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Abstract 

The Analysis of Variance (ANOVA) F test is one of the most common statistical methods 
to test group mean equivalence. However, it is sensitive to the violation of the assumption 
of homogeneity of variance. Several alternative tests have been developed in response to 
this problem of the ANOVA F test. These tests can be classified into two groups: tests 
using ANOVA-type approach and tests using Structured Means Modeling (SMM) 
technique. This simulation study examines the performance of fourteen available tests in 
one-factor ANOVA models in terms of their Type I error rate and statistical power under 
comprehensive conditions (total of 48,384), especially, under the violation of the 
assumption of homogeneity of variance. The results show that when the assumption of 
equal variance was satisfied, the ANOVA F test with Ordinary Least Square (OLS) 
excelled the other methods in terms of both Type I error control and power. When the 
homogeneity assumption was violated, the Brown-Forsythe, the SMM with Bartlett, and 
SMM with Maximum Likelihood tests are strongly recommended for the omnibus test of 
group mean equality. 

Key words:  Analysis of variance, Homogeneity, Heterogeneity, Non-normality, Type I 
error control, Statistical power, Structured Means Modeling.  
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1. Introduction 

The traditional analysis of variance (ANOVA) F test is one of the most common 
statistical procedures to test the equality of several independent group means (Tomarken 
& Serlin, 1986). However, the F test is sensitive to violations of the homogeneity of 
variance assumption (Rogan & Keselman, 1977). Several alternative tests (described 
below) have been suggested in response to this problem. Simulation studies have shown 
that these alternatives can control the Type I error rates when data are normally 
distributed and population variances are heterogeneous. However, these tests become 
liberal when data are non-normal and heterogeneous (Fan & Hancock, 2012). 
A different approach that does not require the assumption of the homogeneity of variance 
applies the technique called Structured Means Modeling (SMM). The SMM technique is 
developed from structural equation modeling (SEM) that allows group variances to be 
heterogeneous by freely estimating them. Moreover, various estimation methods robust to 
the violation of normality such as the Asymptotic Distribution Free (ADF) estimation 
(Browne, 1982) are available in addition to the maximum likelihood (ML) estimation in 
SEM (Fan & Hancock, 2012). Fan and Hancock (2012) showed that the SMM based tests 
performed better than ANOVA based tests in term of power and Type I error rate. 
As highlighted in Fan and Hancock’s (2012) study, it is important for applied researchers 
to have guidelines on selecting an appropriate approach for their research scenarios. 
However there was lack of extensive studies that investigate all test statistics for 
between-subject ANOVA. Therefore the purpose of this paper is to examine the 
performance of fourteen available approaches to test the equality of several independent 
group means in terms of type I error control and statistical power under various 
experimental situations. This simulation study includes comprehensive conditions (more 
than 48,000) with numerous design factors that cover a variety of possible research 
situations such as several population shapes, various levels of variance heterogeneity, 
mean patterns, effect sizes, and variance ratios.  

2. Theoretical Framework: Statistical Methods for Testing Mean Differences 

2.1. ANOVA F Test 

The ANOVA F test (also called OLS in this study) is a common statistical method to test 
the equality of several independent group means. The statistic F is defined as: 
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where j = 1, 2, … , J for groups,   ,  ̅  and     are the size, mean and variance of group j, 
respectively and  ̅ is the grand mean. The F statistic follows the F distribution with 
       and       degrees of freedom. 

2.2. Alexander and Govern test 

Alexander and Govern approximation test (Alexander & Govern, 1994) defines a weight 
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For each of J groups, the t statistic is defined as:     
 ̅     

  
. tj is distributed as Student’s 

t with vj (= nj-1) degrees of freedom. Normalizing transformation of tj to get zj by:  
      

       

 
  

                        

                  
   

Where                                  
   ⁄      . zj is used to calculate the A 

statistic by:  
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A is distributed as Chi-square with (J-1) degrees of freedom. 

2.3. Brown-Forsythe (BF) test 

The Brown-Forsythe test (Brown & Forsythe, 1974) is a modification of the ANOVA F 
test:  
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F* has an F-distribution with (J-1) and f degrees of freedom where f is defined by the 
Satterthwaite approximation: 
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2.4. James’ second order test 

The test statistic for James’ test is defined as: 

 

where  and . The obtained value of Q is compared to a 

carefully adjusted critical value of  with (J– 1) degrees of freedom (James, 1951). 

2.5. Welch test 

Welch (1951) proposed a modification of the F test that assumes the populations are 
independent and normally distributed, but does not require equal population variances. 
The test statistic is defined as: 
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2.6. Wilcox test 

The Wilcox method (Wilcox, 1988) was contrasted with James (1951) method. The 
author made an improvement (Wilcox, 1989) in his original test and its modification 
covers the following setting: 
       

 ⁄ , 
   ∑  , 
 ̃  ∑   ̃   ⁄ , 

where i = 1, 2, .... , N for individuals,  ̃           ∑ (  
 

  
)       

    

   
⁄    . The 

null hypothesis is rejected when     ∑    ̃    ̃   exceeds the (1 – α) quantile of a 
chi-square distribution with (J – 1) degrees of freedom. The Wilcox test has been shown 
to result in poor Type I error control if the population grand mean differs from zero 
(Hsiung, Olejnik, & Huberty, 1994). In this study, the test was conducted in both its 
improved formulation (Wilcox, 1989) and after grand mean centering in each sample 
(named as Wilcox 2 in the Results section). 

2.7. Weighted Least Squares (WLS) 

This method weights each observation by the inverse of its variance (Montgomery & 
Peck, 1992): 

 
and then uses generalized least squares to minimize   
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2.8. Structured Mean Modeling (SMM) approach with Maximum Likelihood (ML) 
estimation (SMM with ML) 

When the SMM approach is applied to the between-subject testing of measured variable 
mean equality, indicator x can be expressed as          where    is a p x 1 vector of 
intercept values, δ is a p x 1 vector of normal errors. The null hypothesis is tested by 
constraining population means to be equivalent while still allowing for variances of   to 
be heterogeneous. Estimation within SMM can be handled by using maximum likelihood. 
The FML is the ML fit function. The test statistic TML is a function of FML as TML = (N-1) 
FML, with degrees of freedom equal to Jp(p + 3)/2 - q, where J is the number of groups, 
and q is the number of parameter estimates across all groups. 

2.9. SMM approach with Asymptotic Distribution Free (Adf) estimation (SMM 
with ADF) 

When the variables are continuous but not multivariate normally distributed, Browne 
(1982, 1984) proposed asymptotic distribution free estimation (ADF) for the covariance 
structure and Muthén (1989) expanded ADF including both mean and covariance 
structures.   
Using a Generalize Least Square-type fit function, the ADF fit function is defined as  
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where for each group J,    is the combined vector consisting of p elements of the 
observed means (  ) and p(p+1)/2 elements of the variance covariance matrix (  ),    is 
the model implied counterpart of   , and W represents the ADF weight matrix as an 
estimator of the asymptotic covariance matrix of s. When this fit function is multiplied by 
2n where n is the total sample size, it follows the chi-square distribution with (J -1) 
degrees of freedom. 

2.10. SMM with Bartlett’s correction to the ML test statistic (Bartlett) 

Bartlett (1950) suggested a correction to the ML test statistic which is translated to: 
TBC = (N-p/3-2m/3-11/6) FML, 
with degrees of freedom = Jp* - q; N= total sample size; p= number of observed 
variables, m= group’s observed mean vector; q = number of parameters estimated across 
all groups. 

2.11. Yuan and Bentler 

Yuan and Bentler (1997, 1999) suggested test statistics TYB1 and TYB2 that make 
corrections to TADF for small sample sizes. Specifically, 
     

    

   
    

 

, 

where TADF =(N-1) /FADF ,which follows a central χ2 distribution with the same model 
degrees of freedom as TADF (when H0 is true).  
Their second modification to ADF appeals to the F distribution:  

     
         

            
      

with numerator and denominator degrees of freedom of (Jp* – q) and (N – (Jp* – q)), 
respectively. Both TYB1 and TYB2 are included in this study.  

2.12. Multilevel model with heterogeneous variances 

The SAS procedure PROC MIXED provides an elegant test for mean differences while 
adjusting for unequal variances. This heterogeneous variance solution is obtained with 
the “GROUP =” option on the REPEATED statement (even though a repeated-measures 
design is not used). That is,  

repeated / group=IV; 

where IV is the name of the independent variable.  
For such analyses, the Satterthwaite degrees of freedom estimate should be used. This is 
obtained using the DDFM = SATTERTHWAITE option on the MODEL statement in 
PROC MIXED. 

3. Method 

This study used a simulation approach, which allowed the control and manipulations of 
the design factors. The design factors included: number of groups (four and six groups), 
average number of observations per group (5, 10, and 20 observations per group), sample 
size pattern, variance pattern, mean pattern (equal, progressive, one extreme, and split), 
maximum group variance ratio (1, 4, 8 and 16), effect size (0, .10, .25. and .4), and 
population shape (γ1 = 0.00 and γ2 =0.00, γ1 = 1.00 and γ2 = 3.00, γ1 = 1.50 and γ2 
=5.00, γ1 = 2.00 and γ2 = 6.00, γ1 = 0.00 and γ2 =25.00, and γ1 = 0.00 and γ2 =-1.00, 
where γ1 and γ2 represent skewness and kurtosis, respectively). Non-normal populations 
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were generated by implementing Fleishman’s transformation (Fleishman, 1978). Tables 1 
and 2 show sample size pattern and variance pattern factors, respectively, in detail. There 
were four mean patterns: (1) equal pattern mean where all population means were equal; 
(2) progressive with all population means equally spaced; (3) one extreme where one 
mean differed from the others, (4) split where half the group means were equal to each 
other but different from the other half. 
The performance of the fourteen ANOVA approaches was examined at nominal alpha 
levels: .01, .05, .10. This factorial design had a total of 48,384 (2 x 3 x 7x4 x 3 x 6 x 4 x 
4) conditions.  
Type I error rate control and statistical power were evaluated as the simulation outcomes. 
For Type I error, we further investigated robustness using Bradley’s (1978) liberal 
criterion. This criterion is set at 0.5α around nominal alpha. For instance, a test is 
considered robust when the Type I error rate falls between .025 (= 0.5*.05) and .075 (= 
1.5*.05) at alpha level of .05. Finally, eta-square analyses were conducted to explore the 
significant impacts of design factors on variability in the estimated Type I error. Cohen’s 
(1992) moderate effect size of .05 was set as a cutoff value for eta-square analyses. 

4. Data Sources 

Continuous data for this study were generated using a random number generator, 
RANNOR in SAS/IML statistical software, using a different seed value for each 
execution of the program. For each condition in the simulation, 5,000 samples were 
generated. The use of 5,000 replications provides a maximum standard error of an 
observed proportion (e.g., Type I error rate estimate) of .00158, and a 95% confidence 
interval no wider than ± .003 (Robey & Barcikowski, 1992). 

5. Results 

The simulation results for the performance of all fourteen methods are presented in two 
sections regarding Type I error control and statistical power. In each section, we 
examined these tests under homogeneous conditions (where group variances were equal) 
and heterogeneous conditions (i.e., unequal group variances). Because we observed a 
similar pattern across the three nominal alpha levels (α = .01, .05, and .10), we present 
only the results at the nominal level of .05.  

5.1. Type I Error Rate Estimates with Homogeneous Conditions 

Boxplots were first examined to describe the distributions of Type I error rate estimates 
across all homogeneous conditions at each nominal alpha level. Figure 1 presents the 
boxplots of the rejection rate distributions across all simulation conditions with equal 
variances at the nominal alpha level of .05. Under the homogeneous conditions, the 
ANOVA F test (i.e., OLS) showed the best performance. Among the other approaches, 
BF, Bartlett, and SMM with ML controlled Type I error adequately.  
Table 3 presents the Type I error rates of all methods by three significant design factors. 
Because this study includes many design factors with 48,384 simulation conditions, we 
only present selected design factors that are substantially related to the variability of Type 
I error rates based on the eta-square analysis: method (η2 = .32), method*group size (η2 
= .17), group size (η2 = .11), N-pattern (η2 = .06), and N-pattern*population shape (η2 
= .05). Note that the progressive, split, and one extreme N-patterns did not show a notable 
difference in terms of Type I error rates. Thus, only the equal N- and progressive N-
patterns are presented. Also the average group size of 5 and 20 conditions are contrasted 
in Table 3.  
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As observed in Table 3 and Figure 2, the OLS and BF controlled Type I error around .05 
across all conditions under the homogeneity of variance. On the contrary, the Type I error 
rates of WLS and ADF were almost always above .07. The Wilcox test showed 
reasonable Type I error control only when the group size was balanced (i.e., equal N-
pattern), but did not work for unbalanced groups with the Type I error rates simply 1.00. 
For the SMM methods except the ADF (i.e., Bartlett, ML, YB1, and YB2), the Type I 
error rates were reasonably controlled even with the small group size. However, when the 
distribution was extremely leptokurtic (kurtosis = 25) and the group size was small, the 
Type I error rates were slightly inflated. Of note is that the ADF and corrected ADF (i.e., 
YB1 and YB2) required a minimum group size of 4 for the operation and thus did not run 
when the average group size was 5 and the groups were unbalanced (i.e., progressive, 
split, and one extreme N-patterns; see Table 1). The James, Welch, AG, Wilcox2, and 
Mixed methods failed to control for the Type I error rates when sample size was small 
and the groups were unbalanced. As shown in Figure 3, the Type I error inflation was 
more serious when the population shape was severely nonnormal. 
According to Bradley’s (1978) liberal criterion of robustness, the test is referred to as 
robust if its probability of Type I error falls within the range of .025 and .075 at the 
nominal α level of .05. Table 4 shows the proportion of conditions that satisfied 
Bradley’s liberal criterion for each method at the alpha level of .05. Similar with the 
results presented in Figure 1, the ANOVA F test (OLS) was the most robust with all 
conditions meeting Bradley’s criterion. Following were the BF, Bartlett and ML methods 
with satisfied proportions of nearly 98%, 88%, and 87%, respectively among all 
conditions. Note that for the ADF, YB1 and YB2, all homogeneous conditions including 
missing cases due to small group sizes were included in the computation of the Bradley’s 
proportion (see the full dataset in Table 4). 
In addition, we also examined the Bradley’s robustness of the fourteen methods in the 
dataset without missing conditions (i.e. deleting all conditions where the three 
aforementioned methods did not produce estimates). When the simulated group size was 
at least 4 and the ADF, YB1, and YB2 yielded the Type I error rates, more methods 
demonstrated adequate Type I error control (see the subset of Table 4). Specifically, in 
addition to the OLS, BF, Bartlett, and ML methods, the James, Welch, AG, Wilcox2, and 
YB1 also witnessed acceptable results when the minimum group size was 4. 

5.2. Type I Error Rate Estimates with Heterogeneous Conditions 

Under the heterogeneous conditions, the OLS method showed poor performance as 
expected. The BF, Bartlett and ML provided the best overall Type I error control as 
shown in Figure 4. 
The eta-square analysis showed that variation in the Type I error rates was associated 
with the method (η2 = .20), method and group size interaction (η2 = .12), group size (η2 = 
.11), method and variance pattern interaction (η2 = .07), variance pattern (η2 = .06), and 
population shape (η2 = .06). As observed in the homogeneous conditions, larger group 
size improved the Type I error control notably for some tests such as James, WLS, 
Welch, AG, Wilcox2, ADF, and Mixed (see Figure 5). Overall, the impact of variance 
pattern depended on group size as well as method (see Table 5). When the large variance 
was associated with the small groups (i.e., reversed variance patterns), Type I error was 
remarkably inflated. However, the best performing methods (i.e., Bartlett, ML, and BF) 
controlled Type I error around .05 across variance patterns. In addition, when groups 
were balanced (i.e., equal group size), all the tests but OLS, WLS, and ADF showed 
adequate Type I error on average. Similar to the homogeneous variance conditions, as the 
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population shape departed from the normality, the Type I error inflation was more 
serious.     
As shown in Figure 5, the Type I error rates of WLS and ADF were substantially high 
across all simulation conditions of heterogeneous variance. Similarly, the ANOVA F test 
(OLS) showed poor performance in controlling for Type I error: over control (or being 
conservative) when the large groups had the large variance and under control (or being 
liberal) when the large groups had the small variance. This phenomenon became more 
serious as the variance disparity across groups increased. In general, the SMM methods 
except the ADF showed adequate Type I error control on average. Particularly, the 
Bartlett and ML outperformed the other robust ANOVA tests. However, even these best 
performing methods yielded inflated Type I error rates when the population shape was 
severely nonnormal (i.e., skewness = 2, kurtosis =6 and skewness = 0, kurtosis = 25) in 
combination with the reversed variance patterns (i.e., the large group with the small 
variance). Again, the ADF, YB1, and YB2 did not run when the average group size was 5 
and the groups were unbalanced because at least one group size was below 4. For the 
Wilcox, the Type I error rates were near or just 1.00 when the groups were unbalanced. 
Following the Bartlett and ML, the BF controlled Type I error adequately, but showed 
increased Type I error rates (.08 ~ .22) when the variance heterogeneity was severe with 
the one extreme or one extreme inversely pattern (16:1 or 1:16), the group size was small, 
and the distribution was nonnormal. For the James, Welch, AG, and Wilcox2, the Type I 
error rates increased even under the normality if the groups were unbalanced with a small 
group size. Among these robust ANOVA tests, the James performed slightly better than 
the others. 
Finally, the proportions of simulation conditions with heterogeneous variances meeting 
the Bradley’s criterion for Type I error rate are presented in Table 6. The SMM with 
Bartlett test showed the best performance (.85) followed by the SMM with ML (.83) and 
the BF (.78). Excluding the conditions in which the ADF, YB1, and YB2 did not yield 
the results of Type I error (i.e., the average group size was 5 and the groups were 
unbalanced), we observed notable improvement in Type I error control within the 
Bradley’s liberal criterion for all the methods except that the BF kept the same high 
proportion. In addition to three aforementioned methods, the James, Welch, AG, 
Wilcox2, and SMM with YB1 had the improved proportions of .73 or higher that met the 
Bradley’s criterion. Particularly, for the Wilcox2 test the proportions of simulation 
conditions meeting the Bradley’s liberal criterion increased substantially from .62 to .81.  

5.3. Statistical Power with Homogeneous and Heterogeneous Conditions 

Statistical power was estimated for the methods that provided adequate Type I error 
control across most conditions. Therefore, the ANOVA F (OLS), BF, SMM with Bartlett, 
and SMM with ML methods were included in the power analysis under homogeneous 
conditions; the BF, SMM with Bartlett, and SMM with ML methods were included under 
heterogeneous conditions. Figure 6 presents the boxplots of power estimates under 
homogeneous conditions. The OLS, BF, Bartlett, and ML all had relatively low power on 
average (.28, .26, .26, and .27, respectively), with substantial variations within each 
method.  

The variations in power estimates were attributable to effect size (       , group size 
(       , effect size*group size (         and mean pattern (       , based on eta-
square analyses. Table 7 presents power estimates by three significant design factors 
independently and Figure 7 shows the impact of the interaction between effect size and 
group size on power estimates. Power estimates of all four methods increased 
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substantially as effect size increased and with large effect size (.40), power estimates 
reached .46-.51. Larger group size would also lead to greater power estimates (e.g., .14, 
.26, and .43 for group size 5, 10, and 20, respectively for OLS). Power estimates were 
much higher when the mean pattern is partial null (.34-.36 for four methods), compared 
with progressive (.18-.19) and multiple null (.26-.28) mean patterns. The significant role 
of effect size and group size was further supported by variations in power estimates due 
to their interaction effect, as shown in Figure 7. When effect size was .40 and group size 
was 20, power estimates were the highest (.75-.77 for four methods). With effect size of 
.25 and group size of 20 or effect size of .40 and group size of 10, power estimates 
reached between .40 and .50, whereas power was close to or below .20 for all other 
conditions.   
Figure 8 shows the boxplots of power estimates under heterogeneous conditions. Similar 
to results under homogeneous conditions, on average powers of BF, Bartlett, and ML 
were all relatively low (.26, .26, and .27, respectively). Substantial variations in power 
estimates were observed as well. Based on eta-square analyses results, effect size 
(       , group size (       , effect size*group size (       , and mean pattern 
(        were associated with variation in power estimates across all three methods.  
As presented in Table 8, similar to the pattern identified under homogeneous conditions, 
larger effect size and group size would lead to higher power estimates and the partial null 
mean pattern yielded the highest power among all mean patterns. Comparing Tables 7 
and 8, we found that power estimates were slightly higher under heterogeneous 
conditions than homogeneous conditions (e.g., .10, .30, and .52 versus .08, .24, and .46 
under effect size of .10, .25, and .40 for Bartlett). Not surprisingly, the combination of the 
largest effect size (.40) and the largest group size (20) yielded the highest power for BF 
(.74), Bartlett (.79), and ML (.79), as shown in Figure 9.  

6. Discussion 

This study investigated the performance of the fourteen robust ANOVA tests under 
various simulation conditions. In addition to the traditional robust ANOVA (i.e., 
ANOVA-based) tests, this study examined the performance of structured means 
modeling with different types of estimation methods. As found in Fan and Hancock 
(2012), the SMM methods except with the ADF performed relatively well compared to 
the ANOVA-based methods. Interestingly, among the SMM tests, the ML and its 
correction (i.e., Bartlett) outperformed the ADF and its corrections (i.e., YB1 and YB2). 
Although the assumption of normality underlies the ML, this study showed that the ML 
was fairly robust to the violation of this assumption. Thus, if the assumption was not 
severely violated, the ML controlled for Type I error reasonably. Even in the case of 
severe nonnormality, the performance of ML was not worse than that of many other 
methods. Consistent with the findings of Nevitt and Hancock (2004), the SMM with the 
Bartlett correction led to better Type I error control than the SMM with the ML 
estimation and performed best among the fourteen methods, particularly in small samples 
under the heterogeneity of variance.      
It was somewhat surprising that the SMM with the ADF estimation failed to control for 
Type I error even with homogeneous variance conditions. Because the SMM with the 
ADF estimation does not assume the normality of the outcome variable, superior 
performance of the ADF was expected under nonnormality (West, Finch, & Curran, 
1995). However, the ADF showed high Type I error rates across simulation conditions in 
this study. Because the ADF requires a large sample for the inverse of the weight matrix 
(Curran, West, & Finch, 1996), this estimation method is possibly unfeasible with small 
samples such as what we investigated in this study (i.e., maximum average group size of 
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20). As suggested in the literature (e.g., Nevitt & Hancock, 2004; Yuan & Bentler, 1997), 
the two corrected estimation methods of the ADF for small samples (i.e., the YB1 and 
YB2) showed notably improved Type I error control. The YB1 slightly outperformed the 
YB2 across simulation conditions. Applied researchers using the SMM with ADF, YB1, 
and YB2 to test the group mean equality should be aware that these methods require at 
least 4 observations for each group.  
Among many simulation factors examined in this study, the group size emerged as a 
primary factor related to the variability of Type I error and power rates. Generally, the 
increase of group size led to better control of Type I error, but the impact of group size on 
Type I error depended on the methods. For the well-performing methods such as the 
Bartlett, ML, and BF with both homogeneous and heterogeneous conditions and the OLS 
with homogeneous conditions, the Type I error rates were around the nominal level on 
average regardless of group size. On the other hand, for the other methods, as the group 
size increased, the Type I error rates were better controlled. Especially, the Type I error 
control of Wilcox2 improved notably in large samples and was comparable to that of the 
aforementioned well-performing methods.  
Under the heterogeneous conditions, we observed the interaction effect between variance 
pattern and sample size pattern on Type I error rates, which is well recognized as positive 
paring and negative paring in the ANOVA literature (e.g., Harwell et al., 1992; Lix et al., 
1996). This interaction was more evident with the ANOVA F test (OLS) as the variance 
heterogeneity increased. That is, when the large group had the small variance (negative 
pairing), the tests in general became liberal yielding inflated Type I error rates. When the 
relation between variance and sample size patterns was reversed (i.e., large group with 
large variance or positive pairing), the OLS test became slightly conservative showing 
over control of Type I error. We also confirmed that when group sizes were equal, Type I 
error was notably better controlled. Thus, in many robust tests Type I error rates were 
around the nominal level under balanced conditions even with heterogeneity of variance 
(Boneau, 1960). Thus, it is recommended that applied researchers pay attention to the 
paring of group size and variance when comparing means across groups.  
In summary, when homogeneity of variance was satisfied, the ANOVA F test using OLS 
excelled the other methods in terms of both Type I error control and power. Because the 
Type I error rates of OLS were not affected by the other design factors showing all 
conditions (100%) meeting the Bradley’s liberal  criterion even under the severe 
nonnormality and with unbalanced groups, this test should be a choice when the 
variances are equal across groups. When homogeneity of variance was violated, the BF 
and the SMM with Bartlett or ML are strongly recommended for the omnibus test of 
group mean equality. When the group size is large (at least 4 per group in this study or 
average group size 10 or above), the Wilcox2 test followed by the James’ second-order 
test can also be considered. However, it should be noted that even these best performing 
tests yielded inflated Type I error rates when the distribution was severely nonnormal 
under heterogeneity of variance although the Type I error rates of the Bartlett, ML, and 
BF were still lower than those of the other methods. It should also be noted that for many 
tests except the well-performing methods even with homogeneous conditions, 
nonnormality resulted in the increase in Type I error rates over the upper limit of the 
Bradley’s liberal criterion. Also, applied researchers should keep in mind that the 
maximum group size of this study was 20 and the performance of some methods could 
improve with larger group sizes (e.g., the SMM with ADF-based estimation methods).   
Because homogeneity of variance is an important factor in the choice of an optimal test 
for the equality of group means, we suggest a conditional test of group means. That is, if 
the assumption of homogeneous variance is met, the ANOVA F test (OLS) is selected 
whereas the SMM with Bartlett, the SMM with ML, or BF is employed if the assumption 
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is violated. However, future research is called for to examine the performance of this 
conditional test. As a final remark, we reiterate what the robust ANOVA literature has 
found so far: no one test fits all (Lix et al., 1996). Thus, it is strongly recommended that 
researchers understand their data such as the degree of nonnormality, severity of 
heterogeneity, and paring with group size for an informed decision of optimal tests for 
independent means tests (Lix et al., 1996).   
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Tables and figures 
Table 1 
 Sample Size Patterns  

Sample Sizes 

 Progressive N  Equal N  Split N  One Extreme 

K=6                
1 2   5 10  5 10 20  2 5 10  3 6 12 
2 3   7 14  5 10 20  2 5 10  3 6 12 
3 4   9 18  5 10 20  2 5 10  3 6 12 
4 6  11 22  5 10 20  8 15 30  3 6 12 
5 7  13 26  5 10 20  8 15 30  3 6 12 
6 8  15 30  5 10 20  8 15 30  15 30 60 
Average N 5  10 20  5 10 20  5 10 20  5 10 20 
K=4                
1 2   7 14  5 10 20  2 5 10  3 6 12 
2 4   9 18  5 10 20  2 5 10  3 6 12 
3 6  11 22  5 10 20  8 15 30  3 6 12 
4 8  13 26  5 10 20  8 15 30  11 22 44 
Average N 5  10 20  5 10 20  5 10 20  5 10 20 

Note. K=number of groups, Progressive N = progressive increase of sample size, Split 
N=half of groups has the same sample size.  

Table 2 
 Variance Patterns  
Population Variances 
 Progressive  Split  One Extreme          Equal 
Max 
Variance 
Ratio 

1:4 1:8 1:16  1:4 1:8 1:16  1:4 1:8 1:16  1:1 

K=6              
1 1 1 1  1 1 1  1 1 1  1 
2 1.6 2.4 4  1 1 1  1 1 1  1 
3 2.2 3.8 7  1 1 1  1 1 1  1 
4 2.8 5.2 10  4 8 16  1 1 1  1 
5 3.4 6.6 13  4 8 16  1 1 1  1 
6 4 8 16  4 8 16  4 8 16  1 
K=4              
1 1 1 1  1 1 1  1 1 1  1 
2 2 3.3 6  1 1 1  1 1 1  1 
3 3 5.7 11  4 8 16  1 1 1  1 
4 4 8 16  4 8 16  4 8 16  1 

 
(Cont’d)  

Population Variances 

 Progressive 
Inversely  Split Inversely  One Extreme 

Inversely 

Max 4:1 8:1 16:1  4:1 8:1 16:1  4:1 8:1 16:1 
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Variance 
Ratio 
K=6            
1 4 8 16  4 8 16  4 8 16 
2 3.4 6.6 13  4 8 16  1 1 1 
3 2.8 5.2 10  4 8 16  1 1 1 
4 2.2 3.8 7  1 1 1  1 1 1 
5 1.6 2.4 4  1 1 1  1 1 1 
6 1 1 1  1 1 1  1 1 1 
K=4            
1 4 8 16  4 8 16  4 8 16 
2 3 5.7 11  4 8 16  1 1 1 
3 2 3.3 6  1 1 1  1 1 1 
4 1 1 1  1 1 1  1 1 1 
Note. For example, “Progressive” means that the population variances increased in a 
progressive way among groups. “Progressive Inversely” refers to the same variance 
patterns as in “Progressive” but in the reverse group order.  
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Table 3 
Type I Error Rates of Fourteen Robust ANOVA Tests by Selected Simulation Factors with Homogeneous Conditions at Nominal Alpha of .05 

Shape Group 
size  

N-pattern Test 

   OLS James WLS BF Welch AG Wilcox Wilcox2 ADF BAR ML YB1 YB2 Mixed 
(0,0) 5 Equal .05 .05 .13 .04 .06 .05 .05 .05 .12 .03 .04 .04 .06 .07 
  Progress .05 .09 .24 .05 .11 .11 1.00 .13 . .04 .05 . . .13 
 20 Equal .05 .05 .07 .05 .05 .05 .04 .04 .06 .04 .04 .04 .05 .05 
  Progress .06 .06 .08 .05 .06 .06 1.00 .04 .07 .05 .05 .05 .06 .07 
(1,3) 5 Equal .05 .04 .12 .04 .04 .04 .04 .04 .11 .02 .03 .03 .05 .05 
  Progress .05 .07 .22 .04 .08 .09 1.00 .10 . .04 .04 . . .10 
 20 Equal .05 .05 .07 .05 .05 .05 .04 .04 .07 .05 .05 .05 .05 .06 
  Progress .05 .05 .07 .04 .05 .05 1.00 .04 .07 .04 .05 .05 .05 .06 
(1.5, 5) 5 Equal .04 .04 .12 .03 .04 .05 .04 .04 .11 .02 .03 .03 .05 .06 
  Progress .05 .07 .22 .04 .09 .09 1.00 .11 . .03 .04 . . .11 
 20 Equal .05 .05 .07 .04 .05 .05 .04 .04 .06 .04 .04 .04 .05 .05 
  Progress .05 .06 .08 .05 .06 .06 1.00 .05 .08 .05 .05 .06 .06 .07 
(2,6) 5 Equal .04 .05 .14 .02 .05 .06 .05 .05 .13 .04 .05 .04 .06 .06 
  Progress .05 .10 .27 .04 .12 .15 1.00 .14 . .07 .08 . . .14 
 20 Equal .04 .06 .08 .04 .06 .06 .05 .05 .08 .06 .06 .06 .06 .07 
  Progress .05 .07 .10 .04 .07 .07 1.00 .06 .09 .06 .07 .07 .07 .08 
(0, 25) 5 Equal .05 .08 .17 .04 .09 .09 .09 .09 .17 .06 .07 .07 .10 .11 
  Progress .05 .17 .33 .05 .19 .20 1.00 .21 . .10 .11 . . .21 
 20 Equal .05 .05 .07 .05 .05 .05 .04 .04 .07 .05 .05 .05 .05 .06 
  Progress .05 .05 .07 .05 .05 .05 1.00 .04 .07 .05 .05 .05 .06 .06 
(0, -1) 5 Equal .06 .07 .16 .05 .08 .07 .08 .08 .15 .05 .06 .06 .09 .09 
  Progress .05 .12 .28 .05 .14 .15 1.00 .17 . .06 .07 . . .16 
 20 Equal .05 .05 .07 .05 .05 .05 .04 .04 .07 .05 .05 .05 .05 .06 
  Progress .05 .05 .08 .05 .06 .05 1.00 .04 .07 .05 .05 .05 .06 .06 

Note. The Type I error rates meeting the Bradley’s criterion are in bold. Progress = Progressive sample size pattern. 
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Table 4 
Proportions of Homogeneous Conditions that Meet Bradley’s Liberal Criteria 

Test OLS James WLS BF Welch  AG Wilcox Wilcox2 ADF Bartlett ML YB1 YB2 Mixed 
Full 
dataset 

1 .75 .13 .98 .67 .63 .24 .71 .19 .88 .87    .61 .52 .57 

Subset 1 .85 .17 .99 .83 .80 .32 .93 .25 .92 .92 .81 .69 .69 
 
Table 5 
Type I Error Estimates by Variance Pattern and Sample Size Pattern with Heterogeneous Conditions  

 Test 
OLS James WLS BF Welch AG Wilcox Wilcox2 ADF BAR ML YB1 YB2 Mixed 

Variance pattern 
Extreme  .05 .06 .14 .07 .07 .07 .76 .07 .09 .05 .05 .06 .07 .07 
Split .04 .07 .14 .06 .07 .07 .76 .07 .10 .05 .05 .06 .07 .07 
Progress .03 .07 .14 .05 .07 .07 .76 .07 .10 .05 .05 .06 .07 .08 
Extreme-R .17 .08 .17 .09 .09 .09 .76 .10 .11 .05 .06 .07 .08 .09 
Split-R .20 .10 .19 .06 .11 .10 .76 .12 .12 .06 .07 .08 .09 .10 
Progress-R .14 .09 .19 .05 .10 .11 .76 .12 .12 .06 .07 .08 .09 .10 
N-pattern               
Equal .08 .06 .11 .06 .07 .06 .06 .06 .11 .05 .05 .06 .07 .07 
Extreme .11 .08 .18 .06 .09 .09 1.00 .09 .11 .06 .06 .08 .09 .08 
Split .13 .09 .21 .07 .10 .11 1.00 .13 .11 .06 .06 .08 .09 .09 
Progress .10 .08 .16 .07 .09 .09 .99 .09 .09 .05 .06 .06 .07 .09 

Note. The Type I error rates meeting the Bradley’s criterion are in bold. Extreme-R=One Extreme Inversely,  
Split-R = Split Inversly, and Progress-R = Progress Inversely (see Table 2 for more details) 
 
 
 
Table 6 
Proportions of Conditions that Meet Bradley’s Liberal Criteria (Heterogeneous Conditions) 

Test OLS James WLS BF Welch  AG Wilcox Wilcox2 ADF Bartlett ML YB1 YB2 Mixed 
Full 
dataset 

.34 .66 .12 .78 .60 .62 .20 .62 .17 .85 .83 .55 .45 .58 

Subset .37 .77 .15 .78 .73 .76 .27 .81 .22 .89 .87 .73 .60 .68 
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Table 7 
Power Estimates by Effect Size, Group Size, and Mean Pattern 

 Effect Size Group Size Mean Pattern 
 .10 .25 .40 5 10 20 Progressive Partial 

Null 
Multiple 
Null 

OLS .07 .25 .51 .14 .26 .43 .18 .36 .28 
BF .07 .24 .47 .12 .25 .42 .18 .34 .27 
Bartlett .08 .24 .46 .12 .24 .43 .18 .35 .26 
ML .09 .26 .48 .14 .26 .43 .19 .36 .28 

Note. OLS = ANOVA F test using ordinary least squares; BF = Brown-Forsythe; Bartlett = structured 
mean modeling approach with Bartlett estimation; ML = structured mean modeling approach with 
maximum likelihood estimation; Progressive = all means equally spaced; Partial Null = one extreme 
mean differing from the others; Multiple Null = half group means were equal but different from the other 
half. 

 
Table 8 
Power Estimates by Effect Size, Group Size, and Mean Pattern 

 Effect Size Group Size Mean Pattern 
 .10 .25 .40 5 10 20 Progressive Partial 

Null 
Multiple 
Null 

BF .09 .24 .46 .13 .25 .42 .18 .34 .27 
Bartlett .10 .30 .52 .15 .30 .48 .22 .40 .31 
ML .11 .32 .54 .17 .31 .48 .23 .41 .32 

Note. BF = Brown-Forsythe; Bartlett = structured mean modeling approach with Bartlett estimation; ML 
= structured mean modeling approach with maximum likelihood estimation; Progressive = all means 
equally spaced; Partial Null = one extreme mean differing from the others; Multiple Null = half group 
means were equal but different from the other half. 
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Figure 1. Distributions of Type I error estimates of the fourteen ANOVA tests under homogeneous 
conditions 

 
Figure 2. Type I error rates of the fourteen ANOVA tests by group size under homogeneous 
conditions. For the Wilcox test, only the balanced group conditions (N-pattern = 1) were included 
because the Type I error rates of Wilcox were 1.00 when the groups were unbalanced.   
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Figure 3. Distributions of Type I error rates of the fourteen ANOVA tests by population shape 
 

 
Figure 4. Distributions of Type I error estimates of the fourteen ANOVA tests under heterogeneous 
conditions  
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Figure 5. Type I error rates of the robust ANOVA tests by group size under heterogeneous conditions. 
For the Wilcox test, only the balanced group conditions (N-pattern = 1) were included because the Type I 
error rates of Wilcox were 1.00 when the groups were unbalanced. 

 
 

Figure 6. Boxplots of power estimates under homogeneous conditions. OLS = ANOVA F test using 
ordinary least squares; BF = Brown-Forsythe; BAR = structured mean modeling approach with Bartlett 
estimation; ML = structured mean modeling approach with maximum likelihood estimation. 
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Figure 7. Power estimates by effect size and group size. OLS = ANOVA F test using ordinary least 
squares; BF = Brown-Forsythe; Bartlett = structured mean modeling approach with Bartlett estimation; 
ML = structured mean modeling approach with maximum likelihood estimation; ES = effect size; nj = 
group size. 
 

       

Figure 8. Boxplots of power estimates under heterogeneous conditions 
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Figure 9. Power estimates by effect size and group size. BF = Brown-Forsythe; BARTLETT = structured 
mean modeling approach with Bartlett estimation; ML = structured mean modeling approach with 
maximum likelihood estimation; ES = effect size; nj = group size.  
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