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Abstract 

The Two Scales Covariance estimator is a consistent estimator of the true covariance 

matrix used to evaluate the portfolio risk (Zhang et al. 2005). Used in the context of high 

frequency financial data, Fan et al (2012) demonstrated that the portfolio risk estimator 

using the pairwise refresh synchronization method and the portfolio risk estimator using 

the all-refresh synchronization method converged to the true risk. Moreover, they showed 

that the portfolio risk estimator using the pairwise refresh synchronization method 

converged faster. But, their simulation and empirical results showed that as the gross 

exposure increased, the estimated portfolio risks diverged from the true risk. They argued 

that the reason could be that the TSCV produced non positive definite matrices. We 

prove that forcing non positive definite matrices to be positive definite has negative 

consequences. We suggest a risk based on restricted TSCV - based on positive definite 

covariance matrices --, however that risk is not unbiased. This article suggests an 

expression of that bias and proposes a corrected portfolio risk estimator which is 

unbiased and based on positive definite TSCV. Simulations demonstrate that the 

estimated risks based on the restricted TSCV are more stable as the gross exposure 

increases, and we can correct for the bias. 

KEYWORDS: Two Scales Covariance (TSCV), risk estimator, Pairwise refresh method, 

All-refresh method 
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1. INTRODUCTION 

Zhang in 2005 developed a new estimator of the realized covariance matrix capable of 

handling the bias induced by the Epps effect, the non-synchronized effect and micro-

structure effect. The estimator is called Two Scales Realized Volatility (TSRV) in the 

univariate framework and Two Scales Realized Covariance (TSCV) in the multivariate 

framework. The TSCV is defined as follows. 

Consider a synchronized data set 𝑋, a 𝑛 × 𝑝 matrix where 𝑛 represents the synchronized 

sample size and 𝑝 the number of assets. 𝑥𝑖𝑗 the 𝑖𝑡ℎ log-price of the 𝑗𝑡ℎ asset. Since they 

are not directly observed because of the presence of micro-structures , we denote the 

actual matrix of log-price by 𝑋𝑜, and the latent price by 𝑋 such that 𝑋𝑜 = 𝑋 + ɛ. We 

assumed that the errors (noise) are i.i.d normal distributed with mean 0 and variance 𝜎2. 

The TSCV is formulated as following: 

< 𝑋, �̂� >= [𝑋𝑜, 𝑋𝑜]1
(𝑘)

−
𝑛𝑘
𝑛
[𝑋𝑜, 𝑋𝑜]1

(1)
 

where [𝑋𝑗
𝑜, 𝑋𝑗ʹ

𝑜]1
(𝑘)

=
1

𝑘
∑ (𝑛
𝑡=𝑘 𝑋𝑗𝑡

𝑜 − 𝑋𝑗ʹ𝑡−𝑘
𝑜 )2 if 𝑗 = 𝑗ʹ and [𝑋𝑗

𝑜, 𝑋𝑗ʹ
𝑜]1
(𝑘)

=
1

𝑘
∑ (𝑛
𝑡=𝑘 𝑋𝑗𝑡

𝑜 −

𝑋𝑗𝑡−𝑘
𝑜 )(𝑋𝑗ʹ𝑡

𝑜 − 𝑋𝑗ʹ𝑡−𝑘
𝑜 ) if 𝑗 ≠ 𝑗ʹ 

𝑛𝑘 = (𝑛 − 𝑘 + 1)/𝑘 . 𝑘 is optimally chosen with order 𝑘 = 𝒪(𝑛2/3). 

Theoretically, (Fan, Li, & Yu, 2012) showed that the TSCV was a consistent estimator of 

the realized covariance matrix. But practically, it did not perform well. For instance, they 

proved that the TSCV should produce smaller risk when using the pairwise refresh 

method to synchronized the data. But, simulated data and real data showed that as the 

gross exposure constraint increased, the risk moved farther away from the true risk, and 

became even worse than the risk estimated using data synchronized by the all-refresh 

method. 

Since the TSCV is consistent theoretically but not practically, two reasons explain why. 

Either the TSCV does not estimate true covariance matrices, or the estimation process 

causes a bias. In this paper, section 2 investigates the nature of the matrices estimated by 

the TSCV, section 3 describes the suggested Restricted-TSCV and its consequences, and 

section 4 details the proposed risk correction. 

2. RESTRICTED-TSCV 

By definition, a covariance matrix must be positive definite. But, the structure of the 

TSCV does not guaranty that the matrices produced are positive definite. 

Theorem 1: TSCV can produce non positive definite matrices. 

Proof 

Consider a non zero 𝑝 × 1 vector 𝑧. It is known that a matrix, here the covariance matrix, 

is positive definite if and only if 𝑧ʹ < 𝑋, �̂� > 𝑧 > 0. In fact, 
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𝑧ʹ < 𝑋, �̂� > 𝑧 = 𝑧ʹ ([𝑋𝑜, 𝑋𝑜]1
(𝑘)

−
𝑛𝑘
𝑛
[𝑋𝑜, 𝑋𝑜]1

(1)
)𝑧

= 𝑧ʹ ([𝑋𝑜, 𝑋𝑜]1
(𝑘)
) 𝑧 − 𝑧ʹ (

𝑛𝑘
𝑛
[𝑋𝑜, 𝑋𝑜]1

(1)
)𝑧

= 𝑧ʹ𝐴𝑧 − 𝑧ʹ𝐵𝑧

 

where 𝐴 = [𝑋𝑜, 𝑋𝑜]1
(𝑘)

 with 𝑧ʹ𝐴𝑧 > 0 ,and 𝐵 =
𝑛𝑘

𝑛
[𝑋𝑜, 𝑋𝑜]1

(1)
 with 𝑧ʹ𝐵𝑧 > 0. 

From the above result, three scenarios might happen: 𝑧ʹ𝐴𝑧 − 𝑧ʹ𝐵𝑧 > 0, 𝑧ʹ𝐴𝑧 − 𝑧ʹ𝐵𝑧 = 0, 

or 𝑧ʹ𝐴𝑧 − 𝑧ʹ𝐵𝑧 < 0. The last two possibilities imply that the TSCV can produce non 

positive definite matrices, therefore the matrices estimated are not covariance matrices. 

In order to solve the problem, researchers use the projected matrix onto the space of 

positive matrix. One approach is to consider a singular value decomposition of the 

matrix: < 𝑋, �̂� >= 𝛹ʹ𝛬𝛹, where 𝛹 is the matrix of eigenvectors, and 𝛬 is the diagonal 

matrix of eigenvalues. Since the matrix is not positive definite, some eigenvalues must be 

zero or negative. To force the matrix to be positive definite, the zero and negative 

eigenvalues are set to a positive number close to zero. Using the new diagonal matrix and 

the eigenvectors, the reconstructed matrix is positive definite. 

Equivalently, the same positive matrix can be obtained by multiplying the first matrix of 

the TSCV by the smallest constant 𝑎 such that z'(aA)z-z'Bz>0. By doing so, we impose a 

restriction to the TSCV that lead to the Restricted-TSCV. It is defined as following: 

< 𝑋, �̂�𝑟 >= 𝑎[𝑋𝑜, 𝑋𝑜]1
(𝑘)

−
𝑛𝑘
𝑛
[𝑋𝑜, 𝑋𝑜]1

(1)
 

with 𝑎 > 1 

3. CONSEQUENCES OF THE RESTRICTED-TSCV 

The Restricted-TSCV is an unbiased estimator of the true covariance matrix. 

Proof: 

𝐸(< 𝑋, 𝑋�̂� ∣ 𝑎 >) = 𝐸 {(𝑎[𝑋𝑜, 𝑋𝑜]1
(𝑘)

−
𝑛𝑘
𝑛
[𝑋𝑜, 𝑋𝑜]1

(1)
) ∣ 𝑎}

=
1

𝑘
𝑎∑(𝑋𝑡 − 𝑋𝑡−𝑘)

2 −
𝑛𝑘
𝑛
∑(

𝑛

𝑡=𝑘

𝑋𝑡 − 𝑋𝑡−1)
2 + 2𝑛𝑘𝐸𝜎

2(𝑎 − 1)

= < 𝑋, 𝑋𝑟 > +2𝑛𝑘𝜎
2(𝑎 − 1)
︸
𝐵𝑖𝑎𝑠

 

The bias is given by the expression 2𝑛𝑘𝜎
2(𝑎 − 1) where 𝑛𝑘 = (𝑛 − 𝑘 + 1)/𝑘 and 𝜎2 is 

the covariance matrix of noise. Since the optimal }𝑘 = 𝒪(𝑛2/3), we deduce that 𝑛𝑘 =
𝒪(𝑛1/3). Therefore, as the sample size increases, the bias increases slowly. 

4. RISK CORRECTION 

Recall that the realized volatility is the volatility based on historical data. In other words, 

data recorded during a period 𝑡 − 𝜏1 are used to estimate the volatility matrix. Then this 
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volatility is used to estimate the weights by minimizing the risk. These weights are then 

used to evaluate the risk during period 𝑡 + 𝜏2. Usually 𝜏1 > 𝜏2. If the volatility matrix 

estimated using TSCV is not positive definite, then the estimated risk is based on the 

Restricted-TSCV. Since the Restricted-TSCV is biased, we suggest adjusting the risk 

evaluated at , �̂� = �̂�ʹ < 𝑋, �̂�𝑟 > �̂�, by subtracting the following expression: 

2𝑛𝑘(�̂�)ʹ𝜎2̂(�̂�)(�̂� − 1) 

Then: 

�̂�𝑎𝑑𝑗 = �̂� − 2𝑛𝑘(�̂�)ʹ𝜎2̂(�̂�)(�̂� − 1) 

where �̂� is the vector of weights that minimizes the risk estimated using pass data. �̂� is 

the estimated value of 𝑎. A consistent estimate of 𝜎2 is available. 

Zhang (2005) proved that 

𝑝𝑙𝑖𝑚 (
[𝑋𝑜, 𝑋𝑜]

2𝑛
− 𝜎2) = 0 

Then: 

𝜎2̂ =
[𝑋𝑜, 𝑋𝑜]

2𝑛
 

The main challenge in using this adjusted risk is how to choose 𝑎. The following theorem 

is useful. 

Theorem 2: Consider 𝛷 = 𝐴 − 𝐵 a 𝑛 × 𝑛 matrix written as difference of two covariance 

matrices. There exists a 𝑛 × 𝑛 non singular matrix 𝐿 such that 𝐴 = 𝐿𝐿ʹ and 𝐵 = 𝐿𝐷𝐿ʹ for 

some 𝑛 × 𝑛 diagonal matrix 𝐷 with diagonal elements {𝑑𝑖}. There exists a non zero 

vector 𝐿𝑚
−1, a column of the matrix (𝐿−1)ʹ such that (𝐿𝑚

−1)𝐵(𝐿𝑚
−1)ʹ = 𝑑𝑚(𝐿𝑚

−1)𝐴(𝐿𝑚
−1)ʹ 

where 𝑑𝑚 is the positive maximum non zero value of the diagonal matrix 𝐷. 

Lemma 1: Covariance matrices 𝐴 and 𝐵 are simultaneously diagonalizable. 

Proof of lemma 1: 

Consider two 𝑛 × 𝑛 covariance matrices 𝐴 and 𝐵. Let's show that 𝐴 and 𝐵 are 

simultaneously diagonalizable. Let's assume a 𝑛 × 𝑛 nonsingular matrix 𝐿 such that 

𝐿−1𝐴𝐿 = 𝐷𝐴 and 𝐿−1𝐵𝐿 = 𝐷𝐵 where 𝐷𝐴 and 𝐷𝐵 are some diagonal matrices. Then: 

𝐿−1𝐴𝐵𝐿 = 𝐿−1𝐴𝐿𝐿−1𝐵𝐿
= 𝐷𝐴𝐷𝐵
= 𝐷𝐵𝐷𝐴
= 𝐿−1𝐵𝐿𝐿−1𝐴𝐿
= 𝐿−1𝐵𝐴𝐿

 

Therefore 

𝐴𝐵 = 𝐿𝐿−1𝐴𝐵𝐿𝐿−1

= 𝐿𝐿−1𝐵𝐴𝐿𝐿−1

= 𝐵𝐴
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Since 𝐴 and 𝐵 are both symmetric, condition is necessary and sufficient for matrices 𝐴 

and 𝐵 to be simultaneously diagonalizable. 

Proof of Theorem 2: 

Since covariance matrices 𝐴 and 𝐵 are simultaneously diagonalizable, let's apply the 

Cholesky decomposition to 𝐴. There exist a singular matrix 𝐿 such that 𝐴 = 𝐿𝐿ʹ. Second, 

let's apply the Single Value Decomposition to 𝐵. Therefore, there exist the same singular 

matrix 𝐿 with a diagonal matrix 𝐷 such that 𝐵 = 𝐿𝐷𝐿ʹ. 

𝐴 = 𝐿𝐿ʹ𝑎𝑛𝑑𝐵 = 𝐿𝐷𝐿ʹ⇔ (𝐿−1)𝐴(𝐿−1)ʹ = 𝐼 𝑎𝑛𝑑 (𝐿−1)𝐵(𝐿−1)ʹ = 𝐷ʹ

(𝐿−1)𝐵(𝐿−1)ʹ = 𝐷(𝐿−1)𝐴(𝐿−1)ʹ

(𝐿𝑖
−1)𝐵(𝐿𝑖

−1)ʹ = 𝑑𝑖(𝐿𝑖
−1)𝐴(𝐿𝑖

−1)ʹ

 

where 𝐿𝑖
−1 is the 𝑖𝑡ℎ vector of the singular matrix 𝐿−1, and 𝑑𝑖 is its corresponding 

diagonal element in the diagonal matrix 𝐷. To complete the proof, choose the 𝐿𝑖
−1 that 

corresponds to the positive and minimum {𝑑𝑖}. Then 𝑑𝑚 = 𝑚𝑖𝑛{𝑑𝑖 > 0} and 𝐿𝑚
−1 is its 

corresponding vector. 

In the context of 𝐴 − 𝐵 being negative definite, (𝐿𝑖
−1)𝐴(𝐿𝑖

−1)ʹ is less than (𝐿𝑖
−1)𝐵(𝐿𝑖

−1)ʹ. 
Therefore, to establish the equality between them 𝑑𝑚 most be greater than 1. Moreover, if 

we choose �̂� to be equal to 𝑑𝑚, there could be a possibility for 𝑑𝑚𝑧ʹ𝐴𝑧 − 𝑧ʹ𝐵𝑧 = 0 . To 

avoid it, we have to add to 𝑑𝑚 a number that is positive and close to 0. Then, �̂� = 𝑑𝑚 +
𝜂 and �̂� > 1. 

We suggest to choose 𝜂 between 0 and 0.0001. 

5. SIMULATIONS AND RESULTS 

5.1. Model 

We use the model Fan et al (2012) used in their paper, however with a small change on 

the noise parameters. 

Let the latent log-price 𝑋𝑡
𝑖 follows 

𝑑𝑋𝑡
𝑖 = 𝜇𝑖𝑑𝑡 + 𝜌𝑖𝜎𝑡

𝑖𝑑𝐵𝑡
𝑖 +√1 − (𝜌𝑖)2𝜎𝑡

𝑖𝑑𝑊𝑡 + 𝑣𝑖𝑑𝑍𝑡𝑖 = 1⋯𝑝 

Where 𝐵, 𝑊, and 𝑍 represent the standard Brownian motions, therefore, they are all 

𝑖. 𝑖. 𝑑  𝑁(0,1) . The instantaneous volatility 𝜎𝑡
𝑖 is modeled by the independent Ornstein-

Uhlenbeck processes 

𝑑𝜂𝑡
𝑖 = 𝛼𝑖(𝛽0

𝑖 − 𝜂𝑡
𝑖)𝑑𝑡 + 𝛽1

𝑖𝑑𝑈𝑡
𝑖 

where 𝜂𝑡
𝑖 = 𝑙𝑜𝑔(𝜎𝑡

𝑖) and 𝑈𝑡
𝑖 is an independent Brownian motion. 

The parameters are defined as: (𝜇𝑖 , 𝛽0
𝑖 , 𝛽1

𝑖 ,𝛼𝑖, 𝜌𝑖) = (0.03𝑥1
𝑖 , −𝑥2

𝑖 , 0.75𝑥3
𝑖 , −1/

40𝑥4
𝑖 , −0.7) and 𝑣𝑖 = 𝑒𝑥𝑝(𝛽0

𝑖), 𝑥𝑗
𝑖 follows an independent uniform distribution on 

[0.7,1.3]. Notice that the parameters are kept fixed in the simulations. 

In order to simulate the latent price at the order of one second (Benchmark data set), the 

Euler method was used. Equations  and (4) can be written as followed: 
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𝑋𝑡+1 = 𝑋𝑡 + 𝜇𝛥𝑡 + 𝜌𝜎𝑡
𝑖√𝛥𝑡𝐵𝑡 +√1 − (𝜌𝑖)2𝜎𝑡

𝑖√𝛥𝑡𝑊𝑡 + 𝑣√𝛥𝑡𝑍𝑡 

𝜂𝑡+1 = 𝛼𝑖(𝛽0
𝑖 − 𝜂𝑡

𝑖)𝛥𝑡 + 𝛽1√𝛥𝑡𝑈𝑡 

Where 𝛥𝑡 = 1/𝑁, 𝑁 is the number of observations per asset. 

The micro-structure noise is introduced by perturbing the latent log-prices with 

ɛ𝑖 ∼
𝑖.𝑖.𝑑

𝑁(0, (0.5)2). The Poisson processes with parameters (𝜆1⋯𝜆𝑝) such that 𝜆𝑖 =

0.02𝑖 × 23400 is used to simulate times to be used to non-synchronize the data 

according to each synchronization method. 

5.2. Benchmark Portfolio Risk Evaluation 

The Benchmark portfolio risk is used to assess the performance of other portfolio risks. 

In order to construct the benchmark portfolio, we simulate trading prices per second for 

200 trading days. The number of data point per asset is 23400. In other words, trading 

prices are simulated secondly and there are 23400 seconds during a trading day. We call 

this data set the Benchmark-data set because no synchronization is applied. We start 

investing 1 unit of capital to 𝑝 assets at day 101. In order to determine the portfolio 

allocation weights, we use the previous 100 trading days to estimate the covariance for 

day 101. Once we estimate the covariance, we use the optimization process described by 

equation 

𝑚𝑖𝑛(𝑤)𝑤
𝑇𝛴𝑤

𝑠. 𝑡. 𝑤𝑇1 = 1
∣∣ 𝑤 ∣∣1≤ 𝐶

 

to estimate the weights that minimize the risk for each gross exposure 𝐶. 𝐶 varies from 1 

to 3 by 0.1. After the first day, we restart the process for day 102, 103 until 200. In order 

to evaluate the performance of our portfolio, we use the estimated weights to calculate 

the risk. 

5.3. Risks Evaluation 

The trading time scaled per second is not realistic because trades do not happen secondly 

all the time. In order to approximate the real world trading process, we use the Poisson 

process described above to simulate trading times and consider the trading prices that 

correspond to those trading times to construct a non-synchronized data set. Then, we use 

the the Pairwise refresh method described by Fan et al (2012) to synchronize the data set. 

Once the data are synchronized, we estimate the risk based on the TSCV, the risk based 

on the Restricted TSCV, and the corrected risk. We use the same strategy used by the 

benchmark portfolio described above. Note here that the estimated risk based on the 

TSCV is based on non-positive definite matrices. Therefore, we force the matrices to be 

positive definite by replacing the negatives eigenvalues by a small but positive value 

(0.00001). The risk based on the restricted TSCV is based on positive definite matrices, 

but it is biased. We estimate the bias and subtract it from the the estimated risk to obtain 

the corrected risk. 
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5.4. Results 

Figure 1 displays the behavior of the Risk based on TSCV, the risk based on restricted 

TSCV, the corrected risk and the benchmark risk as the gross exposure increases. On one 

hand, it appears that the risk based on the TSCV departs from the benchmark risk as the 

gross exposure increases. This result is the same found by Fan et al (2012). The reason is 

that the covariance matrices are non-positive definite. We force them to be positive 

definite by replacing the negative eigenvalues by small and positive value (0.0001). On 

the other hand, the risk based on the restricted TSCV -- positive definite covariance 

matrices -- is more stable as the gross exposure increases. This implies that the technique 

used to force covariance matrices to be positive definite has different impacts on the 

estimated risk. Moreover, the restricted TSCV allows us to estimate the bias, the price we 

pay for having positive definite matrices. Subtracting that bias from the estimated risk 

based on restricted TSCV gives the risk corrected. 

Figure 1: Comparison between Risk beased on TSCV, Risk based on restricted TSCV, 

Corrected risk, and benchmark risk 

 

 

 

6. CONCLUSION 

In this article, we proved that there was a bias when forcing a non-positive Two Scales 

Covariance matrix to be positive definite. We suggested an expression of that bias and 

proposed a corrected portfolio risk estimator which was unbiased and based on positive 

definite TSCV. Simulation results showed that forcing non positive covariance matrices 

by replacing negative eigenvalues by small but positive values (0.0001) has negative 

consequences on the estimated portfolio risk. We recommend to use the risk based on the 

restricted TSCV because the estimated risks produced are more stable as the gross 

exposure increases, and we can correct for the bias. 
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