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Abstract  

Many enterprises apply predictive analytics, e.g., transfer function models, Granger 
causality types of models, to time series data to forecast what might happen in the future. 
What can they do to turn forecasting into actionable insights? We propose two 
prescriptive techniques as answers: (1) what-if analysis predicts the possible outcomes 
based on different choices of actions; (2) goal seek analysis recommends the best course 
of actions with a desired outcome. Traditional prescriptive analytics can be hard to use as 
they (i) require users to specify their business problems as optimization models based on 
the predictive model, (ii) often require additional data. In this paper, we show how both 
analyses can be done by solving a constrained optimization problem in a system that 
combines predictive and prescriptive analytics. Moreover, both predictive and 
prescriptive models can be automatically derived from available history data plus user 
defined goals for outcome and constraints for actions. This results in a much more 
consumable form of prescriptive analytics. 
 

Key words: goal seek analysis, Granger causality, predictive analytics, prescriptive 
analytics, transfer function model, what-if analysis. 
 
  

1. Introduction 
 

Many business and commerce metrics are recorded and stored as time series, which is a 
sequence of observations taken on equally spaced time points. Sales, expenses, earnings, 
customer satisfaction ratings, and other business metrics are observed over time, and the 
values of the metrics are recorded with an associated date or time.  
 
The goal of time series analysis is usually to forecast future values, such as what future 
Sales values are for July to December, 2016. Because the auto-correlation nature of Sales 
series data, some statistical models, such as exponential smoothing, autoregressive 
integrated moving average (ARIMA), see IBM Inc. (2016b), etc. can be built based on its 
own past values to account for the historical patterns and used to forecast future Sales 
values. Such predictive models allow users to make good business decisions to account 
for the forecasts. For example, if Sales are forecast to drop in the next few months, then 
the business can budget appropriately, which is a proactive business decision to anticipate 
Sales decline. Because the model is based on the historical values that have been 
occurred, the forecasts of Sales cannot be changed. 
 
On the other hand, some time series models, such as transfer function models, see IBM 
Inc. (2016b), Granger causality (which we call temporal causal modeling), see IBM Inc. 
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(2016a), etc., can be built to describe the causal relationships between the target series 
(Sales series) and predictor series (other series) to forecast future Sales values. Such 
predictive models can help users take better business actions to interact with the 
forecasts. For example, suppose that the number of Twitter mentions affects Sales. If 
Sales are forecast to drop in the next few months, then the business can change the future 
number of Twitter Mentions to cause Sales forecasts to increase. Because the model is 
based on other predictor series in addition to Sales’ historical values, the forecasts of 
Sales might be changed due to some updated forecasts of Twitter Mentions.  
 
There are two techniques when a user wants to interact with forecasts, i.e., change the 
forecasts of Sales. One is what-if analysis, and the other is goal seeking. Both options use 
the time series models with some predictors to generate new forecasts based on the user's 
desired outcomes.  
   
In what-if analysis, a user manually sets the new forecasts for one or more predictor time 
series to see the repercussions in the target series. The analysis answers the question: 
How will my performance change if I control certain factors? For example, assume that 
the number of calls affect the monthly sales values. If this directed relationship is 
assumed true, user might change the forecasts for number of calls to see the effect on 
sales. What if I increase number of calls from 100 to 200 in September, 2016? 
 
In goal seeking analysis, a user manually sets the new forecasts (goals) for the target time 
series to drive actions for predictor series. The analysis answers the question: What 
values of the predictor series will allow me achieve desired performance? For example, 
the user might set a goal for sales to see how forecasts for number of calls need to be 
changed to achieve it. What values of number of calls will allow me to reach sales of 700 
(from 550) in September, 2016?  
 
Goal seeking is prescriptive in that it provides recommended actions based on the user’s 
desired outcomes, so it is natural to formulate it as a constrained optimization problem. 
While what-if is predictive in that it just predicts the new target values based on changes 
of predictors. However, when combining both analyses into a system, we will not force 
users to select one out of 2 analyses first. Instead, we allow users to freely specify any 
scenarios from what-if and/or goal seeking in the system. Each scenario would be 
formulated as a prescriptive model. Such a system is automatic in a sense that both 
predictive and prescriptive models can be automatically derived from available history 
data plus user defined goals for target/outcome and constraints for predictors/actions. 
This results in a much more consumable form of prescriptive analytics. 
 
The rest of the sections are arranged as follows: Section 2 describes the automatic system 
that combines predictive and prescriptive analytics. Section 3 gives some scenarios based 
on a dataset while a few concluding remarks are in Section 4. 
 

2. Automatic System 
  
This paper proposes an automatic system that combines predictive and prescriptive 
analytics and generates solutions to satisfy user-specified goals and constraints. 
Users define goals and constraints for future dates and obtain metric values that are more 
likely to result in a scenario in which the targeted goals are met under constraints. The 
system includes the following steps: 
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1. Identify top predictors of a target metric based on the historical time series data. 
2. Use the built models to forecast future values. 
3. Allow users to conduct what-if and goal seek analyses by specifying goals and 

constraints in the forecasting period. 
4. Solve the optimization problem that is generated from the goals and constraints. 

 
We will describe these steps in the next four subsections in details. 

 
2.1  Identify top predictors for the target metric 

The first step is to identify top predictors and build a model for the target series, 𝑦𝑡 , based 
on the historical data (𝑡 = 1,… ,𝑇). Several different statistical techniques can identify 
predictors and build a model, such as temporal causal modeling, transfer function model 
(ARIMA + predictors), etc. The system can automatically check all possible predictors to 
identify the most important ones. Users could also manually select predictors, but it 
might be more efficient if the system does the selection automatically, in particular when 
the number of target series is huge. 
 
Assume the system identifies the top 𝐾 predictors, 𝑋𝑖 ,𝑡 , 𝑖 = 1,⋯ ,𝐾, with the following 
temporal causal model: 
 

𝑦𝑡 = 𝛽0 +  𝛽𝑦 ,ℓ
𝐿
ℓ=1 ∙ 𝑦𝑡−ℓ +   𝛽𝑖 ,ℓ

𝐿
ℓ=1 ∙ 𝑋𝑖 ,𝑡−ℓ

𝐾
𝑖=1 + 𝜀𝑡    (1) 

 
where 𝛽0 ,𝛽𝑦 ,ℓ,𝛽𝑖,ℓ, ℓ = 1,… , 𝐿, 𝑖 = 1,… ,𝐾, are parameters which need to be estimated; 
𝜀𝑡  is an unobserved i.i.d. Gaussian error process with mean of zero and variance of σ2 
and 𝐿 is the lag term for both target and predictors and it doesn’t have to be the same for 
both target and predictors. However it is often set to be the same for the automatic model 
selection process when the number of target series is huge in practice.   
 
2.2  Use the built models to forecast future values 

The forecasts for 𝑦𝑡 , 𝑦𝑡|𝑇 , at the current time 𝑇  for several time points over the 
forecasting period, 𝑇 + 1,… ,𝑇 + ℎ, can be computed based on Equation (1) as follows: 
 

𝑦𝑡|𝑇 = 𝛽 0 +  𝛽 𝑦 ,ℓ
𝐿
ℓ=1 ∙ 𝑦𝑡−ℓ|𝑇 +   𝛽 𝑖,ℓ

𝐿
ℓ=1 ∙ 𝑋𝑖,𝑡−ℓ|𝑇

𝐾
𝑖=1    (2)   

 
where 𝑦𝑡−ℓ|𝑇 = 𝑦𝑡−ℓ, 𝑋𝑖 ,𝑡−ℓ|𝑇 = 𝑋𝑖,𝑡−ℓ, 𝑡 − ℓ ≤ 𝑇, 𝑖 = 1, . . . ,𝐾.  The forecasting values 
would be historical values if they happened before or at the current time 𝑇. On the other 
hand, the system will build models for predictor series to compute their forecasts, 
𝑋𝑖 ,𝑡−ℓ|𝑇 , 𝑡 − ℓ > 𝑇. 
 
The forecasting values based on historical data can be shown in Table 1: 
 

Table 1: Historical and forecasting values for the target and predictors 
 
Metrics \ Time … 𝑇 − 1 𝑇 𝑇 + 1 𝑇 + 2 … 𝑇 + ℎ 

𝑦𝑡  … 𝑦𝑇−1 𝑦𝑇  𝑦𝑇+1|𝑇 𝑦𝑇+2|𝑇 … 𝑦𝑇+ℎ|𝑇  

𝑋1,𝑡  … 𝑋1,𝑇−1 𝑋1,𝑇 𝑋1,𝑇+1|𝑇 𝑋1,𝑇+2|𝑇 … 𝑋1,𝑇+ℎ|𝑇  
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⋮  ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑋𝐾,𝑡  … 𝑋2,𝑇−1 𝑋2,𝑇 𝑋𝐾 ,𝑇+1|𝑇 𝑋𝐾 ,𝑇+2|𝑇 … 𝑋𝐾,𝑇+ℎ|𝑇 
 
2.3  Allow users to specify goals and constraints 

After building a time series model for the target series with some predictor series and 
forecasting future values, user can conduct what-if and goal seek analyses based on Table 
1. Since our system can handle both analyses seamlessly, user is allowed to freely specify 
any goals for the target and constraints for the predictors in the forecasting period, but 
they cannot change any historical values for both the target and predictors because these 
have already happened. 
 
Both goals and constraints can be entered one at a time based on the current time interval 
or be specified for the higher granularity than the current time interval. For example, 
assume the original measurements and forecasts are recorded and generated at a monthly 
level. The user can specify a goal value for the target or a constrained value for a 
predictor for a year or a quarter. Furthermore, both of them can be specified as a range. 
For example, the goal for the target, say Sales, for the next year increases at least 20% 
over the current year. 
 
2.4  Solve the constraint optimization problem 

The analysis that was defined by setting target goals and entering predictor constraints 
can be formulated as a constrained optimization problem. We need to find a solution that 
meets the goals of the target and satisfies the constraints of predictors by minimizing the 
change from the original forecasts. 
 
First, let’s define the decision variables to be solved in the optimization problem. Note 
that all variables might include both historical and forecasting periods. 
 

𝑦 𝑡 : Decision variable for target series at time 𝑡  needs to be solved in the 
optimization problem, 𝑡 = 𝑇 − 𝐿∗ + 1,⋯ ,𝑇 + ℎ; 

𝑋 𝑖 ,𝑡: Decision variable for the ith predictor series at time 𝑡 needs to be solved in the 
optimization problem, 𝑡 = 𝑇 − 𝐿∗∗ + 1,⋯ ,𝑇 + ℎ; 𝑖 ∈  1,⋯ ,𝐾  (because it is 
possible that some predictors aren’t allowed to changed); 

 
where 𝐿∗ = 𝐿∗∗ = 𝐿 for the temporal causal model in Equation (1), but 𝐿∗ and 𝐿∗∗ 
might be different if other time series model is used.  

 
Then the constrained optimization problem can be formulated by specifying an objective 
function and several types of constraints. Under the optimization framework, the goals 
and constraints user entered are all considered as parts of following constraint types:  
 

(1) Individual equality constraints: They are values user enters one at a time. To 
avoid the no solution issue with different types of constraints when solving the 
optimization problem, we will move them into the objective function. 

(2) Grouped equality constraints: They are values user specifies for the higher 
granularity for either the target or any of predictors.  

(3) Range constraints: They can be individual or grouped like equality constraints for 
either the target or predictors.  
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(I) The objective function: 
 
Minimize the change between the original forecasting values and the changed forecasting 
values, which are the decision variables that need to be solved, of the target and 
predictors for all time points in the forecasting period: 
 

min
𝑦 𝑡 ,𝑋 𝑖,𝑡  

  𝑤0,𝑡 𝑦 𝑡 − 𝑔0,𝑡 
2𝑇+ℎ

𝑡=𝑇+1 +   𝑤𝑖,𝑡 𝑋 𝑖,𝑡 − 𝑔𝑖,𝑡 
2𝑇+ℎ

𝑡=𝑇+1
𝐾
𝑖=1   (3) 

  
where 𝑔0,𝑡  and 𝑔𝑖 ,𝑡  are the objective value of 𝑦 𝑡  and 𝑋 𝑖,𝑡 , respectively. By default 
  

𝑔0,𝑡 =  
𝑦𝑡 , 𝑡 ≤ 𝑇

𝑦𝑡|𝑇 , 𝑡 > 𝑇
   and 𝑔𝑖,𝑡 =  

𝑋𝑖 ,𝑡 , 𝑡 ≤ 𝑇

𝑋𝑖 ,𝑡|𝑇 , 𝑡 > 𝑇
 , 𝑖 = 1,2,… ,𝐾, 

 
which will be overwritten if user defined a preferred value for 𝑔0,𝑡  or 𝑔𝑖,𝑡 , i.e., the 
individual equality constraints mentioned above. And 𝑤0,𝑡  and 𝑤𝑖 ,𝑡  are the optimization 
weights. The purposes of setting these weights are two folds: (1) to make all the series on 
the same sale, (2) to assign a higher optimization weights onto those time points with 
user-specified objective values. A recommended set of optimization weights are: 
 

𝑤0,𝑡 =
𝜎𝑦𝑇+ℎ |𝑇

2

𝜎𝑦𝑡|𝑇
2 ∙

1

𝜇0
2+𝜎0

2 ∙ 𝑎
𝐼{𝑔0,𝑡  is  user  defined }, and 

𝑤𝑖,𝑡 =
1

𝜇 𝑖
2+𝜎𝑖

2 ∙ 𝑏
𝐼{𝑔i ,𝑡  is  user  defined }, 𝑖 = 1,2,… ,𝐾, 

 
where 𝜎𝑦𝑡|𝑇

2  is the forecasting variance of the target at time 𝑡, 𝑡 = 𝑇 + 1,⋯ ,𝑇 + ℎ. 𝜇0 and 
𝜇𝑖  are the means of the target and ith predictor series, respectively. 𝜎0  and 𝜎𝑖  are the 
standard deviations of the target and the ith predictor series, respectively. The constants 𝑎 
and 𝑏 default to 10,000 and 1,000, respectively. 
 
(II) The constraints: 
 
Equation (3) is solved subject to the following constraints:  

(a) Grouped equality constraints: 
 

𝒄0
′ 𝒚 = 𝐺0 and 𝒄𝑖′𝑿 𝒊 = 𝐺𝑖  
 

where 𝒚 =  𝑦 𝑇+1 ,𝑦 𝑇+2,… ,𝑦 𝑇+ℎ ′ ,  𝑿 𝑖 =  𝑋 𝑖 ,𝑇+1 ,𝑋 𝑖,𝑇+2,… ,𝑋 𝑖 ,𝑇+ℎ ′, 𝑖 ∈  1,⋯ ,𝐾 , 
and 𝒄𝑖 , 𝑖 ∈ {0,1,2,… ,𝐾} is a vector of length h made of 0s and at least two 1s. If 
there is only one 1 in 𝒄𝑖 , constraint (a) will reduce to individual equality constraint 
which is handled by the objective function instead of the constraints. This constraint 
is a user input. We provide two scenarios of constraint (a) to users: 
 
(a.1) Grouped summation equality constraint 

For example, suppose now is 2015-12 and we have monthly sales data as the 
target series with forecast length h = 12. User can set the summation of the 
sales in the first quarter of 2016 to be 5,000 as the goal. In this case, for 
constraint (a), 𝒄0 = (1,1,1,0,0,0,0,0,0,0,0,0)′ and 𝐺0 = 5,000. 
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(a.2) Grouped average equality constraint 
Use the same example in (a.1). User can set the average of the sales in the 
second quarter of 2016 to be 1,000 as the goal. In this case, for constraint (a), 
𝒄0 = (0,0,0,1,1,1,0,0,0,0,0,0)′ and 𝐺0 = 1,000 × 3 = 3,000. 
 

(b) Range constraints: 
 

𝐿0 ≤ 𝒄0
′ 𝒚 ≤  𝑈0 and 𝐿𝑖 ≤ 𝒄𝑖

′𝑿 𝑖 ≤  𝑈𝑖 , 𝑖 ∈  1,⋯ ,𝐾  
 

where 𝐿𝑖 ∈ ℝ ∪  −∞  and 𝑈𝑖  ∈ ℝ ∪  +∞ . Multiple range constraints can be 
applied to each series as long as they are not conflict with each other. This constraint 
is also a user input and we provide three scenarios for users to set the range 
constraints: 
 
(b.1) Individual range constraints 

With this scenario, user sets a range constraint for only one observation at a 
time. Use the same example in (a.1) with the product price as one of predictor 
series. User can set the goal of sales of 2016-02 to be 10,000 while set the 
lower limit of the price of 2016-02 to be $100. In this case, user is adding an 
individual range constraint to the price series at 2016-02, for constraint (b),  
𝒄1 = (0,1,0,0,0,0,0,0,0,0,0,0)′, 𝐿1 = 100 and 𝑈1 = +∞. 
 
And user can add multiple individual range constraints to the same time series. 
In the same example, if user also does not want the price of 2016-01 goes 
below $90, s/he can add another constraint of type (b) with 
𝒄1 = (1,0,0,0,0,0,0,0,0,0,0,0)′, 𝐿1 = 90 and 𝑈1 = +∞. 
 

(b.2) Grouped summation range constraints 
With this scenario, user sets range constraints on the summation of multiple 
time points in the forecasting period. Use the same example in (a.1). If user sets 
the constraint that the forecasted total sales of 2016 to be greater than 10,000 
and less than 20,000. Then for constraint (b), 𝒄0 = (1,1,1,1,1,1,1,1,1,1,1,1)′, 
𝐿0 = 10,000 and 𝑈0 = 20,000. 
 

(b.3) Grouped average range constraints 
With this scenario, user can set constraints on the average of multiple time 
points in the forecasting period. Use the same example in (a.1). If user set the 
constraint that the forecasted average sales of the first half year of 2016 to be 
greater than 1,000 and less than 2,000. Then for constraint (b), 𝒄0 =
(1,1,1,1,1,1,0,0,0,0,0,0)′ , 𝐿0 = 1,000 × 6 = 6,000  and 𝑈0 = 2,000 × 6 =
12,000. 
 

The constraints described in (a) and (b) are suitable for metric series with aggregation 
functions of sum or average (mean). If user doesn’t specify clearly the constraint is 
summation or average, then it is handled based on the metric series’ aggregation function. 
  
(c) Historical data cannot be changed: 

 
𝑦 𝑡 = 𝑦𝑡  and  𝑋 𝑖,𝑡 = 𝑋𝑖 ,𝑡  , 𝑡 ≤ 𝑇 
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(d) All changed values are satisfied with the time series model (Equation (2)) used to 
compute the target forecasting values: 

 
𝑦 𝑡 = 𝛽 0 +  𝛽 𝑦 ,ℓ

𝐿
ℓ=1 ∙ 𝑦 𝑡−ℓ +   𝛽 𝑖,ℓ

𝐿
ℓ=1 ∙ 𝑋 𝑖,𝑡−ℓ

𝐾
𝑖=1 , 𝑡 = 𝑇 + 1,⋯ ,𝑇 + ℎ 

     
where 𝑦 𝑡−ℓ = 𝑦𝑡−ℓ,  𝑋 𝑖,𝑡−ℓ = 𝑋𝑖,𝑡−ℓ  , 𝑡 − ℓ ≤ 𝑇, 𝑖 = 1,… ,𝐾. 

  
3. An Example 

 
The data set used to demonstrate the system is monthly sales revenue (Revenue) of a 
product in a company from January, 2002 to September, 2011, along with other possible 
predictor series, such as foot traffic in the stores (Foot_Traffic), online ads (Online_Ads), 
TV ads (TV_Ads), direct mail offers (Dmail_Offer) and email offers (Email_Offer). The 
system would automatically select two top predictor series: Foot_Traffic (𝑋1,𝑡 ) and 
Online_Ads (𝑋2,𝑡) and the built model for Revenue (𝑦𝑡) is:  
 

𝑦𝑡 = 𝑦𝑡−12 + 318.68 𝑋1,𝑡 − 𝑋1,𝑡−12 + 1.546 𝑋2,𝑡 − 𝑋2,𝑡−12 . 
 
The forecasts for the target and two predictor series for the next fiscal year (2011-10 to 
2012-09) are listed in Table 2 while Figure 1 displays both historical and forecasting 
values of all three series. 
 

Table 2: Forecasts for Revenue, Foot_Traffic and Online_Ads for 2011-10 to 2012-09 
 
              Time 
Metric 

2011 
-10 

2011 
-11 

2011 
-12 

2012 
-01 

2012 
-02 

2012 
-03 

2012 
-04 

2012 
-05 

2012 
-06 

2012 
-07 

2012 
-08 

2012 
-09 

Revenue 23396      21781 29772 21766 18249 17643 17207  18629 17590 18219 30261 23072 

Foot_Traffic 38.42  37.57 47.42 49.46 43.27 45.53 40.74  43.90 45.37 44.84 43.98 46.59 

Online_Ads 11690  11393 15263 11821 12024 12176 12017  12234 12246 12096 12246 11576 
 

 
 

Figure 1: Observed and forecasting values for Revenue, Foot_Traffic and Online_Ads 
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Two scenarios are demonstrated. For Scenario 1, the goal is to increase the total 
forecasting revenue of next fiscal year (2011-10 to 2012-09) by 10% of the original 
forecasts. The solutions (optimized forecasts) and original forecasts for Revenue, 
Foot_Traffic and Online_Ads are shown in Figure 2. 
 

 
 
Figure 2: Optimized & original forecasts for Revenue, Foot_Traffic and Online_Ads in Scenario 1 

 
For Scenario 2, the goal is the same as the above but Online_Ads from 2012-01 to 2012-
09 cannot exceed 12,000. The solutions and original forecasts are shown in Figure 3.  
 

 
 

Figure 3: Optimized & original forecasts for Revenue, Foot_Traffic and Online_Ads in Scenario 2 
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4. Conclusion 

 
The proposed system combines predictive and prescriptive analytics for time series data. 
It has several advantages over more traditional ones for cross sectional data. (1) The 
required input from user is minimal. (2) The objective function has the default form while 
allowing user to change to their own according to their business requirements. (3) It 
operates on time series data, so the solution is dynamic over the forecasting period. (4) It 
provides truly actionable results if predictor series can allow user to act on.   
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