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Abstract
An important objective in cell biology is to determine the subcellular location of different proteins

and their functions in the cell. Identifying the subcellular location of proteins can be accomplished
either by using biochemical experiments or by developing computational predictors that aid in pre-
dicting the subcellular location of proteins. The main objective of this study is to use several different
classifiers to predict the subcellular location of animal and human proteins and to determine which
of these classifiers performs the best in predicting protein subcellular location. The data for this
study was obtained from The Universal Protein Resource (UniProt) which is a database of protein
sequence and annotation.A reliable benchmark dataset is obtained by following and applying criteria
established in earlier studies for predicting protein subcellular locations. After applying the above
criteria to the original dataset, the working benchmark dataset includes 2944 protein sequences. The
method used for representing proteins in the study is the pseudo-amino acid composition (PseAA
composition) adapted from earlier studies. The predictors used to predict the subcellular location of
proteins in animal and human include Random Forest, Adaptive Boosting (AdaBoost), and Stage-
wise Additive Modeling using a Multi-class Exponential loss function (SAMME), Support Vector
Machines (SVMs), and Artificial Neural Networks (ANNs). The results from this study establish
that the SVMs classifier yielded the best overall accuracy for predicting the subcellular location of
proteins. Most of the computational classifiers used in this study produced better prediction results
for determining the subcellular location of proteins in the nucleus, the secreted, and the cell mem-
brane. The secreted and the cell membrane locations had high specificity values with all of the
classifiers used in this study. The nucleus had the best prediction results, including a high sensitivity
and a high MCC value by using the Bagging method.

Key Words: Protein subcellular location prediction, Bagging, Random forest, AdaBoost, SAMME,
Support vector machines, Neural networks

1. Introduction

A cell is the smallest unit of any life form. The size of a cell can vary from 1 − 5µm, in
prokaryotic cells, to a size of greater than 50µm, in eukaryotic cells [25]. Cells perform
many diverse and important functions necessary for the survival of all living beings. There
are many smaller different components and organelles inside a cell that are responsible
for carrying out these diverse and important functions. The organelles inside a cell have
specific functions and nearly all of them are surrounded by membranes that have embedded
proteins.

The functions that are performed by the organelles are vital to the cell’s survival. These
functions are carried out by the proteins embedded in the organelles or other compartments
in the cell. On average, a cell contains 109 proteins located in different parts of the cell[16].

The location of proteins in the cell is referred to as the “subcellular location” in the liter-
ature. An important objective in cell biology and proteomics is to determine the subcellular
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location of different proteins and their functions in the cell. The knowledge gained about
the location of proteins also can help in determining the specific functions they carry out
for the cell’s survival [16].

Identifying the subcellular location of proteins can be accomplished by using two meth-
ods. The first method is using biochemical experiments in the lab to locate proteins in the
cell. However, the drawback to this approach is that it can be both very time-consuming
and expensive. Given that the number of newly discovered proteins is increasing so quickly,
as a result of genome sequencing project, and that the identification of their subcellular lo-
cation lags behind, this approach is not a very efficient approach to solving the protein
sublocalization problem.

The second method is developing computational predictors that help in predicting the
subcellular location of proteins [16]. The main objective of this study is to use several
different classifiers to predict the subcellular location of animal and human proteins and
to determine which of these classifiers performes the best in predicting protein subcellular
location.

2. Background and Literature Review

In the post-genomic era, there has been a significant increase in the number of newly dis-
covered proteins. Given the need to predict the subcellular location of these proteins, there
have been many approaches in the literature to address protein sublocalization problem.

Zheng Yuan [31] uses the Markov Chains to predict protein subcellular location. The
author points out that by using the Jack-knife test the prediction accuracy is 8% greater than
using the neural network method and incorporating amino acid composition [25].

Chou and Shen [16] discuss their review of various methods of prediction available to
identify protein subcelluar locations. Their paper examines how the problem of predicting
protein sublocation can be viewed in terms of how proteins are represented and what type
of algorithm can be used to produce the most accurate prediction. The authors point out
that proteins can be represented in various ways such as sequential; non-sequential (amino
acid composition and pseudo-amino acid composition [PseAA]); the Functional domain
(FunD) discrete model, which is a representation by functional domain since function of a
protein is related to its subcellular location; the Gene Ontology (GO) discrete model, which
is a representation of protein that is defined in GO database– proteins in a GO database are
clustered in such a way that is reflective of their subcellular location; and the hybridization
discrete model which is a combination of GO discrete model and PseAA [16].

Next, the authors discuss the algorithms used to predict protein subcellular location
and the testing methods incorporated to test the accuracy of each algorithm. The covari-
ant discriminant (CD), the K nearest neighbor (KNN), the optimized evidence-theoretic
K nearest neighbor (OET-KNN), and ensemble classifiers were extensively discussed as
examples of prediction algorithms. For testing the quality of prediction algorithms, the au-
thors investigated the self-consistency examination, the cross-validation examination, and
the Jack-knife examination [16]. A review of protein sequence representation and predic-
tion algorithms for this paper, which is based upon the paper by Chou et. al. [16], will be
presented in the following section.

Finally, the authors survey the available prediction methods that have been placed on
web servers and are available for free to the general public. The prediction web servers
have been classified in terms of the type of eukaryotic organism for which they perform the
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prediction of protein subcellular location [16].
Cai et al.[30] uses Support Vector Machines (SVMs) to predict the subcellular location

of proteins for 12 different locations in the cell. The authors conclude that both the self-
consistency and the Jackknife tests have high prediction accuracies, ranging from 75% to
94%, for these locations. Park and Kanehisa [15] also have used SVMs on 12 subcellular
locations in eukaryotic cells. They report that, by using the RBF kernel with SVMs, the
total accuracy of prediction is 72.4% and the location accuracy is 54.6%. The authors
also compare their results to the results obtained by Cai et al. [30]. Park and Kanehisa
conclude that, with the use of 5-fold cross validation, their accuracy results are better than
the results of the Jackknife test obtained by Cai et al. Another more recent study using
SVMs is performed by Dehzangi et al. [1] to predict the subcellular location of proteins in
Gram-positive and Gram-negative bacteria. The findings of this study show that, by using
10-fold cross validation, the overall accuracies for prediction of the subcellular locations of
proteins in Gram-positive and Gram-negative bacteria are 87.7% and 79.6% respectively.

Reinhardt and Hubbard [23] use neural networks to classify the subcellular location of
proteins in prokaryotic and eukaryotic cells. Their results reveal that the accuracy of classi-
fication in prokaryotic cells for three subcellular locations is 81%. The accuracy of classifi-
cation for eukaryotic cells for predicting protein in four subcellular locations is 66%. Singh
et al. [3] also use the neural networks classification method to predict plant protein sub-
cellular locations. In their work, they used various methods to represent proteins including
amino acid composition and dipeptide composition. For predicting the protein subcellular
location, they solve the classification problem by performing multiple binary classification
predictions. In the final step, they combine all of the binary classifiers to arrive at a final
classifier. They conclude that, with the Pseudo Amino Acid Composition, the overall ac-
curacy of classification using their neural network model is 75%. Furthermore, the overall
accuracy of prediction they obtained is more efficacious than the performance of web tools
such as YLOC+ and Euk-mPloc for protein subcellular prediction.

Chou and Shen [17] have introduced a web-server called Euk-mPLoc 2.0, which is a
hybrid model of gene ontology (GO) information, functional domain information, and se-
quential evolutionary information, using different forms of pseudo-amino acid composition.
The authors point out that this predictor is able to predict the subcellular location of proteins
in 22 locations inside the cell. They note that Euk-mPLoc 2.0 is a very powerful predictor
in predicting eukaryotic proteins that reside in multiple locations inside the cell [16].

Other papers have also evaluated the current computational methods of prediction that
have been proposed to predict protein subcellular location and are available freely for public
use. Min [19] discusses the prediction accuracy of various software tools in predicting
the secretomes of Eukaryotes. Prediction accuracy was reflected by using the Mathews’
Correlation Coefficient in this paper. His research indicates that there is no one single
software that can result in the highest accuracy in protein subcellular location prediction
in all Eukaryotes. Min concludes that, among the tools tested, Phobius is best for animal
protein prediction, SignalP is best for plant protein prediction, and WoLF PSORT is best
for fungal protein prediction [19].

Sprenger et.al. [14] have evaluated prediction methods under the criteria that predic-
tions tools accept large amount of protein sequence, are publicly available, and are also
able to predict protein locations in at least nine subcellular locations. The prediction meth-
ods surveyed and evaluated included CELLO, MultiLoc, Proteome Analyst, pTARGET and
WoLF PSORT. The sources of data used in this study are Swiss Prot and LOCATE. The au-
thors calculate sensitivity and specificity data analyzed by each prediction method and then
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compare the results to the outcome represented by random chance. They concluded that
the prediction methods did not show a level of sensitivity on either data set to prove to be a
reliable prediction method for predicting subcellular location of new proteins. In addition,
the authors pointed out that the prediction methods produced a lower accuracy for the data
from LOCATE [14].

3. Methods

3.1 Protein Representation Method

In order to predict the subcellular location of proteins, it is important to employ a method
for representing a protein. There are multiple approaches in the literature such as sequential
and non-sequential methods, for representing the protein samples. The method used in this
study to represent protein data is the pseudo-amino acid composition (PseAA composition)
method, which has been adopted from [16]. PseAA composition is a non-sequential method
of representation of proteins. It has an advantage over the sequential method of representa-
tion in that the sequential method doesn’t perform well when a protein of interest has little
homology to proteins of known location [16]. It also has an advantage over Amino Acid
composition method (AA composition), because in the AA composition method, the order
of sequence in the protein is lost [16].

3.2 Dataset

The data for this study was obtained from The Universal Protein Resource (UniProt) which
is a database of protein sequence and annotation [9]. The proteins of interest in this paper
are animal and human proteins. Therefore, by accessing UniProt Knowledgebase (UniProt
KB) [9], the human and animal proteins that were manually reviewed and annotated (Swiss-
Prot) were chosen for this study.

In order to obtain a reliable benchmark dataset the following criteria were further ap-
plied to the obtained data, based upon the suggestions found in the literature for benchmark
data set:

• All proteins in this dataset are reviewed and annotated for subcellular location.

• All proteins in the dataset are annotated only for one subcellular location( protein
sequences that have multiple subcellular locations have been excluded from the
dataset).

• Protein sequences with vague and uncertain labels such as “probable” or “by similar-
ity” have been excluded.

• Proteins that contain unknown amino acids in their sequence and are marked by X
have been excluded

• Proteins with the label ‘fragment’ are excluded from the dataset (‘fragments’ are
those protein sequences that do not start with the letter M- referring to the amino acid
methionine).

• Proteins in this dataset have at least 100 amino acids in their sequence. Any protein
with less than 100 amino acids in their sequence have been excluded from this dataset.
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After applying the above criteria to the original dataset, “50/50” BLASTClust [11]
is used on the dataset. The purpose of using “50/50” BLASTClust is to cluster similar
proteins together and to choose one proteins at random in each cluster for the final dataset.
The rule for similarity of proteins is that if two or more proteins are at least 50% similar over
at least 50% of their length, then they belong to the same cluster. After applying “50/50”
BLASTClust to the dataset and removing proteins that have ‘NA’ marked as their locations,
the working benchmark dataset includes 2944 protein sequences in 9 different subcellular
locations.

In the next step, by adopting the [22] and [20] method of partitioning the benchmark
dataset, the benchmark dataset is partitioned into a 70% training (learning) dataset and a
30% independent testing dataset. The training dataset includes a total of 2060 proteins. The
subcellular locations of these proteins are in the cell membrane (210 proteins), the cyto-
plasm (369), the endoplasmic reticulum (145 proteins), the Golgi apparatus (63 proteins),
the lysosome (21 proteins), the mitochondria (236 proteins), the nucleus (702 proteins), the
peroxisome (20 proteins), the secreted (294 proteins). Also, the testing dataset includes a
total of 884 proteins. The subcellular locations of these proteins are in the cell membrane
(76 proteins), the cytoplam (171), the endoplasmic reticulum (62 proteins), the Golgi appa-
ratus (23 proteins), the lysosome (9 proteins), the mitochondria (92 proteins), the nucleus
(299 proteins), the peroxisome (10 proteins), the secreted (142 proteins).

3.3 Classification Methods

The classifications methods used in this study include the following ensemble learning
methods: Random Forest, AdaBoost, and SAMME. In addition to the ensemble methods,
this study uses Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs)
to predict the subcellular location of proteins in human and animals. This paper will first
provide a brief review of these and related classification methods, present their respective
algorithms, and examine each method’s advantages and disadvantages. Next, each method
of classification is applied in predicting the subcellular location of proteins in this study.
Finally, the results obtained from each classification method will be discussed. The R soft-
ware environment and other R packages are used to apply the classification methods to
predict the protein subcellular location [26].

3.3.1 Bootstrap Aggregating (Bagging)

Bootstrap Aggregating or Bagging is a machine learning method that uses an ensemble of
predictors to solve classification problems. In “Bagging Predictors,” Leo Breiman describes
Bagging as a method of classification in which multiple versions of a predictor are gener-
ated and used to achieve an aggregate predictor. The multiple versions of a predictor are
generated by making bootstrap replicates of the training set and using these replicates as
new training set. The aggregate predictor averages over the multiple versions when it is
predicting a numerical value and searches for a popular (majority) vote to predict a class
[4]. Breiman points out that when Bagging is used on real data, it has high accuracy in
solving classification problems.

3.3.2 Random Forests

Random Forest is an ensemble of decision trees each voting for a class. The most popular
vote among these trees is then chosen as the final class. The 2001 Paper “Random Forest” by
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Leo Breiman first introduced Random Forest as an ensemble of predictors (decision trees)
where the most popular vote among the trees determines the class of an object [6]. Breiman
defines Random Forest as “a classifier consisting of a collection of tree-structured classifiers
h(x,Θk), k = 1, ... where the Θk are independent identically distributed random vectors
and each tree casts a unit vote for the most popular class at input x” [6]. Breiman further
explains the procedure of Random Forest by noting that “for the kth tree, a random vector
Θk is generated independent of past vectors θ1, θ2, . . . , θk−1 but with the same distribution.
A tree is grown using the training set and the random vector Θk which results in a classifier
h(x,Θk)” [6]. By following this procedure, one can construct a large number of trees.
These trees will each vote for a class and the most popular class is chosen as the final class
[6].

Also, according to Breiman, the Random Forest has an accuracy competitive with and
sometimes better than Adaboost, its accuracy is not affected by outliers and noise in the
data, the algorithms run faster than bagging or boosting, and they generate out-of-bag esti-
mates which include the internal estimate of error, strength, and correlation [6].

3.3.3 Adaptive Boosting (Adaboost)

Yoav Freund and Robert E. Schapire introduce a boosting algorithm called “Adaboost” that
improves the accuracy of classifiers immensely [28]. In other words, Adaboost combines
many weak classifiers to achieve a strong and very accurate classifier as the final classifier.
Adaboost works by starting with a base algorithm and the training data set. Equal weights
are assigned to each data point in the data set, and then the algorithm is run which results in a
new classifier. In the following step, for all of the data points that were classified incorrectly,
the weight is increased and for all of the data points that were correctly classified, the
weight is decreased, then the algorithm is run again giving another classifier. This process
is repeated until all of the data points in the training data set are classified with 100 percent
accuracy. Finally, all of the classifiers in the process are combined as a linear combination
to produce a final classifier with a very high accuracy in classification. It is important to
note that the Adaboost method is a great for solving two-class problems. If the problem
of classification is extended to include multiple-class classification, the problem will be
reduced to solving two-class problems using Adaboost.

3.3.4 Stagewise Additive Model using a Multi-class Exponential loss function (SAMME)

Adaboost is a great classification ensemble for two-class classification problems. However,
when dealing with multi-class problems, Adaboost approaches solving the classification
by breaking down the multi-class problem into multiple two-class classification problems.
The Stagewise Additive Model using a Multi-class Exponential loss function or in short
SAMME, improves on Adaboost by solving the multi-class classification problems without
condensing them into multiple two-class problems. SAMME combines weak classifiers
and requires the performance of each classifier to be better than random guessing [12].

3.3.5 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) classify data into groups by finding the optimal hyper-
plane that maximizes the margin of separation between classes. Although SVMs are binary
computational predictors, the binary predictors can be combined to achieve a final multi-
class classifier [8].
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In a classification problem, the dataset can be partitioned into training and testing
datasets. Each data point in the training set has specific features, referred to as "attributes",
and belongs to a specific class, referred to as “target value”. The goal of SVMs is to teach
the data in the training set so that the SVM algorithm will be able to predict the correct
“target value” for each data point in the testing set [7].

As far as the model selection for SVMs used to classify the protein subcellular locations
in this paper, the RBF kernel was chosen as the kernel function in accordance with the
reasoning provided by Hsu et. al[7]. For choosing the best parameter values for C and γ for
the RBF kernel, the methods of k-fold cross validation and “grid search” are recommended
by [7].

3.3.6 Artificial Neural Networks (ANNs)

A branch of artificial intelligence, artificial neural networks (ANNs) or neural networks,
are inspired by the biological brain and the nervous system [24]. A neural network is
comprised of a set of artificial neurons that are inter-connected in a manner similar to the
neural connections in the human brain. ANNs are used for classification problems in areas
such as bankruptcy detection, speech recognition, product inspection, and fault detection
[24].

ANNs were first formulated by McCulloch and Pitts in 1943. In the 1960’s Rosen-
blatt introduced the Perceptron Convergence Theorem, while Minsky and Papert worked
on showing the limitation of a simple perceptron. In the 1980’s, the interest in ANNs was
renewed by Hopefield’s research and findings in this area. In addition, the back propagation
learning algorithm for multilayer perceptron by Webros reinvigorated the field furthermore
reinvigorated interest in ANNs [2].

As far as the architecture of an ANN, a standard neural network is comprised of three
layers. An input layer, a hidden layer, and an output layer. All neurons in the network are
identical in structure and include a sum and a function unit. When inputs are fed into the
neural network, the network assigns weight for each input. Next, the weighted inputs are all
summed up. The result of this step is used as an input for the transfer or activation function
in the neuron. The output from the activation function is the output of the neuron [?].

4. Results

4.1 Key Terms

In analyzing the results of this study, there are several important key terms that will be
presented in this section and incorporated later when discussing the results of this study.
Therefore, this section will first define these terms before proceeding to present the results.

In order to analyze the performance of each prediction or classification method, the term
“accuracy” is employed. The “accuracy” of a prediction or classification method describes
the number or the percentage of correctly classified object in a dataset. Furthermore, there
are various methods for assessing performance of a predictor or classifier such as sensitivity,
specificity, balanced accuracy, and Mathew’s correlation coefficient (MCC).

The following are the formulas for sensitivity, specificity, balanced accuracy, and
Mathew’s correlation coefficient [19]. Both “balanced accuracy” and the “Mathew’s cor-
relation coefficient” are used in measuring the performance in classification in machine
learning. “Balanced accuracy” is the arithmetic mean of sensitivity and specificity. While
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MCC considers true and false positives and negatives and can be used with classes that have
different sizes. The MCC values range between -1 and 1 with the MCC value of 1 indicat-
ing perfect prediction [18]. In the following formulas, TP represents the number of true
positives, FN represents the number of false negative, FP represents the number of false
positives, and TN represents the number of true negatives.

Sensitivity % = [TP/(TP + FN)] ∗ 100

Specificity % = [TN/(TN + FP )] ∗ 100

Balanced Accuracy %= [(Sensitivity + Specificity)/2] ∗ 100

Mathew’s Correlation Coefficient % = TP∗TN−FP∗FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

∗ 100

4.2 Bagging model

Table 1: Overall Statistics
Accuracy 0.44
95% CI (0.40, 0.47)

No Information Rate 0.34
P-Value [Acc > NIR] 8.1× 10−10

Kappa 0.22

Table 2: Statistics by Class
Sen Spe PPV NPV Pre DR DP BA MCC NoP

Cell membrane 0.39 0.94 0.41 0.94 0.09 0.04 0.09 0.66 0.39 76
Cytoplasm 0.1 0.97 0.46 0.82 0.19 0.02 0.04 0.54 0.1 171
Endoplasmic Reticulum 0.29 0.98 0.54 0.94 0.07 0.02 0.04 0.63 0.29 62
Golgi Apparatus 0 1 NA 0.97 0.03 0 0 0.5 0 23
Lysosome 0 1 NA 0.99 0.01 0 0 0.5 0 9
Mitochondria 0.19 0.96 0.35 0.91 0.11 0.02 0.06 0.57 0.19 92
Nucleus 0.93 0.35 0.42 0.91 0.34 0.31 0.74 0.64 0.93 299
Peroxisome 0 1 NA 0.99 0.01 0 0 0.5 0 10
Secreted 0.16 0.99 0.79 0.87 0.15 0.02 0.03 0.58 0.16 142

Key for Abbreviated Measures:
Sen: Sensitivity, Spe: Specificity, PPV: Positive Predicted Value, NPV: Negative Predicted
Value, Pr: Prevalence, DR: Detection Rate, DP: Detection Prevalence, BA: Balanced Ac-
curacy, MCC: Matthews Correlation Coefficient, NoP: Number of Proteins

The two tables above summarize the results from the bagging model. The key terms
for table 2 will be used as reference for analyzing results for the similar tables generated by
other classifiers in this study in the following sections. Table 1 shows that the model can
predict proteins to their subcellular location with a 44% accuracy. The Table 2 illustrates
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statistics by class and indicates the performance of the model using the testing data. The
locations with a sensitivity value of 0 and a specificity value of 1 indicate that there are no
proteins predicted to these subcellular locations.

The subcellular location with the best prediction in the model is the nucleus with an
MCC of 0.93, a sensitivity of 93% and a specificity of 35%. The sensitivity measure for
the nucleus indicates that the model correctly predicted nucleus location 93% of the time.
The specificity measure conveys the fact that the model correctly predicted the absence of
proteins in the nucleus 35% of the time. The balanced accuracy value for this location
is 64%. Although the bagging method predicts the nucleus proteins with high sensitivity,
further work is needed to improve the value of specificity. In addition, other subcellular
locations have not had good predictions with this method.

4.3 Bagging with Cross Validation model

Table 3: Overall Statistics
Accuracy 0.42
95% CI (0.40, 0.44)

No Information Rate 0.34
P-Value [Acc > NIR] 2.2× 10−16

Kappa 0.22

Table 4: Statistics by Class
Sen Spe PPV NPV Pre DR DP BA MCC NoP

Cell membrane 0.3 0.95 0.38 0.93 0.1 0.03 0.08 0.62 0.27 76
Cytoplasm 0.08 0.95 0.27 0.82 0.18 0.01 0.05 0.52 0.05 171
Endoplasmic Reticulum 0.3 0.97 0.45 0.95 0.07 0.02 0.05 0.64 0.33 62
Golgi Apparatus 0 1 NA 0.97 0.03 0 0 0.5 0 23
Lysosome 0 1 NA 0.99 0.01 0 0 0.5 0 9
Mitochondria 0.15 0.98 0.44 0.9 0.11 0.02 0.04 0.56 0.21 92
Nucleus 0.89 0.38 0.43 0.87 0.34 0.3 0.71 0.64 0.28 299
Peroxisome 0 1 NA 0.99 0.01 0 0 0.5 0 10
Secreted 0.25 0.95 0.46 0.88 0.15 0.04 0.08 0.6 0.26 142

Table 3 shows that the model can predict proteins to their subcellular location with a
42% accuracy. Table 4 illustrates statistics by class and indicates the performance of the
model using the testing data. The locations with a sensitivity value of 0 and a specificity
value of 1 indicate that there are no proteins predicted to these subcellular locations.

The ER location has the highest MCC value of 0.33, with a sensitivity of 30% and a
specificity of 97%. Next, the nuclear subcellular location has an MCC value of 0.28. The
sensitivity and specificity values for the nucleus are 89% and 38%. The balanced accuracy
value for both of these locations are 64%. Similar to the bagging methods, other subcellular
locations failed to perform as well as they had performed in the other models.
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4.4 Random Forests Model

The results for Random Forest model is summarized in the following tables. The package
"randomForest" in R which is based upon the Random Forest algorithm proposed by Leo
Brieman was utilized. The results are based upon partitioning the dataset into a 70% training
dataset and a 30% testing dataset. This “random forest” is comprised of 500 trees. (Each
tree is built by using a random selection of variables).

Table 5: Overall Statistics
Accuracy 0.51
95% CI (0.49, 0.56)

No Information Rate 0.34
P-Value [Acc > NIR] 2.2× 10−6

Kappa 0.36

Table 6: Statistics by Class
Sen Spe PPV NPV Pre DR DP BA MCC NoP

Cell membrane 0.49 0.95 0.49 0.95 0.09 0.04 0.09 0.72 0.44 76
Cytoplasm 0.27 0.92 0.45 0.84 0.19 0.05 0.12 0.6 0.24 171
Endoplasmic Reticulum 0.21 0.99 0.62 0.94 0.07 0.01 0.02 0.6 0.34 62
Golgi Apparatus 0 1 NA 0.97 0.03 0 0 0.5 0 23
Lysosome 0 1 NA 0.99 0.01 0 0 0.5 0 9
Mitochondria 0.33 0.95 0.42 0.92 0.1 0.03 0.08 0.64 0.3 92
Nucleus 0.89 0.58 0.52 0.91 0.34 0.3 0.58 0.73 0.45 299
Peroxisome 0 1 NA 0.99 0.01 0 0 0.5 0 10
Secreted 0.51 0.96 0.73 0.91 0.16 0.08 0.11 0.74 0.55 142

The two tables above summarize the results from the Random Forest model. Table 5
shows that the model can predict proteins to their subcellular location with a 51% accuracy.
Table 6 illustrates statistics by class and indicates the performance of the model using the
testing data. The locations with a sensitivity value of 0 and a specificity value of 1 indicate
that there are no proteins predicted to these subcellular locations.

The secreted location has the highest MCC value of 0.55, with a sensitivity of 51%
and a specificity of 96%. This location has a balanced accuracy of 74%. Next, the nuclear
subcellular location has an MCC value of 0.45. The sensitivity, specificity, and balanced
accuracy values for the nucleus are 89%, 58%, and 73% . Finally, the cell membrane
location has an MCC value of 0.44. The sensitivity and specificity values for the nucleus
are 49% and 95%. The balanced accuracy value for this location is 72%.
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4.5 ADA model

Table 7: Overall Statistics
Accuracy 0.49
95% CI (0.45, 0.52)

No Information Rate 0.34
P-Value [Acc > NIR] 2.2× 10−6

Kappa 0.31

Table 8: Statistics by Class
Sen Spe PPV NPV Pre DR DP BA MCC NoP

Cell membrane 0.53 0.94 0.47 0.95 0.09 0.05 0.1 0.73 0.44 76
Cytoplasm 0.25 0.9 0.38 0.83 0.19 0.05 0.13 0.58 0.18 171
Endoplasmic Reticulum 0.21 0.98 0.43 0.94 0.07 0.01 0.03 0.59 0.27 62
Golgi Apparatus 0 1 NA 0.97 0.03 0 0 0.5 0 23
Lysosome 0 1 NA 0.99 0.01 0 0 0.5 0 9
Mitochondria 0.3 0.94 0.39 0.92 0.1 0.03 0.08 0.62 0.28 92
Nucleus 0.84 0.54 0.48 0.87 0.34 0.28 0.59 0.69 0.36 299
Peroxisome 0 1 NA 0.99 0.01 0 0 0.5 0 10
Secreted 0.38 0.99 0.86 0.89 0.16 0.06 0.07 0.68 0.53 142

The above tables summarize the results from the Adaptive Boosting (ADA) model.
Table 7 indicates that the ADA model predicts the subcellular location of proteins with an
accuracy of 49%. Therefore the overall accuracy of the ADA model in predicting protein
subcellular location is slightly lower than Random Forest model.

Table 8 presents the statistics by class and indicates the performance of the model, using
testing data. The secreted location has the highest MCC value of 0.53, with a sensitivity of
38%, and a specificity of 99%. This location has a balanced accuracy of 68%. Next, the
cell membrane subcellular location has an MCC value of 0.44. The sensitivity, specificity,
and balanced accuracy values for the nucleus are 53%, 94%, and 73%.

4.6 ADA model with Cross Validation

Table 9: Overall Statistics
Accuracy 0.42
95% CI (0.40, 0.44)

No Information Rate 0.34
P-Value [Acc > NIR] 2.2× 10−6

Kappa 0.19
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Table 10: Statistics by Class
Sen Spe PPV NPV Pre DR DP BA MCC NoP

Cell membrane 0.3 0.95 0.38 0.93 0.1 0.03 0.08 0.62 0.27 286
Cytoplasm 0.07 0.96 0.28 0.82 0.18 0.01 0.04 0.51 0.05 540
Endoplasmic Reticulum 0.29 0.98 0.48 0.95 0.07 0.02 0.04 0.63 0.34 207
Golgi Apparatus 0 1 NA 0.97 0.03 0 0 0.5 0 87
Lysosome 0 1 NA 0.99 0.01 0 0 0.5 0 30
Mitochondria 0.13 0.98 0.45 0.9 0.11 0.01 0.03 0.56 0.2 329
Nucleus 0.9 0.37 0.42 0.87 0.34 0.31 0.72 0.63 0.28 1002
Peroxisome 0 1 NA 0.99 0.01 0 0 0.5 0 30
Secreted 0.26 0.95 0.46 0.88 0.15 0.04 0.08 0.6 0.26 438

The above tables summarize the results from the Adaptive Boosting (ADA) with cross
validation model. Table 9 indicates that the ADA model predicts the subcellular location of
proteins with an accuracy of 42%. Therefore the overall accuracy of the ADA with cross
validation model in predicting protein subcellular location is lower than Random Forest
model.

Table 10 presents the statistics by class and indicates the performance of the model,
using testing data. The ER location has the highest MCC value of 0.34, with a sensitivity
of 29%, and a specificity of 98%. This location has a balanced accuracy of 63%. Next,
the nuclear subcellular location has an MCC value of 0.28. The sensitivity, specificity,
and balanced accuracy values for the nucleus are 90%, 37%, and 63%. Finally, the cell
membrane location has an MCC value of 0.27. The sensitivity and specificity values for the
nucleus are 30% and 95%. The balanced accuracy value for this location is 62%.

The cell membrane and secreted subcellular locations failed to perform as well as they
had performed in the Random Forest and ADA models. The predictions for the nuclear
location are also lower than the predictions for this location using the Bagging method.

4.7 SAMME Model

Table 11: Overall Statistics
Accuracy 0.51
95% CI (0.48, 0.59)

No Information Rate 0.34
P-Value [Acc > NIR] 2.2× 10−6

Kappa 0.37
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Table 12: Statistics by Class
Sen Spe PPV NPV Pre DR DP BA MCC NoP

Cell membrane 0.53 0.95 0.48 0.96 0.09 0.05 0.09 0.74 0.45 76
Cytoplasm 0.41 0.84 0.39 0.86 0.19 0.08 0.2 0.63 0.25 171
Endoplasmic Reticulum 0.21 0.98 0.48 0.94 0.07 0.01 0.03 0.6 0.29 62
Golgi Apparatus 0 1 0 0.97 0.03 0 0 0.5 -0.01 23
Lysosome 0 1 NA 0.99 0.01 0 0 0.5 0 9
Mitochondria 0.36 0.93 0.38 0.93 0.1 0.04 0.1 0.65 0.3 92
Nucleus 0.77 0.71 0.57 0.86 0.34 0.26 0.45 0.74 0.45 299
Peroxisome 0 1 NA 0.99 0.01 0 0 0.5 0 10
Secreted 0.49 0.95 0.67 0.91 0.16 0.08 0.12 0.72 0.51 142

The two tables above summarize the results from the Stagewise Additive Model us-
ing a Multi-class Exponential loss function (SAMME) model. Table 11 indicates that the
SAMME model predicts the subcellular location of proteins with an accuracy of 48%.

Table 12 indicates that the subcellular locations of the secreted, the cell membrane,
and the nucleus have the highest MCC values. These results follow the same pattern of
prediction from the previous models, where these three subcellular locations have had the
highest values for MCC. The sensitivity values of these locations, in order, are 49%, 53%,
77%. The specificity value of these locations, in order, are 95%, 95%, 71%. The MCC
values for these locations are 0.51, 0.45, and 0.45 respectively.

4.8 SVMs Model

Table 13: Overall Statistics
Accuracy 0.55
95% CI (0.53, 0.57)

No Information Rate 0.34
P-Value [Acc > NIR] 2.2× 10−16

Kappa 0.42

Table 14: Statistics by Class
Sen Spe PPV NPV Pre DR DP BA MCC NoP

Cell membrane 0.59 0.95 0.57 0.96 0.1 0.06 0.1 0.77 0.54 286
Cytoplasm 0.34 0.87 0.38 0.85 0.18 0.06 0.17 0.61 0.22 540
Endoplasmic Reticulum 0.35 0.98 0.54 0.95 0.07 0.02 0.05 0.66 0.4 207
Golgi Apparatus 0.03 1 0.5 0.97 0.03 0 0 0.52 0.13 86
Lysosome 0 1 NA 0.99 0.01 0 0 0.5 0 30
Mitochondria 0.48 0.94 0.52 0.94 0.11 0.05 0.1 0.71 0.44 328
Nucleus 0.76 0.76 0.62 0.86 0.34 0.26 0.42 0.76 0.5 1001
Peroxisome 0 1 NA 0.99 0.01 0 0 0.5 0 30
Secreted 0.63 0.92 0.57 0.93 0.15 0.09 0.16 0.77 0.52 436

Table 13 shows that the model can predict the subcellular location of proteins with a
55% accuracy. The subcellular location with the best prediction results in the model was
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the cell membrane, with a sensitivity of 59% and a specificity of 95%. Other locations with
good model performance, in the context of these two measurements, include the secreted,
with a sensitivity of 63% and a specificity of 92% and the nucleus, with a sensitivity of 76%
and a specificity of 76%.

The three subcellular locations of the cell membrane, the secreted, and the nucleus also
have the three highest values of balanced accuracy and MCC. The cell membrane has a
balanced accuracy of 77% and an MCC of 0.54 , the secreted has a balanced accuracy of
77% and an MCC of 0.52, and the nucleus which has a balanced accuracy of 76% and an
MCC of 0.50.

4.9 ANN Model

Table 15: Overall Statistics
Accuracy 0.49
95% CI (0.46, 0.52)

No Information Rate 0.34
P-Value [Acc > NIR] 2.2× 10−16

Kappa 0.33

Table 16: Statistics by Class
Sen Spe PPV NPV Pre DR DP BA MCC NoP

Cell membrane 0.39 0.95 0.43 0.94 0.09 0.03 0.08 0.67 0.36 76
Cytoplasm 0.12 0.95 0.35 0.82 0.19 0.02 0.07 0.53 0.11 171
Endoplasmic Reticulum 0.21 0.98 0.43 0.94 0.07 0.01 0.03 0.59 0.27 62
Golgi Apparatus 0 1 NA 0.97 0.03 0 0 0.5 0 23
Lysosome 0 1 NA 0.99 0.01 0 0 0.5 0 9
Mitochondria 0.5 0.89 0.35 0.94 0.1 0.05 0.15 0.7 0.34 92
Nucleus 0.85 0.65 0.55 0.89 0.34 0.29 0.52 0.75 0.47 299
Peroxisome 0 1 NA 0.99 0.01 0 0 0.5 0 10
Secreted 0.49 0.91 0.52 0.9 0.16 0.08 0.15 0.7 0.42 142

Table 15 shows that the model can predict the subcellular location of proteins with
a 49% accuracy. The subcellular location with the best prediction in the model was the
nucleus, with a sensitivity of 85% and a specificity of 65%. The next best result was seen
with the secreted location also has a sensitivity of 49% and a specificity of 91%.

The subcellular locations of the nucleus and the secreted also have the two highest
values of balanced accuracy and MCC. The nucleus has a balanced accuracy of 75% and an
MCC of 0.47 while the secreted has a balanced accuracy of 70% and an MCC of 0.42.

5. Analysis

The main objective of this study was to use several different classifiers to predict the subcel-
lular location of animal and human proteins and to determine which of these classifiers per-
formed the best in predicting protein subcellular location. The working benchmark dataset
includes 2944 protein sequences. The subcellular locations of these proteins are the nucleus
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(1001 proteins), the cytoplasm (540 proteins), the secreted (436 proteins), the mitochondria
(328 proteins), the cell membrane (286 proteins), the endoplasmic reticulum (207 proteins),
the Golgi apparatus(86 proteins), the peroxisome (30 proteins), and the lysosome (30 pro-
teins). Therefore, there are 9 different subcellular locations for proteins in this dataset.

The method used for representing proteins in the study is the pseudo-amino acid com-
position (PseAA composition), adapted from earlier studies. The computational predictors
that are used to predict the subcellular location of proteins in animals and humans in this
study include Bagging, Bagging with cross validation, Random Forest, the Adaptive Boost-
ing (AdaBoost), AdaBoost with cross validation, the Stage-wise Additive Modeling using
a Multi-class Exponential loss function (SAMME), Support Vector Machines (SVMs), and
Artificial Neural Networks (ANNs).

The results from this study demonstrate that the SVM model has the best overall accu-
racy of 55% for predicting the subcellular location of proteins. However, since the dataset
for this study is imbalanced (the number of proteins in each subcellular location varies
greatly), the overall accuracy is not a good measure of performance of the computational
predictors. Therefore, for the analysis of the prediction results, the measures of sensitiv-
ity, specificity, and MCC are chosen to gauge how well a predictor can predict the correct
subcellular locations of proteins.

After analyzing the results, the predictions for the three subcellular locations of the nu-
cleus, cell membrane, and secreted demonstrate the best outcomes out of the nine subcellu-
lar locations in this study. The Table 17 displays the performance of the various predictors
in predicting the subcellular location of proteins for these three locations.

The nucleus proteins are best predicted by the Bagging method, with a sensitivity of
0.93, a specificity of 0.93, and an MCC of 0.93. The next best predictor for the nucleus
proteins is the SVMs with, an MCC value of 0.50, which is the second highest MCC value.
The sensitivity and specificity values are 0.76 and 0.76. respectively.

The cell membrane proteins are best predicted by the AdaBoost, with cross validation
with a sensitivity of 0.30, a specificity of 0.95, and an MCC value of 0.62. The SVMs
method has an outcome with a sensitivity of 0.59, a specificity of 0.95, and an MCC of
0.54. The SAMME predictor can predict cell membrane protein with a sensitivity of 0.53,
a specificity of 0.95, and an MCC of 0.45. For cell membrane protein prediction, the
predictors fail to produce higher sensitivity results compared to the results observed for the
nucleus location. Therefore, the future work will include efforts to improve the sensitivity
metric for the cell membrane protein location prediction. Finally, the MCC value for each of
the mentioned predictors is low, as a result of the lower sensitivity values in each predictor.

The secreted proteins are best predicted by Random Forest, with a sensitivity of 0.51, a
specificity of 0.96, and an MCC of 0.55. Next, the AdaBoost predictor shows a sensitivity
of 0.38, a specificity of 0.99, and MCC of 0.53. The SVMs method has a sensitivity of 0.63,
a specificity of 0.92, and an MCC of 0.52. Similar to the prediction of the cell membrane
subcellular location, the sensitivity results from each predictor need to be further improved.
The specificity results are optimal and high. The lower MCC level in each case mentioned
above is as a result of lower sensitivity value from each predictor.

Therefore, in general, it can be concluded that of the methods used in this study to pre-
dict the location of the nucleus proteins, the Bagging method produces the best prediction
results (with a sensitivity of 0.93, specificity of 0.93, and MCC of 0.93). For the predic-
tion of cell membrane protein, the AdaBoost with cross validation produces the best results
with an MCC of 0.62, a sensitivity of 0.30, and a specificity of 0.95. Finally, to predict the
location of secreted proteins, Random Forest has the best results with an MCC of 0.55, a
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Table 17: Protein Subcellular Location Prediction Results Using Various Predictors
Subcellular
Locations Predictors Sensitivity Specificity

Balanced
Accuracy MCC

Nucleus Bagging 0.93 0.35 0.64 0.93

Bagging with CV 0.89 0.38 0.64 0.28

Random Forest 0.89 0.58 0.73 0.45

AdaBoost 0.84 0.54 0.69 0.36

AdaBoost with CV 0.90 0.37 0.63 0.28

SAMME 0.77 0.71 0.74 0.45

SVMs 0.76 0.76 0.76 0.50

ANNs 0.85 0.65 0.75 0.47

Cell Membrane Bagging 0.39 0.94 0.66 0.39

Bagging with CV 0.30 0.95 0.62 0.27

Random Forest 0.49 0.95 0.72 0.44

AdaBoost 0.53 0.94 0.73 0.44

AdaBoost with CV 0.30 0.95 0.27 0.62

SAMME 0.53 0.95 0.74 0.45

SVMs 0.59 0.95 0.77 0.54

ANNs 0.39 0.95 0.67 0.36

Secreted Bagging 0.16 0.99 0.58 0.16

Bagging with CV 0.25 0.95 0.60 0.26

Random Forest 0.51 0.96 0.74 0.55

AdaBoost 0.38 0.99 0.68 0.53

AdaBoost with CV 0.26 0.95 0.60 0.26

SAMME 0.49 0.95 0.72 0.51

SVMs 0.63 0.92 0.77 0.52

ANNs 0.49 0.91 0.70 0.42

sensitivity of 0.51, and a specificity of 0.96.

6. Future Work

The future direction for this project includes exploring other available predictors in order to
determine whether the overall accuracy of protein subcellular location prediction can be in-
creased. Also, other methods can be explored to attempt to obtain a higher predictive value
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for other subcellular locations than the three locations discussed in this paper. Examples of
these methods include the covariant discriminant algorithm and random walk on graphs.

Another issue that arose from this research was how to analyze imbalanced data. In this
paper, the measures of sensitivity, specificity, and MCC were used to analyze the results.
However, additional attention could be brought to finding better ways to prepare the data
set (over-sampling or under-sampling), before using the computational predictors. The R
software offers a package for “Synthetic Sampling", which can be used on this dataset for
future work. In addition, using “penalized SVM", in which additional costs are imposed on
the model for making mistakes in classification, can also be applied to this work to improve
the overall analysis of the data.
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