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Abstract 
EPA is interested in understanding the relationship between usual (long-term average) 
fish consumption and blood organic mercury concentration. The publicly available 
NHANES survey files have dietary intake data from two 24-hour periods and 
measurements of blood total mercury and inorganic mercury. Recent NHANES releases 
also have organic mercury measurements. For earlier releases, calculation of organic 
mercury concentrations from total and inorganic concentrations using subtraction gives 
some negative values and is complicated by non-detects. As a result, organic 
concentrations were imputed using a Bayesian model. The National Cancer Institute 
(NCI) provides SAS macros for calculating regression calibration estimates of usual fish 
consumption; however, those macros can be very slow when using many predictors and 
may not converge. To complete the calculations within a reasonable time, we have used 
various approximations when imputing the organic mercury concentrations and fitting the 
NCI-model. This paper presents the modeling results and compares them to a Bayesian 
model that combines the estimation of usual fish consumption and imputation of organic 
mercury. 
 
Key Words: Multiple imputation, Non-detects, NCI method, Box-Cox transformation, 
Skew-normal, Bayes MCMC 
 

1. Introduction and Objectives 
 
Mercury released into the environment is converted to organic methyl mercury in 
sediments and in the water column and bioaccumulates through aquatic food webs. This 
bioaccumulation leads to increased levels of methyl mercury in larger, older, predatory 
fish. In the U.S., exposure to methyl mercury in humans is largely through the 
consumption of fish (NRC, 2000). Methyl mercury exposure in utero is associated with 
adverse health effects, e.g., neurodevelopmental deficits such as IQ and motor function 
deficits in children (Mergler et al, 2007; NRC, 2000).  
 
EPA is interested in the relationship between long-term (“usual”) fish consumption and 
blood organic mercury concentrations in women of child-bearing age (16–49). Mercury 
in the body has a half-life on the order of 45 to 70 days (Kershaw, Clarkson, and Dhahir, 
1980; Sherlock, Hislop, Newton, Topping, and Whittle, 1984; Smith et al., 1994; Smith 
and Farris, 1996; Clarkson & Magos, 2006) and therefore average long-term fish mercury 
intake is thought to be a better measure of risk from eating fish than recent (prior 24-
hour) exposure. For this work, we modeled the relationship between usual intake of 
mercury from fish and blood organic mercury, and evaluated the sensitivity of the results 
to the modeling assumptions. 
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2. Data 

 
The data come from two sources, 1) NHANES survey data collected from 1999 to 2012; 
and 2) reported concentrations of mercury by fish species. Table 1 summarizes the 
NHANES data used in the analysis.  
 
Table 1: NHANES variables used in the analysis 
 

Variable Transformations or categories Model use 
Blood mercury Impute log-transformed organic mercury All models 
Fish consumption Derived from the NHANES 24-hour dietary 

recall data (see below) 
All models: used to 
calculate usual intake 

Reported number of 
meals with fish in 
last 30 days 

Recoded as: 0, 1, 2, 3, 4 to 5, 6 to 9, 10 to 15, 
More than 15 

All models: used to 
calculate usual intake 

Survey release 1999-2000, 2001-2002, 2003-2004, 2005-2006, 
2007-2008, 2009-2010, 2011-2012 

All models 

Race Ethnicity Mexican American, Other Hispanic, Non-
Hispanic White, Non-Hispanic Black, Other 
Race - Including Multi-Racial 

All models 

Body weight Log-transformed and centered All models 
Hematocrit Log-transformed and centered All models 
Income Under $20,000, $20,000 to $44,999, $45,000 to 

$74,999, $75,000 and Over, Over $20,000, 
Refused/Don't know, Multifamily HH 

Full model 

Education Less than, more than, or equal to the median 
education for the respondents age 

Full model 

Age Converted to age in decades and centered Full model 
Cotinine Log-transformed, entered as a cubic function Full model 
Alcohol 
consumption 

Age less than 20, Fewer than 12 drinks per 
year, 12 or more drinks per year 

Full model 

Region of the 
country 

US Census Regions: Northeast, Midwest, West, 
and South  

Full model 

Coastal versus non-
coastal areas 

Coastal areas are defined as counties bordering 
the Atlantic, Gulf, and Pacific coasts and the 
Great Lakes. 

Full model 

 
Variables above were included because they were found to be important in other 
analyses. We considered BMI, and height; however, these variables were not significant 
when body weight was in the model. Stepwise regression was used to assess possible 
interactions. The full model was fit at the NCHS data center. A simplified model with the 
most significant predictors from the full was used for comparing alternative model 
assumptions.  
 
2.1 Processing the Dietary Recall Data to Calculate Mercury Intake from 
Fish 
The NHANES 24-hour recall data include the U.S. Department of Agriculture (USDA) 
food codes from the Food and Nutrient Database for Dietary Studies (FNDDS) and 
amount consumed in grams for every item of food eaten by the respondent in the 24 
hours immediately preceding the interview. All records in the 24-hour data file for 
women aged 16-49 years that were for fish-containing food codes were extracted. The 
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recipe file and 24-hour recall data were merged to calculate quantity of “as prepared” fish 
consumed. Raw fish weight conversion was based on the likely moisture loss due to 
cooking. 
 
To estimate the amount of mercury ingested, for each species, the geometric mean 
mercury concentration in raw fish tissue was multiplied by the amount of raw fish 
consumed. We obtained fish tissue concentration data from states, the U.S. Food and 
Drug Administration, the National Oceanic and Atmospheric Administration, EPA 
Region 10, and studies published in the peer-reviewed literature. For most species we 
were able to find data within the 1999-2012 time period. However, for abalone and 
crayfish we used data from the Mercury Report to Congress (U.S. EPA 1997). The 
geometric mean was estimated using a mixed linear model predicting log-transformed 
fish tissue mercury concentrations, treating the data source as a random effect and 
modeling the error variance as a power function of the number of samples averaged to 
obtain the reported value. The average mercury concentration weighted by 30-day 
consumption frequency was used for unspecified fish species. 
 
2.2 Sample Size 
Following the NHANES analysis guidelines, for the analysis we used the MEC sampling 
weight to represent the non-institutionalized population in the United States. Of the 
13,069 women aged 16 to 49 with MEC weights, 1,714 (16.2%) were excluded due to 
missing values in some analysis variables, leaving 11,355 for the analysis. The proportion 
of missing cases varied among demographic categories (p < 0.05). For the analysis 
reported in this paper, the data was not reweighted to adjust for the missing values.  
 

3. Statistical Analysis 
 
The statistical analysis was performed using SAS Institute Inc. Cary, NC, USA, software 
versions 9.3 and 9.4. 95% confidence intervals are presented for assessing precision. 
Statistically significant differences, when used, are based on 5% significance levels.  
 
The statistical model assumes the log-transformed blood organic mercury concentration 
is a linear function of transformed usual intake of fish mercury and other predictors. 
However, the NHANES data have organic (methyl) mercury measurements for only the 
most recent release (2011-2012). For all releases the data include measurements of total 
and inorganic mercury. To fit the models, we imputed organic mercury measurements 
and calculated usual intake of mercury from fish for each respondent, creating 20 
imputed data sets. Replicate weights were created using the JK2 method. 
 
The National Cancer Institute (NCI) provides SAS macros for calculating regression 
calibration estimates of transformed usual fish consumption; however, those macros can 
be very slow when using many predictors and may not converge. To complete the 
calculations within a reasonable time, we have used various approximations when 
imputing the organic mercury concentrations and fitting the NCI model. The following 
subsections provide additional details. 
 
3.1 Estimation of Usual Fish Mercury Intake 
For the NCI method, consumption amounts reported in a 24-hour dietary recall are 
assumed to be unbiased estimates of the fish intakes. As a result, the blood mercury is 
assumed to be a function of the long-term arithmetic mean fish mercury intake.  
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Reported 24-hour fish and fish mercury consumption provide imprecise measures of 
usual intake. The two NHANES 24-hour recalls provide the opportunity to estimate the 
magnitude of the measurement error and adjust for the effect of measurement error in 
order to estimate the relationship between usual intake of fish mercury and blood organic 
mercury. The adjustment is based on a statistical model and is reasonable to the extent 
that the model is appropriate for describing the data and the measurement error.  
 
The NCI method models the usual intake for individual 𝑖𝑖 by modeling the probability that 
an individual consumes fish in any 24-hour recall period (𝑃𝑃𝑖𝑖) and modeling the average 
amount of fish (or mercury from fish) consumed in a 24-hour recall period in which some 
fish was consumed ( 𝐴𝐴𝑖𝑖 ). The models have random effects for each individual 
representing variation of an individual’s probability or consumption amounts around the 
predicted population means. The random effects may be independent or correlated. 
Whether an individual consumes fish in a 24-hour recall 𝑟𝑟 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴ℎ𝑖𝑖𝑖𝑖 ) is a binomial 
random variable with probability 𝑃𝑃𝑖𝑖. When fish is consumed in a 24-hour recall, the NCI 
model assumes the transformed amount consumed (𝑇𝑇(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖)) varies around the 
individuals long term mean in the transformed scale (𝑀𝑀𝑖𝑖). In the NCI method, 𝑇𝑇(. ) is a 
Box-Cox transformation. The long-term mean amount consumed is: 
 

𝐴𝐴𝑖𝑖 = 𝑇𝑇−1(𝑀𝑀𝑖𝑖) 𝐸𝐸�𝑇𝑇−1(𝐴𝐴𝑖𝑖𝑖𝑖)� 
 
where 𝐸𝐸�𝑇𝑇−1(𝐴𝐴𝑖𝑖𝑖𝑖)�  is the expected value of the within person random errors in the 
untransformed scale. With this adjustment, the estimated usual intake is an unbiased 
estimate of long-term fish or fish mercury intake. An individual’s usual intake is: 
 

𝑈𝑈𝑖𝑖 = 𝑃𝑃𝑖𝑖𝐴𝐴𝑖𝑖 
 
The usual intake can be used to predict log-transformed blood organic mercury 
concentrations using the following model: 
 

𝐿𝐿𝐴𝐴(𝑂𝑂𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖) = �𝑋𝑋𝑗𝑗𝑖𝑖

J

𝑗𝑗=1

𝛽𝛽𝑗𝑗 + 𝐴𝐴(𝑈𝑈𝑖𝑖)𝛽𝛽𝑈𝑈 + 𝐴𝐴𝑖𝑖 

 
where J is the number of predictors excluding usual intake and 𝐴𝐴(𝑈𝑈𝑖𝑖) is a transformation 
of usual intake.  
 
NCI provides the MIXTRAN macro to fit the probability and amount models and the 
INDIVINT macro to estimate the expected value of the Box-Cox transformed usual 
intake to use in the regression model above. However, the NCI MIXTRAN macro was 
not used because: 
 

1) The calculations for the full model were performed offsite at the NCHS data 
center with time constraints and, with many predictors and data from many 
respondents, the calculations took too long to complete; 
 

2) With many predictors, the algorithms may fail to converge; and 
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3) When using NHANES survey weights and estimating the correlation between the 
random effects, the algorithms sometimes failed to converge. 

 
As a result, we developed a method to approximate the NCI model fit, referred to as the 
EPA method (USEPA, 2014). The EPA method involves the following steps: 
 

1) Fit a logistic regression to predict 𝐿𝐿𝐴𝐴𝑂𝑂𝑖𝑖𝐴𝐴(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴ℎ𝑖𝑖𝑖𝑖) using the NHANES survey 
weights, but without the random effects, and saving the predicted logit values, 𝑌𝑌𝑖𝑖. 
 

2) To estimate the random effects for the probability model, fit the a model with one 
predictor and a random effect for each person (𝛿𝛿𝑃𝑃𝑖𝑖) (note: the intercept is set to 
zero): 
 

𝐿𝐿𝐴𝐴𝑂𝑂𝑖𝑖𝐴𝐴(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴ℎ𝑖𝑖𝑖𝑖) = 𝛿𝛿𝑃𝑃𝑖𝑖 + 𝑌𝑌𝑗𝑗𝑖𝑖𝛽𝛽𝑃𝑃 
 

3) Fit a linear regression to predict 𝑇𝑇(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖)  using the NHANES survey 
weights, but without the random effects, and saving the predicted values, 𝑍𝑍𝑖𝑖. 
 

4) To estimate the random effects for the amount model, fit the following model 
with one predictor and a random effect for each person (𝛿𝛿𝐴𝐴𝑖𝑖) (note: the intercept 
is set to zero and the slope is set to one): 
 

𝑇𝑇(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖) = 𝛿𝛿𝐴𝐴𝑖𝑖 + 𝑍𝑍𝑖𝑖 + 𝐴𝐴𝑖𝑖𝑖𝑖 
 
3.2 Adjusting for Measurement Error 
One approach for adjusting for measurement error is to jointly impute estimates of 
organic mercury and usual intake for each individual using a Bayesian model that models 
the measurement error process. By creating multiple imputed datasets, each with a 
different imputation of usual intake, we can calculate the parameter estimates and 
standard errors adjusted for the uncertainty due to measurement error adjustment and 
imputation (Rubin, 1987). 
 
Regression calibration is another approach for adjusting for measurement error. The NCI 
macros include the INDIVINT macro to calculate the regression calibration estimate of 
Box-Cox transformed usual intake. For an individual’s data, the regression calibration 
estimate is the expected value of the Box-Cox transformed usual intake for that 
individual. The regression calibration estimate of Box-Cox transformed usual intake can 
be written as 𝐴𝐴(𝑈𝑈𝑖𝑖) = 𝑅𝑅𝑅𝑅�𝐵𝐵𝑅𝑅(𝑈𝑈𝑖𝑖 , 𝜆𝜆)�, where 𝜆𝜆 is the parameter for transforming usual 
intake in the model predicting blood mercury. The parameter estimates for transformed 
usual intake should be relatively unbiased if log-transformed blood mercury is a linear 
function of 𝑅𝑅𝑅𝑅�𝐵𝐵𝑅𝑅(𝑈𝑈𝑖𝑖 , 𝜆𝜆)� . Thus, for the full model 𝜆𝜆  was set to 0.7 so that the 
regression parameter for 𝑅𝑅𝑅𝑅�𝐵𝐵𝑅𝑅(𝑈𝑈𝑖𝑖 , 𝜆𝜆)�2, if included in the model, was small and not 
statistically significant. The regression calibration estimate of usual intake using the full 
sample survey weight was used as a predictor when imputing blood organic mercury. 
 
The steps for fitting the regression calibration (R) model are: 
 

• For each replicate weight 𝑤𝑤: 
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− Use the EPA method to fit a weighted model predicting usual intake. 
 
− Calculate regression calibration estimate of transformed usual intake, 

𝑅𝑅𝑅𝑅𝑤𝑤�𝐵𝐵𝑅𝑅(𝑈𝑈𝑖𝑖 , 𝜆𝜆)�, using the NCI INDIVINT macro. 
 

• Impute organic mercury as a function of 𝑅𝑅𝑅𝑅0�𝐵𝐵𝑅𝑅(𝑈𝑈𝑖𝑖 , 𝜆𝜆)� for full sample weight 
and other predictors. 
 

• For each combination of imputed dataset and replicate weight, predict log-
transformed imputed organic mercury as a function of 𝑅𝑅𝑅𝑅𝑤𝑤�𝐵𝐵𝑅𝑅(𝑈𝑈𝑖𝑖 , 𝜆𝜆)�and other 
predictors 
 

• Calculate the parameter covariance for each imputed data set (using the replicate 
weights) and the overall parameters and standard errors across imputed data sets 
(using the SAS MIANALYZE procedure). 

 
The steps when using Bayesian joint imputation (B) are: 
 

• Jointly impute usual intake and organic mercury using an unweighted Bayesian 
model fitting the probability, amount, and mercury models. 
 

• For each combination of imputed dataset and replicate weight, predict log-
transformed imputed organic mercury as a function of transformed imputed usual 
intake and other predictors. 
 

• Calculate the parameter covariance for each imputed data set (using the replicate 
weights) and the overall parameters and standard errors across imputed data sets 
(using the SAS MIANALYZE procedure). 

 
The following sections provide detail on assumptions regarding the distribution of 
reported consumption amounts, methods of imputing the organic mercury concentrations, 
and transformations of usual intake.  
 
3.3 Distribution of Random Effects 
Table 2 describes the four distributional assumptions considered for modeling the 
variance components in the amount model. In all cases, the variance components are 
assumed to be additive in the transformed units. 
 
Table 2: Variance component assumptions 
 

Label Description 
BC After a suitable Box-Cox transformation, the within and between person variance 

components are assumed to be normally distributed. 
SS After a log-transformation, the two components are assumed to have a skew-

normal distribution with common skewness parameter. 
NS After a log-transformation, the between person component is assumed to have a 

normal distribution and the within person component has a skew-normal 
distribution. 

NN After a log-transformation, the two components are assumed to have a normal 
distribution. 
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3.4 Transformations of Usual Intake 
Table 3 shows transformations of usual intake used in different models.  
 
Table 3: Transformations of usual intake 
 

Label Description 
 Q A quadratic function of log-transformed usual intake. 
 B7 A Box-Cox transformation with 𝜆𝜆 = .70. 
 B0 A Box-Cox transformation with 𝜆𝜆 = .01 (the minimum 𝜆𝜆 for INDIVINT).  
 BL A Box-Cox transformation for which 𝜆𝜆 is fit in the Bayesian model. 

 
3.5 Imputation of Organic Mercury 
Measurements of blood organic (methyl) mercury are only available from the most recent 
NHANES survey release (2011-2012). All years have measurements of total (THg) and 
inorganic (IHg) mercury. However, many of the inorganic and a few of the total mercury 
measurements are below the detection limit. Table 4 summarizes three methods that were 
considered for imputing blood organic mercury data for all respondents. Method 4 can 
only be applied if organic mercury (in this case methyl mercury) measurements are 
available for at least some respondents.  
 
Table 4: Methods for imputing blood organic mercury 
 
Imputation 

method 
The imputed value 

estimates: Details 
1 Total mercury 

measurements with 
imputed non-detects 

Non-detects are imputed assuming all measurements 
have a lognormal distribution 
 

2 Approximate imputed 
organic mercury 
measurements 

Non-detects for total and inorganic mercury are 
imputed as in method 1, then 
 

𝐷𝐷𝑖𝑖𝐷𝐷 = 𝑇𝑇𝑂𝑂𝑂𝑂 − 𝐼𝐼𝑂𝑂𝑂𝑂 
 

𝐴𝐴𝑟𝑟𝑂𝑂𝑜𝑜𝐴𝐴𝑖𝑖𝑜𝑜 𝐴𝐴𝐴𝐴𝑟𝑟𝑜𝑜𝐴𝐴𝑟𝑟𝑚𝑚 =
𝐷𝐷𝑖𝑖𝐷𝐷 + �𝐷𝐷𝑖𝑖𝐷𝐷2 + .04

2
 

4 Imputed organic 
mercury true 
concentrations 

Assume the true mercury concentration is the sum of 
the true organic and inorganic mercury concentrations 
and the organic and inorganic concentrations have a 
lognormal distribution. Assume the total, inorganic, 
and organic mercury measurements, after imputing 
non-detects, are equal to the corresponding true 
concentrations with additional multiplicative log-
normally distributed measurement error.  

 
3.6 Models Fit 
Table 5 shows the models that we fit in order to evaluate the sensitivity of the results to 
different modeling assumptions. These models used the most significant predictors of 
those used in the full model. The model designations concatenate labels for the 
measurement error adjustment method, the variance component assumption, the 
imputation method for organic mercury and the transformation for usual intake.  
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Table 5: Models fit to assess sensitivity of the results to the assumed model 
     

Model 
designation 

Transformation 
of amount 

Distribution of variance components Organic 
mercury 

Imputation 
method 

Transformation of 
usual intake Between Person Within Person 

RBC2B0 BC(𝜆𝜆 =.16) Normal Normal 2 BC(𝜆𝜆=.01) 
RBC2B7 BC(𝜆𝜆 =.16) Normal Normal 2 BC(𝜆𝜆 =.70) 
BBC1B7 BC(𝜆𝜆 =.16) Normal Normal 1 BC(𝜆𝜆 =.70) 
BBC1BL BC(𝜆𝜆 =.16) Normal Normal 1 BC(𝜆𝜆 =Fit) 
BBC1Q BC(𝜆𝜆 =.16) Normal Normal 1 Quadratic 
BBC2Q BC(𝜆𝜆 =.16) Normal Normal 2 Quadratic 
BNN1Q Log Normal Normal 1 Quadratic 
BNS1Q Log Normal Skew-normal 1 Quadratic 
BSS1Q Log Skew-normal Skew-normal 1 Quadratic 
BSS2Q Log Skew-normal Skew-normal 2 Quadratic 
BSS4Q Log Skew-normal Skew-normal 4 Quadratic 

 
4. Results 

 
4.1 Relationship between Usual Intake of Fish and Log-transformed Blood 
Organic Mercury 
Figure 1 summarizes the full model fit using the EPA method and regression calibration 
(equivalent to the RBC2B7 model) and all predictors, including region and the coastal 
indicator that are available only at the NCHS computing center. The horizontal axis is 
scaled based on the Box-Cox transformation of usual intake in order to show the linear 
relationships fit in the model. The histogram shows the distribution of usual intake 
derived from the model fit. The slope between usual intake and blood organic mercury 
differs by race/ethnicity and body weight. For this model, non-Hispanic whites are more 
sensitive to fish mercury intake and Mexican Americans are less sensitive, relative to 
other race/ethnicity groups. 
 
Figure 2 illustrates the significant effect of main effects after adjusting for the effects 
related to usual intake. Based on this model, there are significant organic mercury 
concentration differences across time related to survey release date, significant regional 
and coastal differences, and a significant increase in blood organic mercury associated 
with increasing education and increasing hematocrit.  
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Figure 1: Predicted relationship between blood organic mercury and usual fish mercury 
intake after adjusting for other main effects. 
 

 
Figure 2: Predicted relationship between blood organic mercury and main effects after 
adjusting for usual fish mercury intake (only significant relationships are shown). 
 
4.2 Sensitivity of the Model Results to Different Model Assumptions 
The models provide information on characteristics of the data that cannot be directly 
observed, including: the distribution of usual intake, the distribution of organic mercury, 
and the relationship between these two. The following discusses these characteristics for 
the models that were fit. 
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The distribution of imputed usual intake depends in part on whether usual intake is 
imputed jointly with organic mercury. With joint imputation, the relationship between 
usual intake and organic mercury affects the imputation of usual intake. Figure 3 shows 
histograms of imputed log-transformed usual intake for four models which are variations 
on the model fit using all parameters: 
 

• A regression calibration model similar to the full model (RBC2B7) 
 

• A Bayesian joint imputation model that is essentially equivalent to the full model 
(BBC1B7) (it uses total instead of organic mercury) 
 

• A Bayesian joint imputation model in which the Box-Cox transformation 
parameter is fit by the Bayesian model (BBC1BL). The fitted value suggested 
that a log transformation should be used, i.e., 𝜆𝜆=0. 
 

• A regression calibration model with 𝜆𝜆=0.01 (RBC1B0) 
 

The distribution for the regression calibrations models are essentially the same, as 
expected, because the transformation of usual intake when predicting organic mercury 
does not affect the regression calibration estimate of usual intake. The distribution of 
usual intake for the Bayesian BBC1B7 model is similar to that for the regression 
calibration models because 1) the same transformations are used and 2) 𝜆𝜆=.7 was selected 
so that the log-transformed organic mercury concentration is a linear function of 
transformed usual intake. However, when letting the Bayesian model select the best Box-
Cox transformation of usual intake for predicting log-transformed organic mercury, a log-
transformation is selected (𝜆𝜆=0). The distribution of imputed usual intake under this 
model is more normally distributed with a smaller standard deviation.  
 

 
Figure 3: Distribution of imputed usual intake for models closely related to the full 
model. 
 
Figure 4 shows the histograms of imputed usual intake in models with joint imputation of 
usual intake and organic mercury for which the Bayesian model selects of optimal 
quadratic transformation of log-transformed usual intake for predicting log-transformed 
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organic mercury. With joint imputation and a quadratic function, the distributions of 
imputed usual intake are roughly normally distributed. The distribution under the BBC2Q 
model has notably smaller variance for, as yet, unidentified reasons.  
 

 
Figure 4: Distribution of imputed usual intake with joint imputation of organic mercury. 
 
Although the distributions in Figures 3 and 4 differ somewhat in spread and shape, the 
upper percentiles of the distributions are relatively similar. Thus, estimates of upper 
percentiles of usual intake may be relatively insensitive to the modeling assumptions.  
 
The distributions of organic mercury (not shown) are roughly normally distributed with 
similar distributions across models. Thus, the distribution of imputed organic mercury is 
relatively insensitive to the model assumptions. 
 
Figures 5 and 6 show the modeled relationship between usual intake and blood organic 
mercury using different models. As with the full model shown in Figure 1, each 
relationship depends on the race/ethnicity category, more so for some models than others. 
These figures show the average relationship across race/ethnicity groups. If all mercury 
comes from fish consumption and the relationship between usual intake and blood 
mercury concentrations is linear, we would expect that doubling mercury intake would 
result in doubling blood mercury concentrations. This corresponds to a linear relationship 
between log-transformed usual intake and log-transformed blood organic mercury with a 
slope of 1.0. If some mercury comes from other sources, we would expect a slope less 
than 1.0. For reference, the figures show a line with slope = 1.0. The lines for each 
relationship extend from the first to the 99th percentile of the imputed usual intake for that 
model. All the curves shown in the figures are highly significant.  
  
Of particular interest is the effect of different organic mercury imputation methods on the 
relationship between fish consumption and organic mercury. Figure 5 shows the modeled 
relationship for three imputation methods, all assume skew-normal variance components. 
If usual intake is most closely associated with organic mercury (as opposed to total 
mercury, as for the BSS1Q model), we would expect a stronger relationship and a higher 
slope for the relationship between imputed blood organic mercury and usual intake, as for 
BSS2Q and BSS4Q. Those slopes are close to 1.0 and suggest that most organic mercury 
can be attributed to intake of mercury from fish. 
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Figure 5: Relationship between usual intake and blood organic mercury, for different 
methods of imputing organic mercury. 
 
Figure 6 shows the modeled relationship for the four models discussed in Figure 3. The 
full model (RBC2B7) shows a curved relationship between log-transformed blood 
organic mercury and log-transformed usual intake, as does the roughly equivalent 
Bayesian model (BBC1B7). When the Bayesian model fits the parameter for the Box-
Cox transformation or the transformation of usual intake assumes 𝜆𝜆=.01, the resulting 
curves are essentially straight lines (BBC1BL and RBC2B0). The choice of the function 
relating usual intake to organic mercury (quadratic, Box-Cox transformation with a fixed 
or variable parameter) constrains the model that is fit. We are still evaluating the 
alternative functions. 
 

 
Figure 6: Relationship between usual intake and blood organic mercury, for model using 
imputation method 2. 
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The relationships using different variance component assumptions in the amount model 
are relatively similar and are not shown. Additional analysis is needed to evaluate the 
extent to which one set of assumptions is better than another. 
 
Figure 7 compares the parameters for body weight, hematocrit, and survey releases for all 
models. Although the parameters are generally consistent across models, differences are 
larger than expected based on the confidence intervals. In general, blood mercury levels 
are highest in 1999-2000, relatively constant from 2001 to 2010, and a little lower in 
2011-2012. However, specifics regarding trends over time will depend on both model 
assumptions and what trend is being assessed. Although blood mercury is generally 
inversely related to body weight, depending on the model, the slope is not always 
negative or significant. Hematocrit is positively related to blood organic mercury; 
however the slope is not always significant. 
 

 
Figure 7: Main effect parameters and confidence intervals for all models. 
 
Overall measures of model fit are somewhat difficult to construct. The models can be 
easily compared on how the mean imputed usual intake compares to the mean reported 
intake across individuals. However, the distribution of usual intake is skewed to the high 
side and the mean may be sensitive to small changes in the upper tails of the 
distributions. For comparison, the weighted mean intake in the input data is 1.24 
ugHg/day. Another measure is the overall F-test for the weighted regression fit predicting 
organic mercury from usual intake. Higher F values correspond to higher r-squared and a 
better fit. Table 6 shows mean of the log-transformed F-value across all replicate weights 
and the mean of imputed usual intake. The table is sorted from smallest to largest F-value 
(worst to best fit). 
 
Based on the F-tests, the Bayesian joint imputation models fit better than the regression 
calibration model. This might be expected because regression calibration, as a procedure, 
is more general than imputation. Regression calibration provides estimates of usual intake 
that can be used for predicting a linear relationship between usual intake and many other 
dependent variables. On the other hand, the Bayesian joint imputation provides estimates 
of usual intake that are expected to work best when assessing the relationship between 
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variables used in the imputation. This is particularly true when the relationship between 
usual intake and organic mercury is strong, as in this data.  
 
Table 6: Overall measures of model fit sorted from worst to best overall F 
 

Model Mean Ln(Overall F) Mean Imputed usual intake 
    RBC2B0 5.81 1.13 
    RBC2B7 5.91 1.15 
    BBC1B7 6.17 1.10 
    BBC1BL 6.67 1.10 
    BNN1Q 6.83 1.62 
    BBC1Q 6.84 1.07 
    BNS1Q 6.85 0.96 
    BSS1Q 6.94 1.14 
    BSS4Q 7.90 1.04 
    BBC2Q 8.22 1.17 
    BSS2Q 8.32 1.17 
 
Bayesian joint imputation models predicting organic mercury (imputation methods 2 and 
4) fit better than similar models predicting total mercury (imputation method 1). This is 
consistent with the prevailing belief that fish consumption is more closely related to 
blood organic mercury concentrations than to total mercury concentrations.  
 

5. Discussion 
 
For the models considered in this paper, increasing intake of mercury from fish is 
associated with statistically significant increases is blood total and organic mercury 
measurements; although the slope and linearity of the relationship depends on the model 
assumptions. These general results are consistent with previous work. 
 
The analysis in Birch, Bigler, Rogers, ZShuang, and Clickner (2014) used estimated 30-
day mercury intake calculated from the reported number of fish meals in the past 30 days 
and the average weight of fish in those meals estimated from the 24-hour recall data. The 
imputation of organic mercury was similar to imputation method 2 in this paper. 
Although the estimate of fish mercury intake and the list of covariates were different, the 
basic conclusions were similar in that mercury intake was a highly significant predictor 
of blood mercury. The models reported here improve on the previous work by estimating 
long-term “usual” mercury intake from fish using a model which adjusts for measurement 
error. 
 
The analysis reported in Rothenberg et al. (2016) was restricted to respondents that 
consumed fish in the first dietary recall. This subpopulation will have a higher proportion 
of frequent fish consumers than the NHANES population. The analysis used total blood 
mercury measurements as an approximation to organic mercury. Nonetheless, the 
analysis provides useful results and finds a highly significant relationship between recent 
fish mercury intake and blood total mercury measurements. Their analysis used both men 
and women and was not able to use the reported frequency of fish consumption as a 
predictor because it was not available for all respondents in the analysis. The focus of 
their analysis was the relationship between BMI and blood mercury. After adjusting for 
other predictors, they found a negative relationship which is consistent with the generally 
negative relationship we found between body weight and blood mercury.  
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The models fit in these two papers are more different from the model fit using the EPA 
method and regression calibrations than are the Bayesian joint imputation models 
considered in this paper. Differences between the results in this paper and the results in 
other papers or between the various models considered in this paper help to emphasize 
that 1) conclusions about a strong positive relationship between mercury intake from fish 
and blood mercury concentrations are robust, but specific conclusions about more 
marginal predictors depend on the model selection.  
 
Based on the F-tests, when predicting organic mercury from fish consumption, it is better 
to use organic mercury concentrations (whether actual measurements or imputed 
concentrations) than approximate organic mercury with total mercury concentrations. 
When concerned about long-term “usual” intake or fish or fish mercury, the NCI method 
or EPA method can be used. Overall, the Bayesian joint imputation appears to provide 
the best fit. However, fitting the model to impute usual intake and organic mercury and 
fit the subsequent model to predict organic mercury from usual intake is complex and 
very time consuming. The Bayesian model program used for this analysis (the SAS 
MCMC program) also has limitations such that using many more predictors or data from 
many more respondents may not be feasible.  
 
Determining that there is a positive relationship between reported fish consumption and 
blood mercury measurements (whether total or organic mercury) is relatively easy. 
Fitting a model relating usual intake to blood organic mercury concentrations is more 
difficult and requires a theoretical model. We tried several alternative models to assess 
the sensitivity of the results to the model specification. Although there are criteria for 
saying that some models fit better than others, the results are still dependent on 
significant assumptions about the relationships and distributions. With data from more 
than two dietary recalls and organic mercury measurements on all respondents, it may be 
possible to select a generally accepted or preferred model. Until that data is available, 
modellers should recognize that variation among models can be significantly greater than 
implied by the confidence intervals for the parameters.  
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