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Abstract 
This article presents spatio-temporal Bayesian models for analyzing regional climate 
model outputs. WRF simulated temperatures associated with control simulation bias, as 
well as biofuel impacts, were modeled using three spatio-temporal correlation structures. 
A hierarchical model with spatially varying intercepts and slopes displayed satisfactory 
performance in capturing spatio-temporal associations. The effects of microphysics 
parameterizations in reproducing near-surface climatic conditions were found statistically 
significant. Simulated temperature impacts due to perennial bioenergy crop expansion 
were robust to physics parameterization schemes.  
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1. Introduction 
 
Deployment of perennial bioenergy crops is an alternative energy pathway to mitigate 
climate change, increase energy independence, stabilize energy prices, and achieve 
hydroclimatic sustainability in some marginal lands. Previous studies used regional climate 
models (RCMs) to quantify perennial bioenergy crops impacts [1-5]; however, RCMs with 
different physics parameterizations could generate significantly different outputs. 
Therefore, it is essential to assess the significance of factors associated with RCM 
performance and the robustness of simulated perennial bioenergy crop impacts. 
 
The uncertainties of RCM outputs have been studied using both descriptive and inferential 
statistics. Specifically, Taylor diagrams and Hövmoller diagrams have been used to 
evaluate RCM simulation skill using multiple performance metrics [5-7]. However, the 
abovementioned diagrams cannot be used to assess the significance of factors associated 
with simulation skill. Sansom et al. (2013) assigned different weights to ensemble members 
of RCMs, based on an ANOVA framework [8]. This method did not take into account 
spatiotemporal dependencies. Kang et al. (2012) applied hierarchical Bayesian spatial 
random-effects models to quantify the climate signal of individual RCMs [9]. Although 
spatially correlated processes could be captured, the proposed framework did not include 
a temporal component. Given that spatio-temporal dependencies are inherent to RCM 
outputs spatio-temporal statistical models are needed.  
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There is a variety of hierarchical Bayesian spatio-temporal models and corresponding R 
packages, such as spBayes, spTDyn, spate, spTimer, CARBayesST, and INLA [10-16]. 
For these models, alternative methods for estimating the posterior distribution have been 
used, such as Markov chain Monte Carlo (MCMC) sampling [17], and Integrated nested 
Laplace approximations (INLA) [16]. To our knowledge, a limited number of research 
works compare alternative parameter estimation approaches and models with different 
spatio-temporal autocorrelation structures. In this study, multiple spatio-temporal models 
are compared for modeling regional climate model outputs; the motivating application aims 
to evaluate perennial bioenergy crop impacts. More specifically, the manuscript 
investigates the following research questions:  

a. Do physics parameterizations and observations have a significant impact on 
WRF control simulations? 

b. Is WRF-simulated temperature impact associated with perennial bioenergy 
crops robust to alternative physics parameterizations?  

c. Which spatio-temporal residual correlation structure is the most appropriate 
given the fixed effects? 
 
The manuscript is arranged as follows. Section 2 presents a review of Bayesian spatio-
temporal models and the methodology of modeling RCM output ensembles. The 
application is presented and discussed in Section 3. Concluding remarks and suggestions 
for future work are discussed in Section 4. 
 

2 Spatio-temporal modeling for regional climate model comparison 
 
2.1 Preliminaries 
Bayesian hierarchical models possess a 3-stage hierarchical structure: data model, process 
model and parameters model, i.e.,  
(a) Data model, 𝑝(𝑑𝑎𝑡𝑎|𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 	= 	𝑝(𝑌(𝑠, 𝑡)|𝜇(𝑠, 𝑡), 𝜽) 
(b) Process model, 𝑝(𝑝𝑟𝑜𝑐𝑒𝑠𝑠|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 	= 	𝑝(𝜇(𝑠, 𝑡)|𝜽) and  
(c) Parameters model, 𝑝(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 	= 	𝑝(𝜽) 
 
𝜽 represents the unknown model parameters, 𝜇(𝑠, 𝑡) is an unknown hidden process, and 
𝑌(𝑠, 𝑡)  refers to the observed data (i.e., RCM outputs in this study). The posterior 
distribution of the unknown parameters given the observed data is proportional to the 
product of the three processes. Specifically, the posterior distribution is  

𝑝(𝜇 𝑠, 𝑡 , 𝜽|𝑌(𝑠, 𝑡)) 	∝ 	𝑝(𝑌(𝑠, 𝑡)|𝜇(𝑠, 𝑡), 𝜽)	𝑝(𝜇(𝑠, 𝑡)|𝜽)	𝑝(𝜽) 
Typically, such posterior distributions cannot be computed directly; alternative methods of 
approximation include Markov chain Monte Carlo (MCMC) sampling, and Integrated 
nested Laplace approximations (INLA).  
 
2.2. WRF model  
Simulations were conducted using Weather Research and Forecasting model (WRF, one 
particular RCM) (Skamarock et al. 2008). WRF is a non-hydrostatic model that solves the 
nonlinear fully compressible atmospheric equations of motion, coupled to the Noah land 
surface model (Noah-LSM) [18, 19]. This coupling provides the capability to study the 
interaction of perennial bioenergy crop-induced land use change and examine 
hydroclimatic responses to vegetation forcing [19].  
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The analyzed data are seasonally averaged WRF-simulated temperatures from 2000 to 
2009 over the conterminous U.S. Two types of datasets were analyzed (Table 1). The first 
type relates to simulation bias, i.e., the difference of reproduced temperature and the 
corresponding observations. Sixteen scenarios were included in this group: scenarios vary 
by choices of microphysics schemes, cumulus schemes, utility of spectral nudging, and 
observations. Each of the aforementioned factors includes two levels. The second type of 
dataset relates to biofuel impact: the difference of reproduced temperature and temperature 
under full-deployment scenario of perennial bioenergy crops expansion. In the second data 
type, only two scenarios are included, varied by combinations of physics parameterizations 
for best and worst skilled model, selected based on a previous study [5]. Further details 
with regard to the experimental design can be found in [5]. Both types of datasets are 
gridded data with spatio-temporal dependence. In this study, the datasets were resampled 
to include 348 pixels at each time period, with 40 time periods in total (seasonal values in 
consecutive 10 years).  
 

Table 1: Description of datasets 
 

Type of 
dataset Scenarios Microphysics Cumulus 

physics 
Spectral nudging 

technique 
Observed 

data 

simulation 
bias 

S1 WSM3 Kain–Fritsch No DW 
S2 WSM3 Kain–Fritsch Yes DW 
S3 WSM3 Grell 3D No DW 
S4 WSM3 Grell 3D Yes DW 
S5 WDM6 Kain–Fritsch No DW 
S6 WDM6 Kain–Fritsch Yes DW 
S7 WDM6 Grell 3D No DW 
S8 WDM6 Grell 3D Yes DW 
S9 WSM3 Kain–Fritsch No GC 

S10 WSM3 Kain–Fritsch Yes GC 
S11 WSM3 Grell 3D No GC 
S12 WSM3 Grell 3D Yes GC 
S13 WDM6 Kain–Fritsch No GC 
S14 WDM6 Kain–Fritsch Yes GC 
S15 WDM6 Grell 3D No GC 
S16 WDM6 Grell 3D Yes GC 

biofuel 
impact 

S1 WSM3 Kain–Fritsch No N/A 
S8 WDM6 Grell 3D Yes N/A 

 
 
2.3. Spatio-temporal statistical modeling 
2.3.1 Scenario-specific spatio-temporal models  
2.3.1.1 Data model 
 
For each scenario, we considered the following data model:  

𝑌 𝑠, 𝑡 = 	𝜇 𝑠, 𝑡 + 𝜀 𝑠, 𝑡 , for	𝑠 = 1, … , 348, 	𝑡 = 1, … , 40,                                      (1) 
where s represents the areal index, t is the time index, 𝜇(𝑠, 𝑡) represents the mean process, 
and 𝜀(𝑠, 𝑡) represents noise which is assumed independent (and Gaussian) in space and 
time:  

𝜀(𝑠, 𝑡) ~	𝐺𝑎𝑢 0, 	𝜈D . 
 
2.3.1.2 Process model 
RCM outputs were modelled using the following specification: 
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𝜇 𝑠, 𝑡 = 𝜇. + 𝑎F + 𝜓H,I, for i = 1, 2, 3, 4                                       (2) 
In (2), 𝜇.	represents the overall mean of temperature differences; 𝑎F is a (fixed) seasonal 
effect (e.g., i =1, 2, 3, and 4 indicates winter, spring, summer and fall respectively, 
with	 𝑎FJ

FKL = 0) while 𝜓H,I represents the spatio-temporal random effect.  
 
For	𝜓H,I, three structures were evaluated: spatially varying linear time trends with spatially 
varying intercepts (i.e., STLINEAR, [20]), spatial and temporal main effects and a spatio-
temporal interaction (i.e., STANOVA, [21]), and spatio-temporal autoregressive processes 
(i.e., STAR, [22]).  
 
STLINEAR estimates spatially varying linear trends for each areal unit: 

𝜓H,I = 𝛽 + 𝜙H + 𝛼 + 𝛿H *
	 𝑡-𝑡	
𝑁

,	 

𝜙H|𝜙-H,𝑾	~	𝑁
UVWX YZ[\[]^_

[`a

UVWX YZ[b
[`a cL-UVWX

, 	 dVWX
e

UVWX Yf[]^_
[`a cL-UVWX

,		          (3) 

𝛿H|𝛿-H,𝑾	~	𝑁
UZgh YZ[i[]^_

[`a

UZgh YZ[]^_
[`a cL-UZgh

, 	 dZgh
e

UZgh YZ[]^_
[`a cL-UZgh

,  

where 𝑾	 = 	 (𝑤Hk) is a matrix that captures neighborhood relationships between areal 
units (𝑘H, 𝑘k).                    
 
STANOVA consists of 3 components of spatio-temporal variation: an overall spatial effect 
common to all time periods 𝜙H, an overall temporal trend common to all spatial units 𝛿I, 
and independent space-time interactions γn,o. The model is formulated as:  

𝜓H,I = 	𝜙H + 𝛿I + 𝛾H,I 

𝜙H|𝝓-𝒔,𝑾	~	𝑁
Us YZ[\[]^_

[`a

Us YZ[]^_
[`a cL-Us

, 	 ds
e

Us YZ[]^_
[`a cL-Us

,	                          (4) 

𝛿I|𝜹-𝒕, 𝑫~	𝑁
Uw xX[i[^y

[`a

Uw xX[^y
[`a cL-Uw

, 	 dw
e

Uw xX[^y
[`a cL-Uw

,  

𝛾H,I~𝑁(0, 𝜏{D),  
where 𝑾	 = 	 (𝑤|k) is the same as in (3); 𝑫	 = 	 (𝑑Ik) the temporal neighborhood matrix 
with 𝑑Ik = 1 if |𝑗-𝑡| = 1 and 𝑑Ik = 0 otherwise.                                       
 
STAR models the spatio-temporal structure as a multivariate first order autoregressive 
process with a spatially correlated precision matrix. The model specification is given by:  

𝜓H,I = 𝜙H,I, 
𝝓𝒕|𝝓𝒕~𝟏	~	𝑁 𝜌�𝜙I-L, 𝜏D𝑸 𝑾, 𝜌� -L , 𝑡 = 2, … , 40,               (5) 

𝝓𝟏~𝑁 0, 𝜏D𝑸 𝑾, 𝜌� -L , 
where 𝝓𝒕 = 𝜙LI, … , 𝜙J�	I , and 𝑸(𝑾, 𝜌�	) 	= 	 𝜌�[𝑑𝑖𝑎𝑔(𝑾𝟏)	-	𝑾] 	+ 	(1	–	𝜌�	)𝑰, 𝟏 is 
the 348	×	1 vector of ones and 𝑰 is the 348	×	348 identity matrix. 
  
3.3.1.3 Parameter model  
Here we specify the prior distribution for the fixed effects coefficients in (2) and the spatio-
temporal random effects. Specifically, 𝜇., 𝑎D-𝑎L, 𝑎�-𝑎L, 𝑎𝑛𝑑	𝑎J-𝑎L  in (2) were given 
noninformative priors (i.e., they were distributed in Normal with mean zero and variance 
1000). For STLINEAR, the priors were specified as follows:  
𝜏F�ID , 𝜏H��D 	~	𝐼𝑛𝑣𝑒𝑟𝑠𝑒-𝐺𝑎𝑚𝑚𝑎 𝑎, 𝑏  (random effects variances),  
𝜌F�I, 𝜌H��	~	𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1 	(spatial dependence parameters),                                           (6) 
𝛼~	𝑁(𝜇�, 𝜎�D) (overall slope parameter),  
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where the hyperparameters are 𝑎, 𝑏, 𝜇�, 𝜎�D = (1, 0.01, 0, 1000).  
 
For STANOVA,  
𝜏�D, 𝜏�D, 𝜏{D	~	𝐼𝑛𝑣𝑒𝑟𝑠𝑒-𝐺𝑎𝑚𝑚𝑎 𝑎, 𝑏  (random effects variances),                                     (7) 
𝜌�, 𝜌�	~	𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) (spatial/temporal dependent parameter),  
where the hyperparameters are 𝑎, 𝑏 = (1, 0.01).  
 
For STAR,  
𝜏D	~	𝐼𝑛𝑣𝑒𝑟𝑠𝑒-𝐺𝑎𝑚𝑚𝑎 𝑎, 𝑏 , 
𝜌�, 𝜌�	~	𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) (spatial/temporal autoregressive parameter),                            (8) 
where the hyperparameters are 𝑎, 𝑏 = (1, 0.01).  
 
Posterior samples of spatial and temporal dependence parameters for each model and each 
scenario were compared using box-plots. The model that had consistent spatio-temporal 
structure across scenarios was applied on the pooled data (combined scenarios), in order to 
assess the significance of factors associated with RCM performance and the robustness of 
estimated perennial bioenergy crop impacts.  
 
2.3.2 Scenario-combined spatio-temporal modeling 
We assumed that all scenarios of the same datatype have a consistent spatio-temporal 
structure: this structure was selected based on the results of scenario-specific models. 
Scenario-combined models were different from scenario-specific models only with regard 
to the fixed effects part. For simulation bias, datasets were modelled using the following 
specification: 
𝜇F,k,|,�,� 𝑠, 𝑡 = 𝜇….. 𝑠, 𝑡 + 𝑎F + 𝑏k + 𝑐| + 𝑑� + 𝑒� + 𝑎𝑏F,k + 𝑎𝑐F,| + 𝑎𝑑F,� + 𝑎𝑒F,�

+ 𝑏𝑐k,| + 𝑏𝑑k,� + 𝑏𝑒k,� + 𝑐𝑑|,� + 𝑐𝑒|,� + 𝑑𝑒�,� + 𝜓H,I,		 
for	𝑖	 = 	1, 2, 3, 4, 𝑗	 = 	1, 2, 𝑘	 = 	1, 2, 𝑙	 = 	1, 2, and	𝑚	 = 	1, 2,	                                  (9)  
restricted	with		 𝑎FF = 0,			 𝑏kk = 0, 𝑐|| = 0, 𝑑�� = 0, 𝑒�� = 0,	  

𝑎𝑏F,kk = 0F , 𝑎𝑐F,|| = 0F , 𝑎𝑑F,�� = 0F , 𝑎𝑒F,�� = 0F ,	  
𝑏𝑐k,|| = 0k , 𝑏𝑑k,�� = 0k , 𝑏𝑒k,�� = 0k , 𝑐𝑑|,�� = 0| ,	  
𝑐𝑒|,�� = 0| , and	 𝑑𝑒�,�� = 0�   

  
Similar to (2), 𝜇…. 𝑠, 𝑡 	represents the overall mean of temperature differences, while 𝜓H,I 
denotes the spatio-temporal random effects. 𝑎F, 𝑏k, 𝑐|, 𝑑�, 𝑒�  denote fixed effects for 
seasons, microphysics parameterizations, cumulus scheme parameterizations, spectral 
nudging and observations, respectively. In addition, 𝑎𝑏F,k, 𝑎𝑐F,|, 𝑎𝑑F,�, 𝑎𝑒F,�,
𝑎𝑒F,�, 𝑏𝑐k,|, 𝑏𝑑k,�, 𝑏𝑒k,�, 𝑐𝑑|,�, 𝑐𝑒|,�, and	𝑑𝑒�,�  represent the corresponding interaction 
effects.  
 
For biofuel impact, datasets were modelled using the following specification: 
𝜇F,k,|,�,� 𝑠, 𝑡 = 𝜇….. 𝑠, 𝑡 + 𝑎F + 𝑏k + 𝑎𝑏F,k + 𝜓H,I,		 
for	𝑖	 = 	1, 2, 3, 4, 𝑗	 = 	1, 2,                                                                                             (10) 
restricted	with		 𝑎FF = 0,			 𝑏kk = 0, and	 𝑎𝑏F,kk = 0F   
 
The components are the same as (9), except that 𝑏k represents physics parameterization 
combinations, and 𝑎𝑏F,k the corresponding interaction.  
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3. Results 
 

3.1 Model comparison using DIC 
Model fit for different datasets was evaluated using DIC (Table 2). For all scenarios of 
simulation bias data-type, STAR achieved the lowest DIC consistently, while STLINEAR 
attained higher DIC than STANOVA in all scenarios except S5, S6, S8 and S14. On the 
contrary, STAR models achieved the highest DIC and STLINEAR the lowest for biofuel 
impact data-type. Thus, STLINEAR fitted the simulation bias data-type worse than the 
other two spatio-temporal structures, whereas it fitted the biofuel impact data-type better 
than the other structures. STAR, on the other hand, fitted the simulation bias data-type 
better, but achieved the worst performance for biofuel impact data-type.  
 

Table 2: DIC of scenario-specific modeling 
Type of dataset scenario STLINEAR STANOVA STAR 

Simulation bias 

S1 30556.8 30299.61 27239.83 
S2 29659.08 29469.15 26759.66 
S3 30323.23 30067.83 26602.55 
S4 29607.56 29502.47 26718.72 
S5 29185.82 28949.95 26354.89 
S6 27905.07 27948.96 26548.55 
S7 29028.95 28669.41 26214.85 
S8 28002.11 28040.67 27057.49 
S9 30610.51 30308.43 27032.93 

S10 29696.17 29525.09 27066.27 
S11 30288.61 30054.88 26887.28 
S12 29586.9 29494.1 26848.38 
S13 29120.41 28823.15 26502.2 
S14 27803.51 27841.85 26549.3 
S15 29221.08 28876.18 26213.22 
S16 27715.63 27701.42 26467.08 

Biofuel impact S1 39255.33 39354.91 39368.12 
S2 38915.38 39041.54 39098.31 

 
3.2 Spatio-temporal modeling of individual scenarios 
3.2.1 Fixed effect estimates 
The medians of fixed effects were very close across spatio-temporal models; on the other 
hand, the 95% confidence intervals (CIs) differed dramatically. For example, the estimated 
medians of simulation biases based on scenario S1 (Table 3) were equal to 2.20, 0.46, 3.51, 
and 2.75 for the intercept, spring-winter difference, summer-winter difference, and fall-
winter difference, respectively. The widest 95% CIs, however, were observed using STAR, 
whereas the narrowest using STLINEAR. It is worth noting that there were no significant 
differences for fixed effect estimates derived from alternative approximation methods (i.e., 
MCMC vs INLA) as the corresponding 95% CIs were overlaid. Results showed that 
simulated temperature biases differ significantly by season. This finding is consistent 
across 3 models.  
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Table 3: Fixed effect estimations of scenario S1 of simulation bias data-type. 
 

Fixed effect Model 95% Confidence Interval 
  STLINEAR STANOVA STAR 
  Median 2.50% 97.50% Median 2.50% 97.50% Median 2.50% 97.50% 

(Intercept) MCMC -2.2 -2.26 -2.14 -2.21 -2.38 -2.05 -2.21 -2.49 -1.95 
INLA -2.13 -2.21 -2.06 -2.21 -2.4 -2.01    

season2-1 MCMC 0.46 0.38 0.54 0.47 0.2 0.72 0.47 -0.01 0.91 
INLA 0.46 0.37 0.54 0.46 0.19 0.73    

season3-1 MCMC 3.51 3.44 3.59 3.53 3.27 3.82 3.52 3.09 3.99 
INLA 3.51 3.43 3.59 3.52 3.25 3.79    

season4-1 MCMC 2.75 2.67 2.84 2.77 2.53 3.01 2.78 2.36 3.26 
INLA 2.75 2.67 2.84 2.77 2.5 3.04    

 
3.2.2 Spatio-temporal correlation random effects 
For STLINEAR, the range of spatial intercepts and slopes overlaid consistently across 
scenarios (Figure 1). When modeling simulation bias, the means of spatially dependent 
intercepts lie between 0.9 and 0.95 whereas the majority of means of spatially dependent 
slopes range from 0.8 to 0.9 (Figure 1(a) and 1(b)). The spatially dependent variances of 
slopes differed, with larger magnitudes across scenarios relative to the ones that correspond 
to intercepts (Figure 1(c) and 1(d)). The overall spatial intercepts were generally greater 
than 0 for all scenarios (Figure 1(e)). For biofuel impacts, however, the differences of 
posterior samples across scenarios were relatively small.  

 
Figure 1: Box-plots of posterior samples of spatio-temporal random effects using 
STLINEAR. Each box plot corresponds to one scenario-specific model: (a) mean of 
spatially dependent intercept, associated with simulation bias data-type; (b)-(e) the same 
as (a) but for mean of spatially dependent slope, variance of spatially dependent intercept, 
variance of spatially dependent slope, and overall slope parameter, respectively; (f)-(g) the 
same as (a)-(e), but associated with biofuel impact data-type.  
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For STANOVA model, although the posterior distributions of spatially dependent means 
were similar across scenarios, the rest of posterior samples differed dramatically (Figure 
2(a)-(e)). Specifically, temporally dependent means, temporally dependent variances, and 
spatio-temporal interaction terms for simulation bias data had significantly different 
posterior distributions across scenarios. However, posterior distributions related to biofuel 
impacts did not differ dramatically, similar to what was observed for STLINEAR.  
 

 
Figure 2: Box-plots of posterior samples of spatio-temporal random effects using 
STANOVA. Each box plot corresponds to one scenario-specific model: (a) spatially 
dependent mean, associated with simulation bias data-type; (b)-(e) the same as (a) but for 
temporally dependent mean, spatially dependent variance, temporally dependent variance, 
and spatio-temporal interaction, respectively; (f)-(g) the same as (a)-(e), but associated with 
biofuel impact data-type. 
 
Posterior samples of STAR differed largely across scenarios for both simulation bias and 
biofuel impact data types (Figure 3). Specifically, posterior samples of temporally 
autoregressive parameters and variances of spatial autocorrelations could differ on the 
order of five to seven times across scenarios (Figure 3(b) and 3(c)).  
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Figure 3: Box-plots of posterior samples of spatio-temporal random effects using STAR. 
Each box plot corresponds to one scenario-specific model: (a) spatially autoregressive 
parameters, associated with simulation bias data-type; (b)-(c) the same as (a) but for 
temporally autoregressive parameters, and variances of spatial autocorrelations, 
respectively; (d)-(f) the same as (a)-(c), but associated with biofuel impact data-type. 
 
Taking into account the model comparisons presented above and the interest of combining 
scenarios in a single specification, STLINEAR appears to be the best choice: a consistent 
spatial-temporal structure can be assumed across scenarios using STLINEAR structure, 
given that seasonal factors are included. 
 
3.3 Spatio-temporal modeling for scenario-combined data using STLINEAR 
3.3.1. Simulation bias 
By modeling the scenario-combined data using STLINEAR, the significance of seasons, 
observations, physics parameterizations, as well as their interactions was examined. It was 
found that seasons, choices of microphysics, and their interactions have significant impact 
on simulation bias. On the other hand, choices of cumulus schemes, spectral nudging and 
observations do not affect the simulation bias. Table 4 presents the outcome of the model 
building procedure, after statistically non-significant terms were excluded. Summer, fall, 
and spring have positive impacts on simulation bias with decreasing effects according to 
the aforementioned order, relative to winter (which corresponds to the intercept in Table 
4). A simple ANOVA model would incorrectly characterize spectral nudging and cumulus 
scheme parameterizations as statistically significant factors for simulation bias (results 
omitted for brevity).  
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Table 4: Parameter estimation for scenario-combined simulation bias data-type using 
STLINEAR. The significant factors are highlighted in bold. 
 

 Median 2.50% 97.50% 
(Intercept) -2.4849 -2.5062 -2.4633 

factor(season_dummy)2 0.4939 0.463 0.5219 
factor(season_dummy)3 2.9305 2.901 2.9588 
factor(season_dummy)4 2.4143 2.3853 2.4401 

factor(mc_dummy)1 1.5358 1.508 1.5636 
factor(season_dummy)2:factor(mc_dummy)1 -0.8253 -0.8681 -0.7929 
factor(season_dummy)3:factor(mc_dummy)1 -1.4062 -1.4495 -1.3685 
factor(season_dummy)4:factor(mc_dummy)1 -1.0666 -1.1048 -1.0252 

alpha -0.021 -0.0469 0.0084 
tau2.int 2.3822 2.1148 2.7644 
tau2.slo 0.8934 0.7465 1.1037 

nu2 1.7657 1.7528 1.7786 
rho.int 0.9542 0.8712 0.9932 
rho.slo 0.8515 0.6835 0.9562 

 
3.3.2 Biofuel impacts 
Similarly, the significance of factors associated with biofuel impacts were examined by 
modeling scenario-combined data. Seasonal effects on biofuel impacts were found 
statistically significant (Table 5). However, biofuel impacts did not differ significantly for 
alternative physics parameterizations of WRF. Table 5 depicts the final model which has 
the lowest DIC among the examined specifications.  
 
Table 5: Parameter estimation for scenario-combined biofuel impact data-type using 
STLINEAR. The significant factors are highlighted in bold. 
 

 Median 2.50% 97.50% 
(Intercept) -0.0489 -0.121 0.021 

factor(season_dummy)2 -0.1858 -0.2712 -0.0965 
factor(season_dummy)3 -1.6871 -1.7777 -1.6035 
factor(season_dummy)4 -0.3193 -0.4038 -0.2264 
factor(physics_dummy)2 -0.0532 -0.1163 0.0181 

alpha 0.0338 -0.0677 0.1397 
tau2.int 0.4665 0.3557 0.6026 
tau2.slo 0.0072 0.0022 0.0499 

nu2 4.5685 4.4825 4.6605 
rho.int 0.9194 0.8017 0.9868 
rho.slo 0.3819 0.0209 0.9207 
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4. Concluding remarks 
 

In this study, WRF simulated temperatures associated with control simulation bias, as well 
as biofuel impacts, were modeled using spatio-temporal bayesian hierarchical models. Our 
findings suggest that models with spatially varying intercepts and slopes can offer a 
satisfactory description of the spatio-temporal dependence structure of the data. 
Microphysics parameterizations have statistically significant impacts on reproducing near-
surface climatic conditions. Simulated impacts on temperatures due to perennial bioenergy 
crop expansion were found robust to physics parameterizations. 
 
This work has several limitations. One of them is that sensitivity analysis of prior 
distributions was not performed: different prior specifications may result in different 
inferences. Besides, parameter estimation techniques (i.e., MCMC vs INLA) were not 
compared in depth. A more through comparison of estimation accuracy and computation 
times should be considered. In addition, issues related to change of support and alignment 
were ignored at the pre-processing data stage.  
 
It is worth noting that the physics parameterizations and observations were included in the 
models as fixed effects under the assumption of spatial and temporal homogeneity. 
However, it is possible that spatially varying effects exist (Kang et al. 2012). Moreover, 
multivariate hierarchical spatio-temporal modeling (i.e., for temperature and precipitation 
simultaneously) should be performed as the aforementioned variables are both significant 
for model comparison. Despite the above-mentioned limitations, this work established a 
framework to quantitatively assess the impact of physics parameterizations and 
observations on WRF simulation, focusing on an application associated with perennial 
bioenergy crops expansion.  
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