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Abstract
Genome-wide association studies (GWASs) traditionally concern the relations between

genetic variants known as SNPs and traits such as diseases. However, there has recently been
a shift in focus towards clinical translation and personalized medicine making it relevant to
also consider risk prediction approaches. In this study, a GWAS cohort containing ∼3000
type 2 diabetes cases and ∼3000 non-diabetic controls is analyzed with this shift in mind.
A traditional univariate association study as well as risk prediction from traditional logistic
regression and the non-linear machine learning algorithm random forest are studied. In
contrast to findings of genome-wide significant associations, the predictive performance is
not necessarily aided significantly by the information carried in the SNPs. In this paper,
we discuss the statistical challenges in transitioning from associations on a population scale
to prediction for individuals. This will be done in the context of GWA data in which
factors like a limited number of observations and a large number of variables each with low
effect-sizes make individual prediction a challenging problem.

Key Words: Genome-wide association study, random forest, prediction

1. Introduction

The relations between genetic variants called single nucleotide polymorphisms (SNPs,
pronounced ”snips”) and biological traits such as diseases are traditionally consid-
ered by genome-wide association studies (GWASs). A SNP is a change in a single
base-pair in the DNA that occurs often (typically >1%) in a population. The stud-
ies typically consider whether each SNP is univariately associated with a trait [1].
However, there has recently been a shift in focus towards clinical translation and
personalized medicine. This makes it relevant to consider prediction from genetics
such that personal risk can be ascertained.

Risk prediction from GWAS will here be considered in the example of type 2
diabetes. It is a metabolic disease, which can be delayed or prevented by lifestyle
changes making it important to identify high risk individuals early from genetics.
Risk SNPs for type 2 diabetes have previously been identified by univariate associ-
ation [2]. We will perform risk prediction and discuss the challenges in going from
associations at a population level to individual predictions in this context.

We have also performed a study of simulated SNP data to further illustrate the
challenges of moving from association to prediction.

2. Methods

In this study, the GENEVA cohort was analyzed. It contained 6,033 observations
of 909,622 SNPs and was obtained through the database of Genotypes and Phe-
notypes (dbGaP) (study accession phs000091.v2.p1) [3]. The data originated from
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two studies: The Nurse Health Study (NHS) containing only women and the Health
Professionals Follow-up Study (HPFS) containing only men. The individuals were
genotyped on the Affymetrix 6.0 platform and the data was pre-processed using
standard quality control filters: Excluded SNPs with >5% missing values, SNPs
with minor allele frequency <5%, SNPs which deviate from the Hardy-Weinberg
equilibrium (p<0.0001) and individuals who were <98% genotyped. After pre-
processing it consisted of 5,827 individuals (observations), who had both phenotype
and genotype information and either no diabetes or type 2 diabetes. After pruning,
the data set was comprised of 652,400 SNPs and 20 clinical variables, of which age,
sex and bmi were used.

Three subsets of SNPs were tested: i) SNPs previously associated with type 2
diabetes, ii) SNPs associated with type 2 diabetes in this cohort with genome-wide
significance, and iii) SNPs identified for type 2 diabetes relevance using random
forests. Known type 2 diabetes SNPs were taken from Morris et al. (2012), where
56 (of the 62 reported SNPs) were directly genotyped in the GENEVA cohort or
could be represented by proxy SNPs. A proxy SNP is highly correlated with the
identified SNP on a population scale. They were found using SNAP Proxy Search
with HapMap (release 22), CEU population and R2 ≤ 0.5 [4]. To identify SNPs
associated with type 2 diabetes a traditional univariate association analysis was
performed where SNPs a were tested using logistic regression models adjusted for
age and sex in PLINK [5, 6]. The SNPs with p-values below the genome-wide
significance threshold (p < 5 · 10−8) were taken forward in the analyses. The last
subset of SNPs was identified using random forests [7]. Here, the SNPs were selected
by iteratively reducing the number of SNPs and creating new forests with the SNPs
ranking highest according to the permutation importance (Figure 1). 50 SNPs
were selected for the prediction. The result was three sets of selected SNPs whose
performance can be compared to each other.

The predictions were performed with logistic regression and random forest using
either known diabetes SNPs, SNPs identified using random forest, genome-wide
significant SNPs or without SNPs. Each set of SNPs was included over two sets of
clinical variables: age and sex, and age, sex and bmi. This means 2 × 4 × 2 = 16
models were tested.

The process was cross-validated using 10-fold cross-validation and the predic-
tions were evaluated using receiver operating characteristic (ROC) curves and the
area under the curve (AUC).

2.1 Simulation Study

A simulation study was performed. First a data set resembling GWA data was sim-
ulated consisting of 6,000 observations and 15,000 explanatory variables (”SNPs”).
The variables were simulated to take the values 0, 1 and 2 such that the distri-
butions of the alleles were close to the Hardy-Weinberg equilibrium. They were
simulated in highly correlated blocks of size 1 to 40 variables. A linear combination
of 30 randomly selected variables was made with the parameter for each variable
simulated to have odds ratios between 1/1.3 and 1.3, which are close to the odds
ratios expected in a GWAS. The linear combination was transformed using the lo-
gistic function yielding values between 0 and 1. These were used for probabilities
for binomial samples for the response variable. Of the 6,000 observations, 600 were
used for testing the prediction and the remaining 5,400 were used for selecting the
significant variables and training the prediction model. The significant variables
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Figure 1: Diagram of the applied variable selection approach using random forest.
The columns represent variables and rows observations [8]. RF is random forest
and p is the number of variables selected in the iterative selection. The variable p
takes the values 4000 down to 1000 with a jump of 1000 and then reduced by 100
until p = 100 is reached.

JSM 2016 - Section on Statistics in Genomics and Genetics

2957



(p < 5 · 10−8) were used for prediction using a multivariate logistic regression. This
was repeated 10 times.

3. Results

We performed a traditional univariate association study as well as risk prediction
using traditional logistic regression and random forest, a non-linear machine learning
algorithm. In this cohort, genome-wide significant associations were found for five
SNPs of which four are present in the data set used for prediction (plotted above
the threshold-line in Figure 2). 239 SNPs were selected using random forest, 50 in
each of the 10 folds. These are highlighted with green in Figure 2.

Figure 2: Manhattan plot. Each point is the p-value for a SNP plotted by its
chromosome location. The green marks the SNPs selected using random forest.
The red line indicates the genome-wide significant threshold. Consequently, the five
SNPs above this line are said to be genome-wide significant.

In Figure 3, the ROC curves for the predictions are shown. The two curves close
to the diagonal (A) are for linear regression and random forest, respectively, only
including age and sex of the individuals. They predict diabetes poorly and have an
AUC close to 0.5. The next group of curves from the diagonal (B) are the models
including age, sex and one of the sets of SNPs: Previously identified SNPs, newly
identified using random forest or genome-wide significant SNPs. The inclusion of
the SNPs improve the prediction over only age and sex (Table 1). The last group
of curves are models including age, sex and bmi (C). For these models the inclusion
of SNPs does not improve the prediction and the curves are all close to each other
and with similar AUCs (Table 1).

3.1 Simulation Study

The 10 simulation runs have each resulted in between 0 and 77 significant variables
(mean of 24.9 with standard deviation 28.9). These are used for prediction of the
test sets with logistic regression giving an average AUC of 0.5705 with standard
deviation 0.0387. The resulting ROC curves are shown in Figure 4.
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Figure 3: Average ROC curves from the cross-validation of the models including
age, sex and in some bmi, genome-wide significant SNPs (GWS SNPs), newly iden-
tified SNPs using random forest (new SNPs) or previously identified SNPs (prev.
SNPs). Here LR is logistic regression and RF is random forest. For each of the
sixteen models bars indicate one standard deviation around the mean from the
cross-validation. The dashed black line indicates the diagonal (indicating a non-
informative model with random performance).

Table 1: Mean and standard deviation of AUC over 10-fold cross-validation for
models including clinical variables and previously identified SNPs (prev.), newly
identified SNPs by the random forest method (new) or genome-wide significant
SNPs (GWS). The newly identified SNPs are the 50 SNPs identified within each
fold. P-values are from a Welch two-sample test were the model is compared to
logistic regression with only phenotype variables (age and sex alone or together
with bmi).

Logistic Regression Random Forest
mean AUC (s.d) p-value mean AUC (s.d) p-value

age + sex 0.5053 (0.0204) 0.4974 (0.0262) 0.4651
+ prev. SNPs 0.5783 (0.0215) 3.695 × 10−7 0.5541 (0.0185) 2.665 × 10−5

+ new SNPs 0.5500 (0.0284) 0.0009 0.5709 (0.0179) 5.156 × 10−7

+ GWS SNPs 0.5707 (0.0133) 3.248 × 10−7 0.5792 (0.0192) 1.366 × 10−7

age + sex + bmi 0.7264 (0.0313) 0.7178 (0.0273) 0.5229
+ prev. SNPs 0.7355 (0.0261) 0.4581 0.7257 (0.0305) 0.9931
+ new SNPs 0.7091 (0.0295) 0.2195 0.7309 (0.0265) 0.7332
+ GWS SNPs 0.7375 (0.0286) 0.4174 0.7387 (0.0263) 0.3546
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ROC Curve for Each Fold
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Figure 4: Performance for the simulation study. ROC curves for predicting dia-
betes status in the hold-out test data for each of the 10 simulations. The applied
logistic regression models each included all genome-wide significant variables in the
given simulation.

4. Discussion

The results from both the diabetes example and the simulation study demonstrate
the challenge of moving from associations to predictions. Even though a strong
association exists it is not necessarily possible to obtain a good performance of the
prediction. In the diabetes example, genome-wide significant SNPs are identified,
indicating that there are associations between these SNPs and the disease. However,
including these SNPs, or other SNPs believed to be predictive of the disease, does
not result in a good performance. When comparing the performance of the model
including only age and sex to models also including the SNPs it is seen that the
SNPs improve the prediction and the SNPs hold predictive information. When
bmi is also included, no significant improvement in prediction performance is seen
when adding the SNPs. This is also the case for the SNPs selected using random
forest, although the selection method was hoped to utilize any non-linear signal.
In order for any variable to have significant associations with disease status, the
variables must describe a difference in distributions of the two groups, diabetics
and non-diabetics. However, the two groups can overlap in the space spanned by
the variables. For the sake of being able to predict, the overlap must be minimized,
making the problem more challenging.

A visual way of considering this challenge is plotting the two populations in
the diabetes example, diabetic and non-diabetics, against one variable. This is
exemplified in Figure 5a where bmi adjusted for age and sex is plotted. The bmi
is adjusted by using the residuals of the linear regression of bmi given age and sex.
The two populations are clearly different (Welch Two Sample t-test, p < 2.2 ·10−16)
but at the same time highly overlapping making it difficult to predict the correct
population based only on the adjusted bmi.

In the simulated data study, the response is created from a subset of the ex-
planatory variables with odds ratios at a level expected in a GWAS. This means
they each have a low effect-size and that there are many noise variables, making
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Figure 5: (a) A histogram of diabetics (red) and non-diabetics (blue) plotted
against bmi adjusted for age and sex. (b) Classification tree for predicting type-2
diabetes (1 is case, 0 control) using clinical variables. Here ”famdb” is the family
history of diabetes and ”hbp” is reported high blood pressure.

it challenging to find the true associations and even more so to predict. This is
evident as the number of associations found has a high variance and the response is
not easily predicted giving that the performance is only slightly better than random.

A suggestion for future success in prediction is to first define subgroups based
on clinical variables and then search for subgroups for which the genetic data can
aid the prediction. This leads to more personalized medicine and give the genes
the possibility to be useful for only a subgroup of the whole population. In Figure
5b, subgroups are defined for the diabetes example using a classification tree. It is
seen that the performance of the prediction from clinical variables is good in some
subgroups and that there is potential for aiding the prediction in other ill-performing
nodes. If the genetics can aid the predictions in one of the subgroups then they
are useful even if they cannot improve the performance for the whole population.
The problem with this approach is the limited number of observations left in the
subgroups. In the example, some nodes consist of as few as nine observations
(Figure 5b). It thereby worsens an already common problem in GWAS of having a
low sample size.
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