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Abstract 
Background/Aims: The two main approaches used to analyze cluster randomized trials 
are cluster-level and individual-level analysis. In a cluster-level analysis, summary 
measures are obtained for each cluster and then the two sets of cluster-specific measures 
are compared, such as with a t-test of the cluster means. A mixed model which takes into 
account cluster membership is an example of an individual-level analysis. The purpose of 
this study was to compare power and bias of a cluster-level analysis and an individual 
level analysis when data are complete, missing completely at random (MCAR) and 
missing at random (MAR). 
 
Methods: We used a simulation study to quantify and compare power and bias of these 
two methods. Complete datasets were generated and then data were deleted to simulate 
MCAR and MAR data. A balanced design, with two treatment groups and two time 
points was assumed. Cluster size, variance components (including within-subject, within-
cluster and between-cluster variance) and proportion missing were varied to simulate 
common scenarios seen in practice. For each combination of parameters, 1000 datasets 
were generated and analyzed. 
 
Results: Results of our simulation study indicate that cluster-level analysis resulted in 
substantial loss of power (up to 26%) when data were MAR. Individual-level analysis 
had higher power and remained unbiased, even with a small number of clusters. 
 
Conclusion: Individual-level modeling which takes into account cluster membership 
performs better in the presence of missing data in terms of power and bias. 
 
Key Words: cluster randomized trial, power, bias, missing data, mixed model 
 

 
1. Introduction 

 
In cluster randomized trials (CRTs), intact groups of individuals are allocated to 
treatment arms while the outcome of interest is assessed on the individuals. A CRT may 
be adopted to reduce contamination that may occur if individuals in the same community 
are assigned to different treatment arms; if an intervention is given to an entire group 
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either by design or for logistical convenience; or to assess the population-level effects of 
an intervention applied to a large proportion of a population. 1  
 
Special consideration must be taken in the analysis of CRTs because the unit of 
randomization (clusters) can be different than the level at which data are collected 
(individuals). Observations on individuals within clusters tend to be correlated because 
individuals within clusters tend to be more similar than in a randomly selected sample. 
Ignoring the dependence during analysis can lead to underestimated standard errors. 2 
Since subjects within clusters cannot be treated as independent, analytical approaches 
which take into account the cluster design are necessary.3 The intracluster correlation 
coefficient (ICC) is used to measure how much more similar observations within a cluster 
are compared to observations between clusters. The ICC is defined as the proportion of 
total variance that can be attributed to the differences between clusters. 4 This correlation 
is generally small in CRTs, typically ranging from 0.001 and 0.05.5, 6 However, even 
small ICCs may have a large impact on the power of a study due to the reduction in 
effective sample size.7 
 
1.1 Approaches for analyzing CRTs 
There are two main approaches that are generally used to analyze CRTs: cluster-level and 
individual-level analysis. Individual-level analyses generally use a regression model that 
takes into account the correlation of individuals within clusters, such as linear mixed 
models or generalized estimating equations.6, 8 Cluster membership and a subject 
indicator (if data are longitudinal) are included as random effects in a mixed model 
approach. 1 Some strengths of individual level modeling include the ability to use 
individual level covariates in the model as well as modelling the variance between-cluster 
and within-cluster, which may lead to a more realistic model of the clustered data.6, 9 
Individual-level modelling tends to be more efficient when cluster size varies 
substantially.1, 10 Even in a design in which equal-sized clusters are assigned, cluster sizes 
may vary substantially in the presence of missing data. 
 
With cluster-level analysis, summary measures are obtained for each cluster and then the 
cluster-specific measures are compared.11 For continuous outcomes, the means of each 
cluster can be compared using a t-test. Strengths of cluster-level analysis are the relative 
simplicity of the analysis and its capacity for handling small numbers of clusters; cluster-
level methods have been recommended when there are fewer than 15-20 clusters per 
treatment arm because they are more robust to departures from underlying assumptions.1 
It has been shown that cluster-level analyses are robust with as few as three clusters when 
using a t-test.4 However, a cluster-level analysis has a small number of degrees of 
freedom (the number of clusters minus two) leading to low statistical efficiency,11 which 
may be heightened in the presence of missing data.  
 
1.2 Missing data 
Missing data are common in both individually randomized designs 12 and CRTs 13 and 
can be classified as missing completely at random (MCAR), missing at random (MAR) 
or missing not at random (MNAR).14 Under MCAR, the probability that a response is 
missing does not depend on observed or unobserved data. With MAR data, the 
probability that a response is missing may depend on observed data, but not on 
unobserved data. If the probability of a missing response is related to unobserved data, 
the missingness is termed MNAR.14 The potential consequences of missing data are a 
loss of power and biased estimation. Under MCAR, an analysis on the observed 
outcomes only (referred to as complete case analysis) results in unbiased estimates.15 
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When data are MAR, mixed models that adjust for the covariates that are associated with 
the missing data mechanism yield unbiased estimates.14, 15 
 
Taljaard et al. compared the Type I and Type II error rates of various imputation 
techniques for handling missing data in CRTs using simulation studies,16 but they did not 
compare individual versus cluster level analysis. Hossain et al compared the performance 
of cluster-level analysis, baseline covariate-adjusted cluster-level analysis and a mixed 
model under covariate-dependent missing data for bias, average standard errors and 
coverage.17 However, they did not consider other missing data mechanisms including 
MCAR and MAR data. Furthermore, they did not compare the power between individual-
level and cluster-level analysis.  
 
1.3 Objective 
To our knowledge, there has not been a comparison of cluster-level and individual level 
analysis in the presence of MCAR or MAR missing data. We carried out a simulation 
study to quantify power and bias in CRTs when using individual-level analysis compared 
to cluster-level analysis with complete data and in the presence of MCAR and MAR 
missing data. We investigated the effect of varying intracluster correlation, cluster size, 
and the proportion of missingness. 
 

2. Methods 

 
We simulated data from a balanced CRT with two treatment groups and two time points. 
We used a two-sided test, 𝛼 = 0.05, power 𝜑 = 0.8, total variance = 4, and 20 subjects 
per cluster in the initial power analysis to design the study. See Appendix for more 
details. The treatment effect was varied to maintain 80% power. The following 
combinations were used: number of clusters =  20, 60; ICC = 0.001, 0.01, 0.05; and 
proportion missing = 0.2, 0.4. For each combination, a complete dataset was simulated 
and analyzed using both a mixed model and a cluster-level t-test. Observations were then 
removed to simulate MCAR and MAR data and reanalyzed. For each scenario 1,000 
datasets were simulated and analyzed. Bias and power for the treatment effect estimate 
were assessed. Details are given below. 
 
2.1 Data Simulation 
For each individual, the outcome 𝑌𝑖𝑗𝑘 was simulated using the model:18 

𝑌𝑖𝑗𝑘 = 𝛽0 + 𝜏𝑇𝑘 + 𝛿𝑋𝑖𝑇𝑘 + 𝑐𝑖 + 𝑠𝑗(𝑖) + 𝑒𝑖𝑗𝑘 
where i = 1, 2, . . . , n is the index for the cluster, j = 1, 2, . . . , m is the index for subjects 
nested within each cluster, and k = 0 , 1 is the index for time. The treatment indicator is 
𝑋𝑖, and the time indicator is 𝑇𝑘. For the purposes of this study, 𝛽0 = 5, 𝜏 = 0.5, and the 
treatment effect, 𝛿, varied in order to target 80% power in the complete data, as described 
above. Clusters, 𝑐𝑖 were generated from a normal distribution with mean 0 and variance 
𝜎𝐶

2. Within each cluster, subjects, 𝑠𝑗(𝑖), were sampled from a normal distribution with 
mean 0 and variance 𝜎𝑠

2. Each subject had a normally distributed error, 𝑒𝑖𝑗𝑘,  with mean 0 
and 𝜎𝑒

2. The variance components were varied to create the different ICCs, while keeping 
the total variance at 4. The between subject variance, 𝜎𝑠

2, was kept constant at 3 while 𝜎𝐶
2 

and 𝜎𝑒
2 were varied such that: 

𝐼𝐶𝐶 =
𝜎𝐶

2

𝜎𝑐
2 + 𝜎𝑠

2 + 𝜎𝑒
2 =

𝜎𝐶
2

4
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Thus, for an ICC of 0.05: 𝜎𝐶
2 = 0.2, 𝜎𝑠

2 = 3 and 𝜎𝑒
2 = 0.8. For an ICC of 0.01: 𝜎𝐶

2 =
0.04, 𝜎𝑠

2 = 3  and 𝜎𝑒
2 = 0.96,  and for an ICC of 0.01: 𝜎𝐶

2 = 0.004, 𝜎𝑠
2 = 3  and 𝜎𝑒

2 =
0.996. 
 
2.1.1 Simulating Missing Data 
The complete data set was the comparison set. Data were deleted to represent MCAR 
data and MAR data. For the MCAR datasets, the observations at time 1 (follow-up) were 
randomly deleted throughout with probability of 0.2 or 0.4. For the MAR datasets, the 
probability of an observation at time 1 being deleted depended on the baseline response 
value. Specifically, observations with baseline values of greater than 6 were twice as 
likely to be missing as observations with baseline values of 6 or less. At baseline, the 
overall mean was 5 with a total variance of 4 for each individual. Thus, 6 is half a 
standard deviation above the mean. With the proportion of missingness set at 20%, those 
with baseline values greater than 6 had a 40% probability of having a missing outcome at 
the next time point and those with baseline values below 6 had a 20% probability of 
being missing. 
 
2.2 Analysis 

 
The individual-level analysis we used was a mixed model with random effects for cluster 
membership and subject indicator. Fixed effects included the intervention assignment, 
time and the interaction between time and intervention group to allow for the effect of the 
treatment over time to vary by intervention group. For the cluster-level analysis, the mean 
value was obtained for each cluster and then a two sample t-test with degrees of freedom 
equal to the total number of clusters minus two was used to compare the cluster means 
for the two treatment arms.11 
 
The estimated treatment effect and associated confidence intervals at the second time 
point were found for each type of analysis. Power and bias were assessed and compared 
between the individual-level analysis method and the cluster-level analysis method for 
the three types of datasets (complete, MCAR and MAR). We calculated power as the 
proportion of statistically significant results, defined as p<0.05. We calculated bias as the 
difference between the estimated treatment effect from the true treatment effect. Both 
absolute bias and percent bias were calculated. 
 

3. Results 

 
For each combination of parameters (ICC, number of clusters and probability of 
missingness), 1000 datasets were simulated. Power and bias were calculated. 
Complete datasets were generated and then data were removed to create the 
MCAR and MAR datasets. Power and bias for the complete datasets were 
combined and averaged for each set of parameters (because no data were 
removed), resulting in 2,000 simulation runs for each combination of cluster size 
and ICC.  
 
3.1 Power 

 
Nominal power was 80% for the complete datasets, and was achieved for each set of 
parameters (within the 95% confidence intervals). Results are given in the Appendix. 

JSM 2016 - Section on Statistics in Epidemiology

2862



Individual-level analysis was slightly more powerful than cluster-level analysis on the 
complete datasets; difference in power ranged from 0% to 5%, with a median difference 
of 1.5%. Under MCAR data, individual-level analysis was more powerful than cluster-
level analysis. The difference in power between individual-level and cluster-level 
analysis ranged from 4 to 16%, with a median difference of 6.5%. With data that were 
MAR, there was a substantial difference in power between individual-level and cluster-
level analysis. Individual level analysis was more powerful by between 2% and 12%, 
with a median difference of 7.5%.  
 
Figures 1-3 show how power was impacted by ICC, number of clusters and proportion of 
missingness when data were MCAR and MAR. As Figure 1 indicates, individual-level 
analysis was more powerful overall than cluster level analysis for both MCAR and MAR 
data. There was a slight increase in power for both individual-level and cluster-level 
analysis as ICC increased. The loss of power was substantial when data were MAR for 
cluster-level analysis. Additionally, the range in power was larger for cluster-level 
analysis, particularly when data were MAR. 
 
In Figure 2, individual and cluster-level power is separated by the total number of 
clusters. Individual-level analysis was more powerful than cluster-level analysis. There 
was not a substantial difference in power for 20 clusters compared to 60 clusters for 
either analysis method when data were MCAR or MAR. 
 
Figure 3 displays power for individual versus cluster-level analysis by the probability that 
an observation was missing for MCAR and MAR data. There was a substantial loss of 
power with higher rates of missing data for cluster-level analysis. Individual-level 
analysis remained more powerful than cluster-level analysis, and was only slightly 
affected by the increased proportion of missing data. 
 
3.2 Bias 
 
Both individual-level and cluster-level analyses resulted in unbiased estimates when data 
were complete, MCAR and MAR. The bias was less than 5% for each set of parameters. 
Figures 4-6 in the Appendix show how ICC, number of clusters and proportion of 
missingness impact bias when data are MCAR and MAR. Overall, the MCAR datasets 
were slightly less biased (<2% bias) than the MAR datasets. Results in tabular form are 
given in the Appendix. 
 

4. Discussion 
 
 
The objective of our study was to compare individual-level analysis and cluster-level 
analysis for CRTs on power and bias for complete data and in the presence of missing 
data. Results from our simulation studies indicate that with complete data, there was not a 
significant difference in power or bias between the two analysis methods. However, the 
individual-level mixed model was more powerful than the cluster-level t-test in the 
presence of missing data. When subjects within clusters were more similar, indicated by 
increased ICC, there was more power when data were MCAR or MAR. The number of 
clusters did not have a substantial effect on power for either type of analysis. However, 
the proportion missing had a large impact on power for cluster-level analysis, especially 
when data were MAR. With data that were MCAR, there was a similar trend in the loss 
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of power that resulted from having a decreased sample size for both individual-level and 
cluster-level analysis. 
 
With the complete datasets, MCAR datasets and MAR datasets, both analysis methods 
resulted in unbiased estimates. The ICC and the number of clusters did not have a 
significant effect on bias under either missingness assumption.  
 
The results of our simulations are supported by the literature in terms of power. Ashbeck 
and Bell 19 demonstrated that mixed models resulted in greater power than t-tests in the 
presence of missing data for individually randomized studies. It has been shown that 
mixed models result in unbiased estimates when data are MAR 14, 15, 20 and that a 
complete case analysis using a t-test for continuous data is valid when data are MCAR. 14, 

15, 20 We found that mixed models resulted in unbiased estimates for MAR data; however, 
a complete case analysis was unbiased when data were MCAR. Hossain et al 17 also 
found that cluster-level analysis and mixed models resulted in unbiased estimates when 
the missingness depended on covariates. Hossain et al 17 showed that a cluster-level 
analysis was unbiased if both treatment groups have the same missingness mechanisms 
and covariate effects, which is the scenario our simulations fell in. 
 
Researchers using a CRT design can use the results of this study to minimize the loss of 
power and bias that may occur due to missing data. The risk of attrition is high in CRTs, 
13, 21 and thus it is almost inevitable that missing data will exist. In practice, it is difficult 
to determine which missingness assumption is appropriate. 22 However, it is important to 
plan for missing data in the design and analysis stages of CRTs. There is a trade-off that 
should be considered when deciding which analysis technique to adopt. Cluster-level 
analysis is relatively simple and tends to do well in terms of power and bias if data are 
MCAR. However, when data are MAR, cluster-level analysis resulted in a substantial 
loss of power. Researchers can consider which scenario fits their study in terms of ICC 
and missingness mechanism and adopt the analysis method that is most appropriate. The 
use of a mixed model, though more complex and difficult to employ, may be 
advantageous because it was more efficient regardless of the missingness mechanism. 
 
A limitation of our study, like all simulations studies, is that it was relatively narrow in 
scope. We considered a limited number of factors which may have an impact on power 
and bias. Given the parameters of our study, we had surprising results. Cluster-level 
methods are recommended when there are fewer than 15-20 clusters per treatment arm 
because cluster-level analyses are more robust to departures from underlying 
assumptions. 1 The results of our study indicate that individual-level analysis performed 
better in terms of power, even with 10 clusters per arm. In our simulations, we used 
mixed models and one of the assumptions is that random effects are normally distributed. 
Through our simulations, we did not misspecify the distribution so this assumption was 
always met, which may not reflect reality. Because the assumption of normally 
distributed random effects was met with our simulations, this may partially explain why 
cluster-level analysis remained less efficient than individual-level analysis, even with a 
smaller number of clusters per arm. Further investigation is needed to assess whether the 
recommendation to use cluster level analysis with a smaller number of clusters is 
appropriate. 
 
Strengths of our study included use of simulations to quantify the difference in power 
between the two analysis methods. An intuitive understanding seems to be given in the 
literature that cluster-level analysis is less efficient due to the decreased sample size and 
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underestimated variance; however an in-depth investigation has not yet been provided. 
Additionally, we focused on the effect of several factors that may influence the power 
and bias. 
 
In this study, we used the simple case of a balanced CRT design to compare individual-
level analysis to cluster-level analysis. We were then able to systematically vary the 
components of interest including the missingness mechanism, ICC, number of clusters 
and proportion missing. Future investigation may be warranted for the case of CRTs with 
varying cluster sizes and for categorical outcomes. To summarize, we found that 
individual-level analysis was more efficient than cluster-level analysis and resulted in 
unbiased estimates. If possible, researchers should use individual level analyses. 
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Figure 1: The effect of varying ICC on power. Graphical representation of the combined 
simulations across the different set of parameters. Each bar represents the power from 
4,000 simulation trials with number of clusters (20, 60) and probability of missing (20%, 
40%). Nominal power was 80% for complete data. The boxes show min, max, first and 
third quartile, median (line) and mean (symbol). 

  

JSM 2016 - Section on Statistics in Epidemiology

2866



 
Figure 2: The effect of varying number of clusters on power. Graphical representation of 
the combined simulations across the different set of parameters. Each bar represents the 
power from 6,000 simulation trials with ICC (.001, .01, and .05) and probability of 
missing (20%, 40%). Nominal power was 80% for complete data. The boxes show min, 
max, first and third quartile, median (line) and mean (symbol). 

  

JSM 2016 - Section on Statistics in Epidemiology

2867



 

 
Figure 3: The effect of varying proportion missing on power. Graphical representation of 
the combined simulations across the different set of parameters. Each bar represents the 
power from 6,000 simulation trials with ICC (0.001, 0.01, and 0.05) and number of 
clusters (20 and 60). Nominal power was 80% for complete data. The boxes show min, 
max, first and third quartile, median (line) and mean (symbol). 
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Appendix 

Table 1: Power and bias for the treatment effect. Results from 2,000 simulation trials in 
the complete datasets. 

ICC Clusters Power (95% Confidence Interval) Absolute Bias (Percent Bias) 

Individual-Level Cluster-Level Individual-Level Cluster-Level 

.001 20 0.81(0.80, 0.83) 0.80(0.78,0.81) 0.00(0.2) 0.00(0.1) 

.01  0.81(0.79, 0.83) 0.80(0.78,0.81) -0.01(-1.1) 0.00(0.1) 

.05  0.81(0.80, 0.83) 0.76(0.74,0.78) 0.00(0.2) 0.00(-0.5) 

.001 60 0.82(0.80,0.84) 0.80(0.78,0.82) 0.00(1.1) 0.0(-1.1) 

.01  0.82(0.80,0.83) 0.82(0.80,0.83) 0.00(-0.8) 0.00(0.6) 

.05  0.80(0.79,0.82) 0.83(0.82,0.85) 0.00(0.5) 0.00(-0.1) 

ICC, number of clusters, and proportion of missingness* were varied and 1,000 
simulation runs were performed. 
Power was defined as the proportion of trials where p<0.05  
Bias is the difference between the treatment effect and the average estimate. 
*Because no data are removed for the complete datasets, the 20% and 40% missingness 
were combined and the average power and bias were taken for 2,000 datasets 
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Table 2: Power and bias for the treatment effect. Results from 1,000 simulation trials in 
the MCAR datasets. 

ICC Clusters Probability 

of missing 

Power (95% Confidence Interval) Absolute Bias (Percent Bias) 

Individual-Level Cluster-Level Individual-Level Cluster-Level 

.001 20 0.20 0.74(0.72,0.77) 0.70(0.68,0.73) 0.01(1.6) 0.00(-0.6) 

.01   0.79(0.76,0.81) 0.74(0.71,0.76) 0.00(-0.1) -0.01(-0.9) 

.05   0.80(0.78,0.83) 0.71(0.68,0.74) 0.00(-0.6) 0.00(-0.1) 

.001 20 0.40 0.65(0.62,0.68) 0.59(0.56,0.62) 0.01(1.0) 0.00(0.5) 

.01   0.71(0.69,0.74) 0.61(0.57,0.64) 0.00(-0.5) 0.00(0.1) 

.05   0.75(0.72,0.78) 0.62(0.59,0.65) 0.00(-0.1) -0.01(-1.1) 

.001 60 0.20 0.78(0.75,0.80) 0.72(0.70,0.75) 0.00(1.4) 0.00(0.8) 

.01   0.81(0.79,0.84) 0.75(0.73,0.78) 0.00(0.3) 0.00(0.8) 

.05   0.80(0.77,0.82) 0.74(0.72,0.77) 0.00(-0.6) 0.00(0.6) 

.001 60 0.40 0.73(0.71,0.76) 0.57(0.54,0.60) 0.00(1.3) 0.01(1.7) 

.01   0.74(0.71,0.77) 0.63(0.60,0.66) 0.00(-0.1) 0.00(0.0) 

.05   0.77(0.74,0.80) 0.66(0.63,0.69) 0.00(0.9) 0.00(-0.1) 

ICC, number of clusters, and proportion of missingness were varied and 1,000 simulation 
runs were performed. 
Power was defined as the proportion of trials where p<0.05 
Bias is the difference between the treatment effect and the average estimate. 
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Table 3: Power and bias for the treatment effect. Results from 1,000 simulation trials in 
the MAR datasets. 

ICC Clusters Probability 

of missing 

Power (95% Confidence Interval) Absolute Bias (Percent Bias) 

Individual-Level Cluster-Level Individual-Level Cluster-Level 

.001 20 0.20 0.70(0.67,0.73) 0.68(0.65,0.71) -0.02(-2.7) 0.00(0.2) 

.01   0.81(0.78,0.83) 0.74(0.71,0.76) 0.03(4.6) -0.02(-2.5) 

.05   0.80(0.77,0.82) 0.72(0.69,0.75) 0.01(0.8) -0.01(-1.0) 

.001 20 0.40 0.64(0.61,0.67) 0.54(0.51,0.57) -0.01(-3.5) 0.00(0.4) 

.01   0.68(0.65,0.70) 0.59(0.56,0.62) 0.00(0.4) 0.00(0.0) 

.05   0.73(0.70,0.76) 0.63(0.60,0.66) 0.00(0.6) 0.00(0.0) 

.001 60 0.20 0.73(0.70,0.76) 0.71(0.68,0.73) 0.00(-0.3) -0.01(-2.1) 

.01   0.80(0.78,0.83) 0.75(0.72,0.77) -0.01(-1.1) -0.01(-1.8) 

.05   0.80(0.78,0.83) 0.74(0.71,0.76) -0.01(-0.9) 0.00(0.5) 

.001 60 0.40 0.69(0.66,0.72) 0.57(0.64,0.60) 0.01(1.8) 0.00(-1.3) 

.01   0.69(0.66,0.72) 0.57(0.64,0.60) 0.00(-0.6) 0.00(1.0) 

.05   0.73(0.70,0.75) 0.67(0.64,0.70) -0.01(-1.1) 0.00(1.0) 

ICC, number of clusters, and proportion of missingness were varied and 1,000 simulation 
runs were performed.  
Power was defined as the proportion of trials where p<0.05  
Bias is the difference between the treatment effect and the average estimate. 
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Power Calculation 

 
For each combination of sample size and ICC, a treatment effect was simulated for 80% 
nominal power to detect a difference between the treatment groups. The total sample size 
was divided by the design effect (for clusters of size m, DE=1+ (m-1)ICC) 11 , which 
represents the total sample size needed under a randomized clinical trial with the 
individual as the unit of randomization and analysis. The individual-design sample size 
was used to determine the required treatment effect. For example, given 20 clusters with 
a cluster size of 20 and an ICC of .05, the design effect is 1 + (m − 1)ICC = 1 +
19(. 05) = 1.95. This gives an effective sample size of 400/1.95 = 205. A sample size 
of 205, α=.05 and standard deviation of 2 (which is √σc

2 + σs
2 + σe

2) results in a treatment 
effect of 0.788 for 80% power. 
 

 
Figure 4: The effect of varying ICC on percent bias. Graphical representation of the 
combined simulations across the different set of parameters. Each bar represents the 
power from 4,000 simulation trials with number of clusters (20 and 60) and probability of 
missing (20% and 40%). The boxes show min, max, first and third quartile, median (line) 
and mean (symbol). 
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Figure 5: The effect of varying the number of clusters on percent bias. Graphical 
representation of the combined simulations across the different set of parameters. Each 
bar represents the power from 6,000 simulation trials with ICC (0.001, 0.01, and 0.05) 
and probability of missing (20% and 40%). The boxes show min, max, first and third 
quartile, median (line) and mean (symbol). 
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Figure 6: The effect of varying the proportion missing on percent bias. Graphical 
representation of the combined simulations across the different set of parameters. Each 
bar represents the power from 6,000 simulation trials with ICC (0.001, 0.01, and 0.05) 
and number of clusters (20 and 60). The boxes show min, max, first and third quartile, 
median (line) and mean (symbol). 
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