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Abstract 

Investigating the presence of distinct trajectories, forming groups of individuals with 
similar trajectories, and identifying individual and group-level factors contributive to 
distinct trends are areas of growing interest in longitudinal data analysis. Methods based 
on dissimilarity in shapes across trajectories are mainly used for clustering unbalanced 
longitudinal data. Model-based approximation of curves improves precision for sparse 
and irregularly spaced data. This paper used the empirical best linear unbiased prediction 
(BLUP) of random coefficients in the piecewise linear mixed effects model for 
approximating curves, and then used heuristic as well as model-based algorithms for 
clustering BLUP and their functionally transformed scores. To select an optimum cluster 
solution, resulting clusters were evaluated in a model-based fashion by adding one cluster 
and its interaction with time variables at a time to the above piecewise linear mixed 
effects model. When applied to a dataset of 3365 children aged 1–60 months with a cubic 
polynomial population growth curve, this clustering technique identified a grouping of 
six distinct growth trajectories as the best solution. 

Keywords: Clustering; Unbalanced; Longitudinal Data; Subject-specific; Trajectory; 
Vertical Level; Shape  

1. Background and Rationale 

In unbalanced longitudinal studies, each individual consists of a vector of measurements 
of an outcome variable for a sequence of irregularly spaced time points. Number of 
occasions of measurements differs greatly across individuals. Repeated measurements of 
the same individual are correlated, but vectors of measurements between individuals are 
independent. The main objectives in the analysis of longitudinal data are to study the 
individual- and population-level changes in mean response trajectories over time and 
their relationship with influential covariates. The over-time response trajectories can vary 
substantially across individuals, and the growing interests in the analysis of these data are 
investigating the existence of distinct patterns in the trajectories of an outcome of 
interest; forming groups of homogeneous trajectories; and exploring individual- as well 
as group-level factors contributive to the varied patterns of trajectories. Conventional 
cluster algorithms for ordinary multivariable data are not directly applicable for grouping 
unbalanced longitudinal data without some kinds of adaption or adjustment.  

A typical approach to clustering these data is to express the repeated measures on the 
same individual in simple parametric and nonparametric curves and then to classify these 
curves into homogeneous groups using a suitable similarity measure of shapes and 
vertical levels. Usually, some kind of spline basis is used to fit each curve and then 
traditional heuristic clustering algorithms are applied to the basis coefficients or model-
based approaches for clustering are used1-4. One difficulty of this approach is 
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approximating the curve with minimum bias and variance. When data are dense, 
approximation of each curve based on the data from the corresponding individual could 
be acceptable. However, for sparse data, this can produce large bias and variability. To 
overcome the difficulty involving fitting curves on sparse data, James et al used a random 
effects model with a cubic spline basis allowing projection of curves to borrow strength 
from the data across individuals and used a mixer model for clustering4. Alternatively, 
Chiou et al used the correlation between random functions for measuring similarity 
between curves5; however, this method ignores the vertical level, which is important in 
clinical studies. Nagin et al developed a group-based mixture model approach for 
clustering longitudinal trajectories, but this method is not flexible enough to handle 
sparse and irregularly spaced data6-7.  

This article aimed to use the empirical best linear unbiased prediction (eBLUP) of 
random coefficients in the piecewise mixed effects model to approximate the 
heterogeneity in the vertical levels and shapes across all individuals under study and then 
to apply conventional heuristic as well as model-based approaches of cluster algorithms 
to classify individuals with similar patterns of trajectories in the same group and with 
varied patterns in distinct groups. The rationale of using the linear mixed effects model 
for approximating curves is pragmatic as this model is a well known, effective statistical 
technique for modeling mean response trajectories in unbalanced longitudinal data as a 
combination of population and subject-specific effects. The model expresses the time 
dependence of repeated measures as a function of time and thereby handles the 
unbalanced longitudinal data with relatively few parameters irrespective of the number of 
timing of measurements8. The piecewise linear mixed effects model simplifies the shape 
of a trajectory of complex polynomials by expressing in slopes of a sequence of line 
segments. In addition to the precision in modeling, the use of this model reduces 
computational burden substantially as it is available in most statistical software packages. 
As for pre-processing of cluster inputs, this method allows using scores of functional 
transformations of eBLUP for clustering. These scores are modifications of BLUP prior 
to clustering and usually represent a natural structure of distinct trajectories in smaller 
dimensions, thereby aiding in better clustering. The method described in this paper also 
provides a model-based evaluation to select a cluster solution that provides an optimal 
representation of the structure of trajectories in the longitudinal unbalanced data.  

The rest of the article is organized as follows: section 2 presents a brief review of the 
piecewise mixed effects model and the best linear unbiased prediction of random 
coefficients; section three discusses clustering analysis of eBLUP and the selection of an 
optimum solution; section 4 appliesthis novel method of clustering to the early childhood 
growth trajectories; and section 5 provides discussion and concluding remarks.  

2.  Review of Piecewise Linear Mixed Effects Models and the Best Linear Unbiased 

Prediction (BLUP) 

2.1. Linear Mixed Effects Model 

The general form of the mixed effects model can be written as,  

(1):  ,iiiii ebZXY    

where iY  is the        vector of the repeated responses for the ith individual,  is a 
      vector of fixed effects associated with        design matrix of covariates   ,    
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is a       vector of random effects associated with        design matrix        with 
        comprises the covariates of   , for those corresponding components of  can 
vary randomly from one individual to another. The population characteristics, , that are 
shared by all individuals under study, link    to   . The subject-specific effects,   , 
illustrate how regression parameters for     individual corresponding to    deviate from 
that of . Thereby,   , accounts for the heterogeneity across all individuals under study. 
The effects,   , are assumed to be distributed as multivariate normal with mean 0 and 
covariance matrix  , i.e.             Similarly, the        vector of errors,     is 
assumed to be distributed as multivariate normal with mean 0 and covariance matrix   , 
i.e.            . Generally,    is assumed to be a diagonal matrix,      

. The vectors 
   and    are assumed to be independent.  

Henderson9 derived the best linear unbiased estimates (BLUE) of  and the best linear 
unbiased prediction (BLUP) of     For   indivduals, the BLUE of  is,  
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by definition of the conditional mean of two multivariate normal variables, the BLUP of 
   for given iY  can be given as  

ib̂              
 )ˆ(1 iii XYV    

with the prediction error, 
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In BLUP, ib̂ ' iV  and   are unknown and can be replaced by their maximum likelihood 

(ML) or restricted ML (REML) estimates. This later expression of ib̂ is known as the 
empirical BLUP (eBLUP). The same prediction can be derived from Henderson’s mixed 
model equation (MME). Once we know ̂  and ib̂ , the trajectory, iŶ  for given subject 
specific characteristics of the     subject is obvious. Specifically,          

iii ZbX ˆˆ    This is known as the subject-specific trajectory, while the population 

trajectory is      .ˆX  

2.2 Piecewise Linear Mixed Effects Model 

The form of the time dependence of repeated measures of an individual can be linear or 
non-linear. The simplest curve is the straight line. Only an intercept and a slope are 
sufficient to describe this curve, and the slope has simple interpretation in terms of the 
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constant rate of change in the mean response. In many applications, longitudinal data 
change in irregular rates over time. Non-linear trends of this type may not be well 
approximated by polynomials of any order. One approach to represent polynomial curves 
of this type is to have a sequence of connected line segments that produces a piecewise 
linear trend of repeated measures with different slopes in different segments but joined 
together at fixed times. Thus, the piecewise linear mixed effects model provides us with a 
simple representation of population- and subject-level mean temporal changes of any 
order of polynomial in terms of an intercept and slopes of a sequence of line segments. 
The mixed effects model in equation (1) can be transformed to the linear piecewise form 
by multiplying design matrices   and   by a matrix   of linear spline basis so that 
      and        Then, the piecewise form of the model in the equation (1) 
becomes 

.     :)2( **
iiiii ebZXY      

Let us consider a model of     polynomial of time. Considering only the time variables 
in the model, design matrix   can be transformed to    as follows, 
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Where,     is the time of the     measurement for the     subject; the number of knots, 
       is one less than the number of segments. Usually, a     polynomial of time 
can be represented by   linear segments of time. Similarly, the design matrix   can be 
transformed to     The estimation of  and the prediction of    are the same as before. 

3. Cluster Analysis of BLUP and Selection of the Optimum Solution 

The analysis of the piecewise mixed effects model in equation (2) provides the predicted 
values of random coefficients,                                . The BLUP 
                                  can be arranged in       time-ordered 
variables with   rows for each variable. Each of the   components of the first time-
ordered variable,       measures the variability in the vertical level for each individual at 
the start of the study, and rows of the second to (m+2)th variables measure the variability 
in shapes of the curves. As no algorithms uniformly work well on all datasets, a large 
number of clustering approaches—ranging from heuristic approaches, such as 
hierarchical algorithms10 and k-means-like partitioning algorithms11, to formal model 
based approaches with classification and mixture likelihood12—can be applied for 
clustering BLUP. Some of the conventional clustering methods may fail to recognize 
time direction of BLUP data during clustering13. Thus, in addition to BLUP data, scores 
from functional transformations, such as principal component, factor and canonical 
analyses, can be used14. In addition, a large number of parametric and non-parametric 
variable standardization techniques can be used. After a series of cluster solutions are 
produced using different cluster algorithms and inputs, the next step is to select the 
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optimum cluster solution. There are many methods for internal and external validations 
of cluster analysis, including cross validations, bootstrapping, mixer model, and non-
parametric density estimation15. However, a meaningful clustering would be able to 
extract the natural structure of the data in line with the purpose of the data analysis. 
Considering this fact, it is reasonable to use a model that extends equation (2) by 
including the group variable under evaluation and its interaction with time variable. This 
process of the evaluation will be repeated for all cluster solutions. The group variable that 
fits the data best can be accepted as the optimum solution.  

4. Application to Early Childhood Growth Pattern 

4.1 Data Description  

The dataset consists of the standardized scores of weight-for-length (ages < 2 years) and 
body mass index (BMI) (ages between 2 and 5 years) from 3365 children collected on 
their clinic visits during the first 5 years of life. Standardized scores of these two 
variables are termed as BMIz and used as the early childhood growth indicator in this 
article. The data were retrieved from the Nemours electronic health records after approval 
of the Nemours Institutional Review Board. Children who had the first visit at any 
Nemours clinics by the first month of the birth and thereafter had at least one visit each 
year for the next 5 years of life were included in the study. Children with cancer and 
cystic fibrosis were excluded from the study because of the potential abnormal growth 
pattern. Children visited clinics on their own health care purposes. Thus, each child had a 
unique sequence of clinic visits and the resultant dataset was extremely unbalanced with 
sparse and irregularly spaced measurements within and across the children. Analysis 
included the measurements of BMIz between ages 1 and 60 months. Measurements at 
ages 1 and 60 months were interpolated when needed. A total of 51711 clinic visits were 
made by 3365 children. The median (IQR) number of visits was 14 (12–17) with a range 
of 6–76.  

4.2 Visual Inspection and Model Consideration 

 

The LOESS smooth curve in Figure 1 depicts the salient feature of the mean change in 
BMIz as a function of time. It reveals a form of cubic polynomial in the change in BMIz 
over time during the first 5 years of life that can be approximated by three linear trends 
with varying slopes at three different segments of ages. That is, a model is needed that 
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describes each child’s growth curve with an intercept and three slopes at three different 
segments. An examination of a piecewise linear mixed effects model with random 
coefficients exhibited the best fit of this dataset with knots at 8 and 21 months. Thus, the 
three segments of ages that contain approximate linear trends in the temporal change in 
BMIz are 1–8 months, 8–21 months, and 21–60 months. The growth trajectories of the 
    child can be represented by the following piecewise linear mixed effects model:  

                                
           
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In the model above,     denotes the BMIz of the     child at the     measurement and 
            denotes the time of the corresponding measurement,             Two 
knots are at       and       .           ] are the regression coefficients of the 
population characteristics and                                      are the     
child’s deviation from the corresponding component of .   and  represent the 
population intercept or the mean BMIz at the age of 1 month and the rate of change in 
BMIz (slope) during the ages between 1 and 8 months (first segment), respectively.   
and   are the differences between slopes in the first and second segments and the second 
and third segments, respectively. The individual level regression coefficients,  

             and                    account for the heterogeneity in levels and shapes 
of the trajectories among 3365 children. Table 1 presents the distribution of the predicted 
four random coefficients. There are substantial variability among children in predicted 
values of              and    ,                       for all four variables of 
coefficients.  

Table 1: Distribution of the BLUP of Random Coefficients 

Coefficients Mean (SE) Median (IQR) Min, Max Variance (SE) 

Intercept 0.00(0.01) -0.48 (0.03, 0.52) -3.17, 2.37 0.69 (0.02) 

Slope in Segment 1 0.00(0.01) -0.81 (-0.03, 0.78) -4.76, 6.36 2.12 (0.07) 

Slope in Segment 2 0.00(0.01) -0.93 (-0.01, 0.91) -6.77, 6.82 -2.36 (0.11) 

Slope in Segment 3 0.00(0.01) -0.38 (0.03, 0.42) -3.13, 2.3 -0.69 (0.02) 

 

4.3. Clustering Four Empirical BLUP  

As discussed in section 3, a large number of clustering algorithms are available in most of 
the popular statistical software packages, along with various options of distance or 
similarity measures. A number of cluster solutions of different sizes are generated using 
cluster algorithms, such as hierarchical, k-means, non-parametric density, finite Gaussian 
mixture modeling, and combinations of methods in two or more steps that are available in 
SAS, R, and SPSS. Predicted coefficients as well as their principal component (PC) and 
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factor scores are used as input for clustering. The first three PCs explained 99.7% of the 
variation in 4 variables of random coefficients and are selected for clustering. Similarly, 
the scores of the three factors are used for clustering. To select an optimum cluster 
solution that classifies children with similar trajectories in the same group and has a 
number of distinct groups that adequately represent the natural structure of the data, each 
cluster solution and its interaction with time variables were added in the model of 
equation (1). Thus, the cluster solution in the following model that fits the longitudinal 
BMIz data best can be accepted as the optimum solution.  

                                 
           
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Model fit criteria BIC and AIC are used to select with optimum cluster groupings. Table 
2 presents the values of BIC and AIC for evaluating cluster solutions of sizes 4–6 using 
eBLUP and their PC and factor scores as cluster inputs.  

Table 2: Model Fit Statistics for Cluster Evaluation 

Cluster Input Number of Clusters BIC AIC 

Factor Scores 6 94495.8 94538.7 

PC scores 6 94649.9 94692.8 

PC scores 4 94851.7 94894.5 

PC scores 5 94869 94911.8 

BLUP 6 95077.8 95120.6 

BLUP 4 95098.6 95141.5 

BLUP 5 95325.2 95368.1 

Factor Scores 4 95862.6 95905.4 

Factor Scores 5 95932 95974.8 

 

The solution of cluster size 6 using factor scores as the input generated by a two-step 
hierarchical algorithm yielded the minimum BIC and AIC, indicating superior results 
compared to others. 
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Figure 2 displays the LOESS smooth trajectories of early childhood BMIz for six distinct 
groups. The figure also presents the number of children in the corresponding groups.  

5. Discussion and Conclusions 

Clustering of longitudinal data collected in irregularly spaced time points for each 
individual involves several steps of analysis. Application of efficient methods in each 
phases of analysis is essential for effective and useful groupings. The first step of the 
analysis is to approximate the longitudinal trajectory or time dependence of repeated 
measures of each individual with sufficient accuracy. The second step is the use of a 
suitable clustering algorithm for the detection of similarity or dissimilarity in trajectories 
among all individuals under study. The last step is the evaluation of the cluster results in 
order to select an optimum grouping of trajectories. This article uses a piecewise linear 
mixed effects model to approximate the variability in the vertical shift and the shape of 
the trajectories. As described in sections 1 and 2, the model uses population and subject-
specific coefficients for approximating the trajectory of an individual. Intercepts 
approximate the vertical level at the beginning of the curve, while the slopes of piecewise 
splines approximate the shapes of the trajectory. The model offers the unbiased 
estimation as well as unbiased prediction of the population and subject-specific 
regression coefficients with the least possible variance and prediction error, respectively. 
The advantages of the piecewise spline are discussed in section 2. Compared to 
individual data-based curve projection, this model allows us to borrow strength across 
individuals when approximating curves, resulting in superior projection for sparse and 
irregularly spaced repeated measures. The ability to cluster either predicted random 
coefficients or scores of their functional transformations gives the flexibility to use any 
suitable algorithm, including heuristic methods (e.g., hierarchical and k-means), model-
based methods (i.e., classification likelihood and mixture likelihood approaches), and 
non-parametric density estimation based methods. Functional transformations of 
coefficients facilitate extraction of natural structures in the dataset. There is no 
computational burden to implement the proposed clustering method because linear mixed 
effects models and conventional clustering algorithms are available in most statistical 
software packages.  

Earlier methods tended to project each curve on the data from the corresponding 
individual and were highly likely to result in biased and misleading projections. To 
overcome this drawback, James et al used a mixture likelihood based approach with a 
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random effects model to fit cubic splines; however, because this method involves heavy 
computational requirements, it has not been used frequently. Nagin et al used mixture 
likelihood for group-based probability clustering. The capacity is limited in handling 
irregularly spaced repeated measures for each individual. Their software is capable of 
using, at most, a cubic polynomial curve.  

The last phase of the analysis involves the evaluation of cluster results and determination 
of the optimal number of cluster groups. Existing conventional methods are mostly 
applicable to a dataset with a single row for each individual. Model-based methods with 
the capability of recognizing the natural structure of longitudinal curves could be 
suitable. The piecewise mixed effects model in the equation (4) used in this article for 
cluster evaluation adequately recognizes the longitudinal curves. A group variable with 
maximum within-group homogeneity and between-group heterogeneity in curves is likely 
to offer the optimal fit of the proposed model.  

The application of the proposed clustering method on the early childhood growth data 
effectively identified 6 distinct groups of BMIz trajectories with varying vertical levels 
and shapes of curves. The method also identified latent factor scores as the better input 
for clustering this particular dataset. In conclusion, this method possesses the desirable 
capacity to cluster longitudinal data with sparse and irregularly spaced repeated 
measures.  
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