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Abstract

The presence of outliers in the Small Area Estimation (SAE) raises serious concerns
in the design-based part of population parameters prediction due to the violation of
model-based assumptions. Various techniques have been introduced to mitigate the
effect of outliers in the unit-level and area-level models in the SAE in the literature.
In this paper, we introduced the square root transformation into the mixture models
from [9, 10] in order to deal with those outliers and estimate the total number of
employees in the Annual Survey of Public Employment & Payroll (ASPEP) data.
We then compared our research method to the existing methods being used in the
estimation of the ASPEP at the Census Bureau. The two Public Employment census
data of 2007 and 2012 were used for the evaluation of this research.
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1. Introduction

There has been growing interest among researchers and practitioners in applying
SAE to survey sampling. Small area (or domain) refers to populations for which
sampling rates are small due to observational limitations. SAE provides reliable es-
timates by using both the survey data and auxiliary sources. There are many small
area estimators available in the literature. These estimators typically use either
implicit or explicit models to combine survey data with various administrative and
Census records. The properties of such model-based estimators rely on assumptions
applied to simulated data. There may be observations that carry important infor-
mation in real data that cannot be ignored. However these observations would not
be described appropriately by modeling assumptions. Recent advanced methods in
SAE litterature (Fellner [7], Chambers et al. [4], Sinha and Rao [13], Gershunskaya
and Lahiri [9, 10]) provide estimates that are robust to the existence of outliers. An
estimator is robust if it provides good estimates even if some of the assumptions
used to justify the estimation method are not applicable.

−−−−−−−−−−−−−
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The ASPEP survey is designed to produce reliable estimates of statistics on the
number of federal, state, and local government civilian employees and their gross
payroll each month at the national level and for large domains. However, it is also
required to estimate the parameters for individual function codes within each state.
This requirement leads us to explore SAE methodology that borrows strengths from
previous Census data instead of collecting expensive additional data for small cells.

The purpose of this study is to apply SAE methodology to improve the estimates
when outliers exist. We will explore the method of using models that are based
on scale mixtures of two normal distributions [9, 10] to produce robust estimation
for the ASPEP parameters in different areas. The models used the ASPEP data
and auxiliary information from the preceding Census of Government Employment.
This report is organized as follows: In Section 2, we summarize the algorithm for
obtaining N2 and N2+OBC estimations proposed by Gershunskaya and Lahiri [9, 10].
Section 3 describes the application of this method where we introduced the square
root transformation to the ASPEP data in order to provide the estimators of the
total full-time employment for different government functions in California. Then
we compare the relative root mean square errors (RRMSE) of the N2 and N2+OBC
estimations and those of Horvitz-Thompson (HT) and of the empirical best linear
unbiased predictor (EBLUP) used in ASPEP’s production.

2. Estimation method

In this section, we briefly describe the N2 and N2+OBC robust estimators. (Readers
interested in more details are referred to Gershunskaya and Lahiri [9, 10])

N2 and N2+OBC estimators

Let ymj denote the population of the jth unit within the mth area. We are

interested in estimating the total population Ym =
Nm

Σ
j=1

ymj ; m = 1, ...,M (Nm:

number of units of the mth area; M : number of areas). An estimator of Ym is given
by:

Ŷm = Nm[fmym + (1− fm)Ŷ mr], (0.1)

where ym =
ym
nm : the sampled population mean; ym =

nm

Σ
j=1

ymj : the sampled

population; fm = nm
Nm

: the sampling rate; nm: the sample size; and Ŷ mr: a

predictor of the mean of the non-sampled part of the mth area.

Simplifying (0.1) we have:

Ŷm = ym + Ŷmr, (0.2)

where Ŷmr is a predictor of the total of the non-sampled part of the mth area.
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N2 Estimator

The predictor Ŷmr can be derived from a linear mixed model (denoted N2) that
is based on a scale mixture of two normal distributions with common mean and
different variances. The model is given by (0.3)-(0.5):

ymj = xTmjβ + um + εmj , j = 1, ..., nm, m = 1, ...,M, (0.3)

um
iid∼ N (0, τ2), εmj | z

iid∼ (1− z)N (0, σ21) + zN (0, σ22), (0.4)

um
iid∼ N (0, τ2), z|π ∼ Bin(1;π), σ2 > σ1. (0.5)

where xmj is a vector of auxiliary variables for an observation mj; β is the vector
of regression parameters associated with the vector xmj of auxiliary variables; um
are random effects; εmj are errors in individual observations. The random variables
um and εmj are assumed to be mutually independent. The mixture part indicator
is a random binomial variable z|π ∼ Bin(1;π) where π is the probability of the
observation belonging to mixture part 2.

Step 1: Estimating the model parameters using the EM algorithm:

Let θ(p) = (σ
(p)
1 , σ

(p)
2 , τ (p), π(p),β(p)) be a set of parameter values after the pth iter-

ation. At the (p+ 1)th iteration, compute:

E-step:

z
(p+1)
mj =

1−π(p)√
σ
(p)2
2 +τ (p)2

exp

[
− (ymj−xT

mjβ
(p))2

2(σ
(p)2
2 +τ (p)2)

]
π(p)√

σ
(p)2
1 +τ (p)2

exp

[
− (ymj−xT

mjβ
(p))2

2(σ
(p)2
1 +τ (p)2)

]
+ 1−π(p)√

σ
(p)2
2 +τ (p)2

exp

[
− (ymj−xT

mjβ
(p))2

2(σ
(p)2
2 +τ (p)2)

]

w
(p+1)
mj =

1− z(p+1)
mj

σ
(p)2
1

+
z
(p+1)
mj

σ
(p)2
2

(0.6)

y(p+1)
m = (

nm

Σ
j=1

w
(p+1)
mj ymj)/

nm

Σ
j=1

w
(p+1)
mj (0.7)

x(p+1)
m = (

nm

Σ
j=1

w
(p+1)
mj xmj)/

nm

Σ
j=1

w
(p+1)
mj

V (p+1)
m = 1/(

nm

Σ
j=1

w
(p+1)
mj +

1

τ (p)2
)

u(p+1)
m = V (p+1)

m (y(p+1)
m − x(p+1)T

m β(p))
nm

Σ
j=1

w
(p+1)
mj (0.8)
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M-step

π(p+1) = (
M
Σ
m=1

nm

Σ
j=1

z
(p+1)
mj )/n

σ
(p+1)2
1 =

M
Σ
m=1

nm

Σ
j=1

(1− z(p+1)
mj )

[
(ymj − xTmjβ

(p) − u(p+1)
m )2 + V

(p+1)
m

]
M
Σ
m=1

nm

Σ
j=1

(1− z(p+1)
mj )

σ
(p+1)2
2 =

M
Σ
m=1

nm

Σ
j=1

z
(p+1)
mj

[
(ymj − xTmjβ

(p) − u(p+1)
m )2 + V

(p+1)
m

]
M
Σ
m=1

nm

Σ
j=1

z
(p+1)
mj

τ (p+1)2 = (
M
Σ
m=1

u(p+1)2
m + V (p+1)

m )/M

β(p+1) =

M
Σ
m=1

nm

Σ
j=1

w
(p+1)
mj xmj(ymj − u(p+1)

m )

M
Σ
m=1

nm

Σ
j=1

w
(p+1)
mj xTmjxmj

. (0.9)

Step 2: The predictor of Ymr is given by

Ŷ
N2

mr = xTmrβ̂
N2 + (Nm − nm)ûN2

m (0.10)

where β̂N2, ûN2
m are computed from the EM algorithm; and xTmr =

Nm

Σ
j=nm+1

xTmj .

Step 3: The estimate of Ym is Ŷ
N2

m = ym + Ŷ
N2

mr .

N2+OBC estimator (N2 with Overall Bias Correction)

The assumptions about the distribution of the random effects um and the error
terms εmj may be over-specified. The influence of the outlying areas or outlying
units on the estimates of model parameters can be reduced by using a bounded
Huber’s function, φb(r) = min(b,max(−b, r)), for the corresponding residual terms
(Fellner [7], Huber and Ronchetti [11]).

Let eN2
mj = ymj − xTmjβ̂

N2 − ûN2
m . The overall bias-corrected estimate (of Ymr) is

given by

ŶN2+OBC
mr = ŶN2

mr + (Nm − nm)

sR
M
Σ
m=1

nm

Σ
j=1

φb(e
N2
mj/s

R)

n
, (0.11)

where m = 1, ...M ; j = 1, ..., nm; φb is the bounded Huber’s function with tuning

parameter b = 5; and sR =
med|eN2

mj−med(eN2
mj )|

0.6745 is a robust measure of scale for the set
of residuals eN2

mj .
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RRMSE

To assess the quality of the estimators, we used the relative root mean squared error,

RRMSE = 100

√
1
rep

rep

Σ
k=1

( Ŷm.k−Ym
Ym

)2, where Ŷm.k is the estimate of Ym (the population

total of area m from the kth replicate).

3. Application to ASPEP data

The U.S. Census Bureau conducts Censuses of about 90,000 state and local govern-
ment units every five years in order to collect data on the number of full-time and
part-time state and local government employees and payroll. Between two consec-
utive Censuses (years ending with 2 and 7, e.g., 2002, 2007, and 2012), the Census
Bureau also conducts the Annual Survey of Public Employment & Payroll, a nation-
wide sample survey covering all state and local governments in the United States,
which include five types of governments: counties, cities, townships, special districts,
and school districts. The first three types of government are referred to as general-
purpose government, because they generally provide multiple government activities.
Data on employment include the number of full-time and part-time employees and
gross pay as well as hours paid for part-time employees. All data are reported for
the government’s pay period covering March 12. Data collection begins in March
and continues for about seven months. For more information on the survey, we refer
to http://www.Census.gov/govs/apes.

Missing data, small areas and outliers

In order to produce reliable estimation, a direct estimate requires a large enough
sampling rate. Unfortunately, this is not the case, and missing data always exist in
survey sampling. Table 1 shows the actual sample rates in 29 areas are less than
33%. Especially, the sample rates are small (less than 10%) in areas corresponding
to function codes 016, 018, 059, 087, 092, and 093 where the data available may
not be large enough to produce direct estimates that are reliable. Instead, it may
be preferable to use a model-based small area approach. Small area estimation uses
indirect estimates that utilize information from various sources such as samples,
non-sampled parts, and also from areas with similar characteristics to the areas of
interest. It borrows strength from data in different ways. The N2 (or N2+OBC)
estimate combines information from sample in ym (step ), the non-sampled parts
from all areas in the data, not just area m. See equations (0.9), (0.8), and (0.10).
This estimate is robust because Ŷ

N2

m (or Ŷ
N2+OBC

m ) may not be affected by outliers.
When zmj increases, the equation (0.6) shows that outliers would be down-weighted.
As a result the N2 (or N2+OBC) estimate is insensitive to these outliers.

JSM 2016 - Government Statistics Section

3111



Model-based estimation relies on some assumptions. SAE applies linear models such
as the Fay-Herriot model [6] at the area level. These models assume normality of the
error terms. In practice, this assumption is rarely met. Relaxing model assumptions
may help in fitting more observations to the model. The following nested-error
regression model at the unit level gives us more flexibilities in expressing the error
terms (see [1]) :

ymj = xTmjβ + um + εmj , m = 1, ...,M ; j = 1, ..., nm

um ∼ N (0, τ2), εmj ∼ N (0, σ2)

Failure to meet model assumptions may lead to large errors in estimation when
deleting the unfit outliers that are influential. The assumption of normality may
be resolved in parts by using transformation. Relaxing normal assumptions may
be made by using t-Distribution to describe either the random effect um (model
error) or εm (survey errors), see Bell et al. [3], Staudenmayer et al. [14]. Survey
errors may come from more than one normal distribution. Then the assumption
that εm comes from one normal distribution may be too strong. This can be relaxed
by using a scale mixture of two normal distributions (Fig. 1 and/or De Veaux
and Krieger [15]) to describe the error term εm (Gershunskaya and Lahiri [9, 10]).
ASPEP data is skewed (Fig. 2) and contains outliers. The box-plots show data
after applying transformations, such as log and power functions, approximately meet
normal assumptions (Fig. 3 and 4). In the following, we will describe the selection of
transformations and their convergence rates before applying the method in section
2 to produce the N2 and N2+OBC estimates for the ASPEP data in California.

Square-root transformation

Let ymj be the number of full-time employees for the jth unit within the mth area.
We apply transformations, such as log and powers, to the data to approximately
meet the assumption of normality before fitting the model (0.3)-(0.14). The conver-
gence is significantly faster when using the square root transformation (or α−power
with 1/3 ≤ α < 1) instead of the log transformation (extremely slow). To obtain
parameter estimates with a precision of ε = 10−5, the square root transformation
requires no more than 100 iterations whereas the log transformation fails to converge
at 105 interations. The simple linear regression model parameters are used as the
initial values of parameters to be estimated.

The unit-level model is given by:
√
ymj = β0 + β1

√
xmj + um + εmj , j = 1, ..., nm, m = 1, ...,M, (0.12)

um
iid∼ N (0, τ2), εmj | z

iid∼ (1− z)N (0, σ21) + zN (0, σ22), (0.13)

um
iid∼ N (0, τ2), z|π ∼ Bin(1;π), σ2 > σ1. (0.14)

The estimated parameters β0, β1 and the random effect um are used to predict ymj
(m = 1, ...,M ; j = nm + 1, ..., Nm) using the inverse trasnformation

ŷN2
mj = (β̂N2

0 + β̂N2
1

√
xmj + ûN2

m )2 (0.15)

We considered the ASPEP data for California and obtained estimates for 2012 AS-
PEP using the 2007 ASPEP data as auxiliary information xmj . The resulting esti-
mates were compared to the corresponding true employment from each small area.
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Conclusion

From our research results, the performance of N2 (or N2+OBC) produces estimates
with better RRMSE. In California, the N2 (or N2+OBC) estimator is more efficient
than the Horvitz Thompson (HT) estimator. In small areas, where sampling rates
are less than 10%, the N2 (or N2+OBC) is slightly better than EBLUP.

Figure 1: Standard Normal N (0, 1) and Mixture 0.75N (0, 1) + 0.25N (0, 10)

Figure 2: Skewed data (California)
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Figure 3: ASPEP after Square-root Transformed
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Figure 4: Normality of the Residuals of Transformed ASPEP
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Government Functions with Sampling Rates Less than 10%
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Table 1: Relative Root Mean Squared Error of Estimators for
Different Areas (in California)
Function med(fm) RRMSE (%)
Code ? Nm (%) HT EBLUP N2 N2+OBC
001 207 19.81 02.94 0.52 1.03 1.18
005 172 21.51 00.95 0.67 0.57 0.43
012 1,082 21.16 01.20 1.30 1.30 1.27
016 396 07.83 11.09 4.09 2.96 2.85
018 395 07.85 10.54 4.35 3.43 3.30
023 537 23.09 01.95 0.84 2.27 2.41
024 716 13.97 03.61 0.83 2.92 3.02
025 274 33.94 00.88 0.40 0.58 0.62
029 539 22.63 03.23 1.20 1.11 1.21
032 363 17.63 01.16 0.83 0.58 0.62
040 193 20.73 01.33 0.63 2.55 2.59
044 623 19.74 03.82 1.69 1.93 2.09
050 505 22.18 04.51 3.50 2.85 2.66
052 597 14.24 04.04 0.80 0.79 0.89
059 736 07.61 11.06 7.91 5.32 5.53
061 687 18.34 10.75 3.00 0.92 0.99
062 453 26.05 02.10 0.66 1.15 1.24
079 249 23.29 00.78 0.68 0.19 0.21
080 672 14.29 06.24 1.81 7.29 7.52
081 385 23.64 06.69 2.48 1.67 1.53
087 151 07.28 12.14 1.35 2.18 2.55
089 1,154 11.61 05.22 2.09 0.98 0.99
091 897 11.59 03.81 2.19 4.44 4.56
092 185 13.51 02.46 0.46 3.36 3.50
093 130 01.54 24.06 1.54 4.16 3.89
094 276 17.03 02.39 1.19 0.56 0.51
112 1,205 19.09 01.71 1.50 0.57 0.56
124 547 16.27 06.44 1.49 5.98 6.33
162 456 25.44 02.17 1.26 1.34 1.47

(?) function code description is in the Appendix
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Appendix.

Function Code
Air Transportation 001
Correction 005
Elementary and Secondary - Instruction 012
Higher Education - Other 016
Higher Education - Instructional 018
Financial Administration 023
Firefighters 024
Judicial & Legal 025
Other Government Administration 029
Health 032
Hospitals 040
Highways 044
Housing & Community Development 050
Libraries 052
Natural Resources 059
Parks & Recreation 061
Police Protection - Officers 062
Public Welfare 079
Sewerage 080
Solid Waste Management 081
Water Transport & Terminals 087
All Other & Unallocable 089
Water Supply 091
Electric Power 092
Gas Supply 093
Transit 094
Elementary & Secondary Schools - Other 112
Fire - Other 124
Police - Other 162
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