learning Techniques (MLTs) which are tools used for analyzing large and
complex data sets called Data Mining aimed at discovering knowledge in an automatic or
semi-automatic process1. While the selection and tuning of the outperforming MLT, which
are intertwined to the scalability and robustness of the algorithm itself, can be implemented
in ready-to-use systems, the pre-processing is still not an automated step of the analysis2 3.

Narrative EMRs fields usually contain lots of uninformative words which represent noise.
Keeping those words makes the dimensionality of the problem high and the classification
more difficult. Having the data properly pre-processed stems from the need to reduce the
noise in the text to help improve the performance of the classifier and speed up the
classification process.

This study aims to assess several different pre-processing tasks in text mining, and to what
extent the order they are carried out can affect the performance of machine learning
algorithms for text classification. The study is conducted on a large corpus of EMRs on
infectious diseases. Text Mining (TM) narrative EMRs data to investigate disease burden

JSM 2016 - Section on Statistical Learning and Data Science

3265

is a relatively new and promising approach in the field of infectious diseases, where manual
review of narrative fields is the current form of text exploration 4.

Our objective is to assess and compare the overall performance of different pre-processing
strategies given a MLT, chosen according to the benchmark suggested by the literature5-7.
Secondarily, we aim at disentangling the pre-processing impact from the specific MLT
impact on the classification/prediction accuracy8.

2. Materials and Methods

2.1 Data source
The source of data is primary care records maintained by general practitioners on visits,
diagnosis, prescriptions, hospitalizations and specialist visits over a 10-year span. The aim
was to identify incident infectious diseases out of 1,230,355 entries. At the time of writing,
authors are not entitled for confidentiality reasons to disclose all the data information.

2.2 Pre-processing procedures
At first, a simple regular expression match and a fast manual review were implemented to
identify in a semi-supervised way a subset to be used for training the machine on out-of-
doubt positives/negatives. More in detail, pattern matching was used for each infectious
disease of interest only into the short-text fields and an independent researcher was asked
to select only the most obvious positive cases out of them. Negatives were defined as
patients not matching any of the above patterns in any field of any of their entries. The
excluded records were marked as “doubt” and are the base on which the final performance
statistics were computed.

The pre-processing procedures considered fall in three main groups: reducing,
modificating and enriching procedures. The first group is about “removing something”,
like extra non wanted white spaces or symbols, numbers or even words we do not need the
MLT take care about. Mainly, this procedure removes noise. We selected “remove non-
word text”, “remove stop-words” and “strip whitespace” procedures.

The second group concerns “merging something”, like different inflection or counts (i.e.
singular or plural) of the same words, different kinds of typing nouns or words at the
beginning of a sentence with capital letters but even words with the same field of semantic
action. Mainly, this procedure merges concepts we think could be lost otherwise with the
risk to allow important information to become noise. We selected “lowering” and
“stemming” procedures.

The last group is about “producing something”, like “new words”. To be more precise, in
the context of text analyses we distinguish from human words called simply “words” and
computer words called “tokens”9. Normally each word is considered as a token as well as
the opposite. Using this procedure, we are able to consider (and so they are passed to the
algorithms as they are a single indivisible piece of information) a group of words, in the
case of n-Gram a consecutive sequence of exactly n words. Mainly, this procedure
produces new tokens useful (hopefully) to bring information which could be lost otherwise,
e.g. negations. We selected “producing n-Grams9”, limiting n∈ {1, 2, 3} and considering
only increasing subsets of them, i.e. only 1-gram (i.e. no generation of tokens, other than
the words just considered), 1-gram ∪ 2-gram (i.e. all the words plus all the consecutive
couple of words) and 1-gram ∪ 2-gram ∪ 3-gram.

JSM 2016 - Section on Statistical Learning and Data Science

3266

All strategies are listed in table 1 with the following criteria: procedures executed on the
same strategy are identified, in each row, by the same letter. Moreover, procedures
belonging to the same strategy are executed in order from the leftmost one to the right when
there were the same or no number near the letter, otherwise they are executed according to
the numbering. For examples on the third line “two groups” f1-f3 and f2 will be executed
on the same pre-processing strategy (which executes no procedure in the merging groups),
ordered as follows: removing non-words, stop-words and next the extra white space +
producing 2-Gram + removing non-words, stop-words and finally the extra white space.

Executing Removing group Merging group Producing group

 non-word white space stop-words lower stem 2-Gram 3-Gram

one procedure a b c

d e f g

one group a b c d

two groups a b c d2 e2 f1-f3 g1-g3 a h i b d1 f2 h c e1 g2 i

all groups a b c3 d3 e1-e4 f1-f4 a b c2 d2 e2 f2 a c1 e3 b d1 f3

Next the various types/sequences of functions and procedures identified for the pre-
processing are applied on the whole database and the selected metrics are registered at each
step.
The final analysis is carried out transforming the resulting output of each pre-processing
step into a Document-Term Matrix (DTM) filled using the term frequencies - inverse
document frequencies weights and passing it to each of the chosen algorithms. For each
pre-processing strategy we record and compute the following metrics: i) computational
time to asses each single pre-processing step, to assess the overall pre-processing procedure
and to perform the training each MLT; ii) maximum ram needed to asses each one of the
overall procedures from the pre-processing to the training of the MLT; iii) confusion matrix
of the predicted results with computation of sensibility, precision, specificity, accuracy and
F1 score.

2.3 Machine Learning techniques
2.3.1 Artificial Neural Network with one hidden layer

Artificial Neural Networks10 11 are models inspired by the structure and/or function of
biological neural networks. They are a class of pattern matching that are commonly used
for regression and classification problems but are really an enormous subfield comprising
hundreds of algorithms and variations. The one we have selected is the perceptron with one
hidden layer. This model may be considered as a logistic regression where the covariates
are pre-processed using a non-linear transformation projecting the input data in a space
(intermediate hidden layer) where it becomes linearly separable.

2.3.2 Support-Vector Machine (SVM)

SVM12 is a supervised learning method useful for classification and regression analysis.
The method is based on the construction of one or more hyperplanes in high or infinite
dimension leading to separate the data according to output variable. For this purpose, the

Table 1: Strategies implemented: strategies are identified by letters. Numbers gives
the ordering of the procedures applied to each strategies. If none or same number, the

order of execution is from left to right.

JSM 2016 - Section on Statistical Learning and Data Science

3267

better hyperplane has the largest distance to the nearest data belonging to class, they are
the functional margin, for greater margin the classification error is lower.

2.3.3 Boosting

The Boosting is a general approach for improving the accuracy of any given learning
algorithm. Here we considered an adaptation by Tuszynski13 of the logitboost algorithm14
aimed at speeding-up the whole procedure when applied on very large data sets. The
algorithm implements the standard boosting technique15, i.e. sequential use of a
classification algorithm that is represented in this case by a decision tree.

2.4 Software
Analyses were performed using R software version 3.2.4 (now updated at the last version
3.3.0) and the following packages were used:

• RTextTools 1.4.2: Automatic Text Classification via Supervised Learning
• tm 0.6-2: Text Mining Package
• stringr 1.0.0: Simple, Consistent Wrappers for Common String Operations
• RWeka 0.4-26: R/Weka Interface
• SnowballC 0.5.1: Snowball stemmers based on the C libstemmer UTF-8 library
• slam 0.1-32: Sparse Lightweight Arrays and Matrices

3. Results

At present we have carried out the strategy “e” as referred in the last rows of table 1, (i.e.
the simpler one which includes all procedures). Preliminary results are reported below.
After the first “globally-reached-the-end” execution, we are now working on fixing bugs
and adopting patches as well as a defensive programming approach in order to be able to
run a single loop-function which will automatically collect all the interested metrics for
each of the selected sets of pre-processing procedures. For this reason, at the moment no
metrics on computational time nor space complexity are rigorously collected.
Approximately, on our 2 x 3.0 GHz quad-core server equipped with 128 GB of ram the
whole performed procedure takes a couple of days to run.
As preliminary results for Boosting algorithm, the procedure has identified in a couple of
days 3,472 true positives out of 3,481 and no false positives, 4,150 true negatives and 9
false negatives (table 2).

Pre-processing group sensitivity specificity accuracy F-measure

stopwords g1 0.656 0.566 0.582 0.173
spaces g1 0.656 0.566 0.582 0.173
non words g1 0.656 0.566 0.582 0.173
stemming g2 0.656 0.565 0.58 0.173
lowering g2 0.996 0.429 0.524 0.207
2-gram 0.812 0.577 0.617 0.208
g1 + g2 + 2-gram 0.996 0.426 0.522 0.206

Table 2: Preliminary results for Boosting algoritmhs and strategy "e".

JSM 2016 - Section on Statistical Learning and Data Science

3268

g2 + g1 + 2-gram 0.996 0.426 0.522 0.206
2-gram + g2 + g1 0.987 0.453 0.542 0.210
2-gram + g1 + g2 0.987 0.453 0.542 0.210
g2 + g1 + 2-gram + g1 0.996 0.426 0.522 0.206

4. Discussion

Pre-processing text is a time consuming task when using MLTs for classifying EMRs and
it is important to establish to what extent it is necessary.
In this work we applied different pre-processing tasks and different strategies involving
multiple pre-processing tasks to EMRs text with the aim to classifying records according
to the presence of infectious diseases using MLTs.
In a previous work, Goncalves et al16 applied stop word removal, stemming, replacing
words with synonyms and pruning (i.e. removing too frequent words) and combination of
them on MEDLINE documents. On a variety of MLTs they showed the effect of pruning
in boosting accuracy of algorithms. However, they did not consider bi-grams among their
set of pre-processing steps.
Munkova and colleagues17 showed that when using algorithms for sequence rules
extraction, removing stop-words has an impact on the quality of extracted rules.
In our data, the pre-processing tasks that affected most the MLT sensitivity are lowering
and bigrams. In general, while not performing lowering, using two or more pre-processing
tasks along with bigrams gives a boost to MLT sensitivity. On the other hand, building
bigrams is the pre-processing task that better improves the MLT accuracy with respect to
not performing any kind of pre-processing task.
Further analyses are required first to assess if the same results are observed also on different
MLTs (like SVM, NN, decision trees, Bayes Net, K-nearest neighbours and ensemble
algorithm), secondly if the value of lowering and bigrams pre-processing is not due to the
peculiarity of the EMRs focused on infection disease classification.

References

1. Witten IH, Frank E, Hall MA. Data Mining: Practical Machine Learning Tools and

Techniques. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc 2011.
2. Afzal Z, Schuemie MJ, van Blijderveen JC, et al. Improving sensitivity of machine

learning methods for automated case identification from free-text electronic
medical records. BMC Med Inform Decis Mak 2013;13:30. doi: 10.1186/1472-
6947-13-30

3. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better
research applications and clinical care. Nat Rev Genet 2012;13(6):395-405. doi:
10.1038/nrg3208

4. Wang Z, Shah AD, Tate AR, et al. Extracting diagnoses and investigation results from
unstructured text in electronic health records by semi-supervised machine learning.
PLoS One 2012;7(1):e30412. doi: 10.1371/journal.pone.0030412

5. Riemenschneider M, Heider D. Current Approaches in Computational Drug Resistance
Prediction in HIV. Curr HIV Res 2016;14(4):307-15.

6. Koo CL, Liew MJ, Mohamad MS, et al. A review for detecting gene-gene interactions
using machine learning methods in genetic epidemiology. Biomed Res Int
2013;2013:432375. doi: 10.1155/2013/432375

JSM 2016 - Section on Statistical Learning and Data Science

3269

7. Kapetanovic IM, Rosenfeld S, Izmirlian G. Overview of commonly used bioinformatics
methods and their applications. Ann N Y Acad Sci 2004;1020:10-21. doi:
10.1196/annals.1310.003

8. Haddi E, Liu X, Shi Y. The role of text pre-processing in sentiment analysis. Procedia

Computer Science 2013;17:26-32.
9. Marafino BJ, Davies JM, Bardach NS, et al. N-gram support vector machines for

scalable procedure and diagnosis classification, with applications to clinical free
text data from the intensive care unit. J Am Med Inform Assoc 2014;21(5):871-5.
doi: 10.1136/amiajnl-2014-002694

10. Venables WN, Ripley BD. Modern Applied Statistics with S. New York: Springer-
Verlag 2002.

11. Ripley BD. Pattern Recognition and Neural Networks: Cambridge University Press
1996.

12. Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995;20(3):273-97.
13. Tuszynski J. caTools: Tools: moving window statistics, GIF, Base64, ROC AUC, etc.,

2014 [Available from: https://CRAN.R-project.org/package=caTools.
14. Dettling M, Buhlmann P. Boosting for tumor classification with gene expression data.

Bioinformatics 2002;19(9):1061-69.
15. Freund Y, Schapire RE. Experiments with a new boosting algorithm. . Proceedings of

the thirteenth international conference on machine learning, Morgan Kaufmann
1996:148-56.

16. Goncalves CA, Goncalves CT, Camacho R, et al. The impact of pre-processing on the
classification of MEDLINE documents. Proceedings of the 10th International
Workshop on Pattern Recognition in Information Systems, PRIS 2010, in
Conjunction with ICEIS 2010, 2010:53-61.

17. Munková D, Munk M, Vozár M. Data Pre-processing Evaluation for Text Mining:
Transaction/Sequence Model. Procedia Computer Science 2013;18:1198-207.
doi: http://dx.doi.org/10.1016/j.procs.2013.05.286

JSM 2016 - Section on Statistical Learning and Data Science

3270

https://cran.r-project.org/package=caTools
http://dx.doi.org/10.1016/j.procs.2013.05.286

