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Abstract 
Phase II proof-of-concept (POC) t r i a l s  determine which therapeutic 
hypotheses will undergo definitive Phase III testing.  The number of possible 
POC hypotheses likely far exceeds available public or private resources. We 
propose a design strategy for maximizing efficiency of POC trials that obtains 
the greatest knowledge with the minimum patient exposure. We compare 
efficiency using the benefit-cost ratio, defined to be the risk-adjusted 
number of truly active drugs correctly identified for Phase III development 
divided by the risk-adjusted total sample size in Phase II and III development. 
It is most cost-effective to conduct smaller POC trials which are powered at 
80% on an effect size 50% larger than that of minimal clinical interest, 
allowing more possible POC hypotheses to be investigated under a finite POC 
budget constraint.  We also consider parallel arrays of POC trials with multiple 
indications or drugs, and sequential two-stage POC trial arrays where all drugs 
get an initial allotment of POC trials and only those which achieve a POC get 
further investment.  These strategies can improve the output of successful 
drugs by up to 30% at a constant budget.  
 

Key Words: utility functions, development efficiency, proof of concept study, 
optimization 
 
 

1. Introduction 
 
The cost of drug development is extremely high, on the order of $1 billion per 
successful new drug/indication pair. Much of this cost is accounted for by late 
stage clinical development costs, including the costs of failed development 
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efforts. Thus an increase in efficiency of this process by even 10% would save on 
the order of $100 million per successful drug/indication pair.  
 
Proof of Concept (PoC) trials determine which drug/indication pairs will go on to 
definitive Phase 3 testing. In oncology, which is the particular motivation for this 
work, there are usually a very large number of possible PoC trials, representing a 
combinatorial explosion of a large number of possible drugs, drug combinations, 
dosing schedules, tumor types and histological and molecular subtypes, and lines 
of therapy. While preclinical data and early clinical data give some information 
for prioritizing among PoC trials, this information is generally not as predictive as 
one would hope. Hence the number of potentially useful PoC trials generally 
exceeds available patients as well as available public or private funds. 
 
Chen and Beckman [1-3] sought to optimize the efficiency of PoC trials and their 
associated Go/No-Go criteria for phase 3, studying single PoC trials as well as 
portfolios of PoC trials conducted in parallel subject to a budgetary constraint on 
the PoC budget. They developed strategies which could increase the efficiency of 
late stage drug development by 10-30%. 
 
In this paper, we will first summarize these previous results, outlining the 
principles of optimization, including the concept of Type III error, and presenting 
optimal designs for portfolios of parallel PoC studies. We will then discuss 
current applications of this work as well as questions and controversies which 
have arisen concerning this approach. We will then present preliminary findings 
of new research on 2 stage sequential arrays of PoC studies, wherein each stage 
may consist of several parallel PoC studies. Finally, we will suggest directions for 
future research. 
 

2. Optimization of Parallel Arrays of PoC Studies 
 
 
2.1 Principles of Optimization 
 
This work was motivated by the observation by RAB that different pharmaceutical 
companies in which he had been employed had different approaches to PoC study design. 
Some companies conducted very small PoC trials in an effort to minimize cost per PoC 
trial. Others favored larger, more rigorous studies with strict control of Type I and II 
error. Development teams created clinical development plans to mimic the clear and 
subjective preferences of their management. 
 
Instead, RAB proposed that development strategy should be informed by quantitative, 
objective optimization of utility. The proposed utility function for late development was 
a benefit to cost ratio (BCR), also termed the efficiency function. Benefit was defined 
as the number of true positive PoC trials achieved by the development plan. Cost was 
defined in units of patients, and was the risk adjusted number of patient utilized in late 
development (ie Phase 2 and Phase 3), including Phase 3 studies performed in error due 
to false positive PoC studies. Mathematically, the efficiency function was relatively 
simple: 
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𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑝𝑝 (1−  𝛽𝛽)

𝜆𝜆 + 𝑝𝑝 (1− 𝛽𝛽) + (1− 𝑝𝑝)𝛼𝛼
  

 
(Equation 1), 
 
where p is the probability that the true effect size associated with the drug is greater than 
or equal to the clinical effect size of interest,  α and β are the Type I and II errors for the 
PoC trials, and λ is the ratio of the sample size of the PoC trial to the sample size of the 
definitive Phase III trial. Note λ is smaller for small PoC trials.  
 
Optimization of this function was then performed for parallel arrays of PoC studies 
subject to a constrained PoC budget [1-3]. It was assumed that any PoC study which met 
the Go/No-Go bar would lead to a corresponding Phase 3 study. The Phase 3 studies did 
not have internal futility analyses, although this tactic could further increase the 
efficiency in practice.   
 
At a constant PoC budget which is insufficient to execute all PoC trials of interest (the 
typical real world situation), there is a strategic trade-off between the number of PoC 
trials executed and their type I and type II errors. One may reduce the type I and type II 
error by performing larger PoC trials, but one will be able to test fewer worthy PoC 
hypotheses within the fixed budget.  
 
In addition to the trade-off regarding PoC trial size, there is a trade-off concerning the 
Go-No Go criterion determining if development proceeds to Phase 3 after a PoC trial. A 
low bar for proceeding to Phase 3, which we termed the “No Drug Left Behind” strategy, 
maximizes the number of effective drugs produced, but it wastes considerable resources 
on Phase 3 trials that in the end prove to be based on false positive PoC studies. 
Importantly, when a large, expensive Phase 3 study fails, it is a highly visible outcome 
and may even have adverse career consequences for those who proposed it. In contrast, 
the more popular “Fail Early, Fail Cheap” strategy features a high bar to Phase 3. This 
avoids failed Phase 3 trials, but may lead to lost opportunities. However, a lost 
opportunity, either from a false negative PoC trial or from a PoC trial not performed due 
to budgetary limitations, is usually an invisible mistake.  
 
Optimization attempts to find the best balance among the above strategic tradeoffs, and 
determines optimal Type I and II errors (and hence sample sizes) and Go-No Go criteria 
for proceeding to Phase 3, for each PoC trial in a portfolio of such trials executed in 
paralle1.  
 
In performing the optimization, it became clear that in addition to the classical type I and 
II errors, a third phenomenon was important in determining the optima, and we termed it 
Type III error [4]. Type III error is the opportunity cost of not investigating worthy PoC 
hypotheses because of the limited PoC budget. If we choose to do larger PoC trials, we 
can reduce the Type I and II errors, but the Type III error will increase since we cannot 
do as many PoC trials. Conversely, by doing smaller PoC trials, we can do more of them, 
thus reducing the Type III error. However, smaller PoC trials will inevitably be 
associated with higher Type I and/or Type II errors.  
 
The Type III error has a simple mathematical definition: it is the fraction of potentially 
true positive PoC outcomes “lost” because the corresponding PoC trials were not 
performed. It does not include the true positive PoC outcomes which were lost due to 
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false negatives (that is Type II error). Thus, the Type III error can be defined only at a 
constant Type II error: 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 
 
1 −  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 |𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
    

 
            (Equation 2), 
 
where the quantity is defined only where the studies in the numerator and denominator 
are conducted at the same Type II error. 
 
1.2 Optimal Designs for Parallel Portfolios of PoC studies 
 
For the case of parallel PoC trials where all drug/indication pairs have equal 
values of p, a surprising result was found: while the optimal value of α was in the 
range of 0.05 -0.10, a traditional range for PoC trials, the optimal value of β was 
0.4, twice the traditional value usually employed. This is because increasing β by 
this amount allowed twice as many PoC trials to be conducted for the same cost, 
substantially reducing the Type III error. The counterintuitive approach increased 
efficiency by 10-30% (depending on the effect sizes for Phase 2 and Phase 3 
endpoints), thus potentially saving $100-300M per successful drug/indication 
pair.  
 
The principle is illustrated graphically in Figure 1 below.  In this figure, we 
assume we have two PoC opportunities each with p = 0.3, but only sufficient 
budget to execute one PoC trial at traditional α and β. In figure 1A, we present the 
scenario in which one large PoC trial is executed with β = 0.2, and in figure 1B 
the scenario in which two PoC trials are executed, each with β = 0.4.  
 
The figures depict probabilistic branching pathways by which risk adjusted 
benefit and cost are computed. The first branch (on the left) is whether or not the 
drug is truly active. For p = 0.3, there is a 30% chance the drug is truly active, 
70% that it is truly inactive. The next branch is the outcome of the PoC trial. If the 
drug is truly active, the possible outcomes are true positive, with probability 1 – β, 
and false negative, with probability β. If the drug is truly inactive, the possible 
outcomes are true negative, with probability 1 – α, and false positive, with 
probability α. The possible outcomes are given on the right. The chance of any 
outcome is the product of the arrows leading to it, from left to right. A true 
positive gives a benefit of 1, all other outcomes a benefit of zero. True and false 
negatives have a cost equivalent to the number of patients in the PoC trial (120 
patients for the traditional PoC trial in figure 1a, 60 patients for the small PoC 
trials in figure 1b) , while true and false positives incur the cost of both the PoC 
trial and a subsequent Phase 3 trial (600 patients).  
 
The risk adjusted benefit and cost are given at the bottom of the figures. With 
these parameter values, the single traditional PoC trial strategy requires 984 
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patients on average to identify and confirm a true positive drug/indication pair, 
whereas two smaller PoC trials require an average of 872 patients, or an 11% 
savings.  
 
The benefit above is quite robust to the value of p. This is quite fortunate since p 
is difficult to objectively estimate. It is also robust to the relative costs of Phase 2 
and Phase 3, and varies between 10% and 30%. 
 
Figure 1A: 
 

   
 
Figure 1B:

 
 
While the opportunity to increase the efficiency of drug development has been 
utilized extensively, we have occasionally encountered statisticians who cling to 
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the rule of thumb about which they were trained, β = 0.2. Interestingly, we may 
express our results in a different way: power the PoC study at 80%, but for an 
effect size 50% larger than the minimum effect size of clinical interest [5]. This 
formulation is exactly equivalent, since such a trial has 60% power for the 
minimum effect size of clinical interest, and an identical sample size and Go/No 
criteria to Phase 3 compared to the original recommendation. However, this 
formulation is more universally accepted since it does not overtly violate the rule 
of thumb β = 0.2. Moreover, powering on larger effect sizes is currently popular 
in oncology due to the optimism prevailing in the era of precision medicine. We 
discuss the perceptions of stakeholders here, because we wish to encourage a 
different mode of thinking. We wish to convey the point that the current 
traditional values of α and β are arbitrary, and are not derivable by logical 
argument. In designing drug development programs, the practitioner should make 
deliberate strategic choices of α and β, and objectively evaluate the performance 
of these choices relative to others according to quantitative criteria. 
 
The results above assume the value of p is the same for all the drug/indication 
pairs, and that each drug/indication pair has the same utility if successful. 
However, straightforward extensions of the efficiency function are possible with 
different values of p for different indications, as well as weighting drug/indication 
pairs according to their relative value, expressed in units of patient benefit, 
population size, or economic impact, as desired [2,3]. These extensions allow this 
formalism to be used to optimize real portfolios of multiple indications for a drug, 
and also across multiple drugs in a pharmaceutical portfolio and their indications 
[6,7].  
 
A simple example of portfolio optimization is given in Figure 2 below, 
representing a simple portfolio of two drug/indication pairs, one with a higher 
value of p than the other. Here the optimal strategy depends on the relative cost of 
the Phase 2 PoC trial to the cost of Phase 3. If the Phase 2 PoC trial cost is a 
relatively large fraction of the Phase 3 trial cost, the resources are allocated 
roughly proportionately to the value of p. However, as Phase 3 becomes relatively 
more expensive compared to a PoC trial, a breakpoint occurs, and the optimal 
strategy involves allocating all the resources to the drug with the superior value of 
p. 
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Figure 2: 

  
 
1.3 Applications of PoC Trial Optimization 
 
The above approach has been used for sizing of PoC trials at Merck & Co, where 
it was developed. In order to gain universal acceptance at Institutional Review 
Boards, the formulation based on powering for a larger effect size and a 
traditional value of β was generally used. 
 
In the era of precision medicine, phase 2 PoC trials must often be stratified based 
on the status of a putative predictive biomarker. Ideally, each stratum should be 
sufficiently powered to give an answer. Thus, the biomarker stratified PoC trial 
can be viewed as having two objectives: 1. Assess efficacy in the “biomarker 
positive” subset, and 2. Assess efficacy in the “biomarker negative” subset. 
Alternatively, one can express these two objectives as: 1. Assess the efficacy of 
the drug, and 2. Assess the predictive power of the biomarker. Either way, the 
predictive biomarker stratified PoC trial might be twice the size of an unstratified 
PoC trial. Fortunately, such a trial may be appropriately powered if each stratum 
is powered with β = 0.4 [4]. 
 
The benefit-cost ratio (BCR) approach has also been used to optimize the timing 
and futility threshold for futility analysis in Phase 3 trials, as well as to optimize 
Phase 2/3 seamless designs [6,8]. Interestingly, it has recently been discovered 
that the BCR should be considered when creating adaptive designs involving 
sample size readjustment. If consideration is not given to the effects of 
overpowering, sample size readjustment may actually reduce the overall 
efficiency of a clinical trial program [9]. 
 
1.4 Questions and Controversies Regarding PoC Trial Optimization 
 
1.4.1 Why not use the absolute benefit, B-C, instead of the benefit/cost ratio B/C? 
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Indeed, exact optimization is in principle possible with the absolute benefit, 
whereas a benefit-cost ratio provides only practical guidance. However, in 
practice the quality of optimization of the absolute benefit is difficult to maintain, 
since B is difficult to estimate, due to uncertain and constantly changing 
conditions in the competitive environment, the regulatory environment, and the 
payer environment. The optimization of B – C is very sensitive to the value of B, 
especially when B is much larger than C.  In contrast, errors in estimating B 
simply multiply the BCR by a constant factor but have minimal effect on the 
optimum.  
 
Because the absolute benefit may continue to increase past the point of 
diminishing returns, it may lead to overspending if it is optimized for a subset of 
the portfolio. Only if absolute benefit is computed in a comprehensive manner 
across the entire portfolio will the absolute benefit be sensitive to spending past 
the point of diminishing returns within individual programs. The difficulty of 
simultaneously analyzing the entire portfolio, including the somewhat subjective 
and difficult estimates of B, should not be underestimated. In contrast, the BCR 
implicitly constrains each individual program not to spend past the point of 
diminishing returns.  
 
1.4.2 Why not constrain the total Phase 2 and Phase 3 budget rather than only the 
Phase 2 PoC budget? 
 
In our experience, while the PoC budget is fixed, diversified pharmaceutical 
companies generally find additional funds to support Phase 3 trials in the event of 
a positive PoC. 
 
1.4.3 Some subsequent workers recommend rasing alpha rather than beta. 
 
Subsequent workers using a similar approach have also recommended more, 
smaller PoC trials, but in contrast to our analysis they favor raising α rather than β 
[10]. We wish to first make the point that the most important message of this 
paper is that clinical development should be quantitately optimized according to 
objective utility functions. Specific recommendations may vary depending on 
goals and assumptions associated with the optimizarion. 
 
Nonetheless, we find the recommendation in [10] intuitively implausible since a 
larger number of PoC trials at high α would lead to a flood of false positives and 
failed Phase 3 trials at great expense. Raising α can seem optimal if sunk 
preclinical and phase I costs are included in the optimization. However, most 
economists do not recommend including sunk costs in determining a strategy, 
since they are irreversible. Raising α may also seem optimal if the cost of Phase 3 
trials decreases significantly in the future. The advent of precision medicine in 
oncology has led to some optimism that Phase 3 costs will decrease, and this may 
change the optimal strategy. Nonetheless, the current precision medicine 
paradigm does not fully account for molecular and phenotypic heterogeneity of 
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subclones within a single individual’s cancer, nor for the potential of cancer cells 
to dynamically evolve therapeutic resistance [11]. As such, it is unclear whether 
the current approach to precision medicine will lead to overall reductions in Phase 
3 costs, or merely be confined to a limited number of cases constituting low-
hanging fruit.  
 

3. Optimization of 2 Stage Arrays of PoC Trials 
 
Many pharmaceutical companies do not fund their development teams for all 
recommended PoC trials in one stage. For example, out of N potentially valuable PoC 
trials for a given drug, budgetary constraints may lead to funding only a subset n of these 
trials. But all trials may not be funded for simultaneous parallel execution. Rather, the 
company may fund a subset of these trials, n1 < n, in an initial stage. Only if at least one 
of the stage 1 PoC trials is positive will the drug then be funded for stage 2 trials 
constituting the remaining n – n1 PoC trials. The results of the stage 1 may be used to 
reallocate unspent funds from drugs that are unsuccessful in stage 1 to drugs that are 
successful in stage 1. Thus the latter drugs may be permitted more PoC trials than 
previously, based on the notion that their priority is increased due to successful 
performance in stage 1. A further refinement is that drugs may be prioritized for 
resources in stage 2 based on a Bayesian analysis with a prior estimate of p based on 
preclinical and Phase 1 data and a posterior estimate of p based on stage 1 results. We 
were interested in studying the properties of these arrays because they mirror practices in 
diversified pharmaceutical companies which are usually undertaken based on qualitative 
reasoning without quantitative optimization. We present some preliminary results here. 
 
We modeled this problem as an urn problem, where each urn is a drug filled with green 
and red marbles, wherein green marbles represent indications for which the drug is truly 
active. We modeled a single urn (figure 3), where N = 15 and n = 5. The aggressive 
strategy entails n1 = n = 5, ie all PoC trials in parallel as discussed above. The most 
conservative strategy entails n1 = 1, and intermediate strategies n1 = 2-4 were possible.  
 
In the simulation with multiple urns (drugs), we assumed two urns with 15 marbles (PoC 
hypotheses) each, for a total of 30 marbles (figure 4). A total of 10 draws (PoC trials) are 
allowed. We draw n1 marbles from each urn in stage 1. The allocation of the remaining 
10 – 2n1 marbles depends on the results of stage 1. If only one urn yields at least one 
positive draw, that urn will receive all the remaining draws in stage 2. Under no 
circumstances will an urn that yields no positive PoC outcome in stage 1 receive further 
resources. If both urns yield at least one positive draw, the urn with the higher posterior 
estimate of p will be prioritized for the remaining draws. However, in this circumstance 
the inferior urn may receive leftover resources based on the total available resources and 
the number of marbles, the number of urns, and total number of allowed draws.  
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Figure 3: 
 

 
 
Figure 4: 
 

Clearly, the 2 stage approach in principle allows more intelligent resource distribution 
between drugs based on information from stage 1. However, it also delays development 
and may reduce throughput per unit time. In order to account for the effect of time, we 
implement two adjustments: 1. Discounting of benefits and costs occurring further in the 
future by an interest rate I. 2. A fixed overhead cost per unit time C0 is applied, 
accounting for such non-development costs such as personnel, the research building and 
its electricity, etc. Thus, a conservative strategy will have higher fixed costs before 
benefits are seen.  
 
The efficiency function is a generalization of the efficiency function given above. The 
benefits and costs are divided into two stages. The benefits and costs of the second stage 
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are discounted by two factors: 1. The probability that stage 2 will occur, and 2. The 
interest rate factor due to the delay relative to stage 1. 
 
Detailed methods will be published elsewhere, but equations are given in the Appendix 
representing this problem. The likely distribution of green marble, NG, in an urn is given 
by binom (N,p), while the number of green marbles in stage 1 is given by the 
hypergeometric distribution of (N, NG, n1).  Further methods are presented briefly in the 
Appendix quantifying the observed number of green marbles in stage 1, which is not the 
same as the number of truly green marbles since false psoitives and false negatives will 
occur. Bayesian hierarchical modeling is performed to update the estimate of p based on 
stage 1 performance and the results of Stage 2 are simulated using this updated 
probability.  
 
Figure 5 shows the efficiency, type III error, cost and benefit as a function of n1 for C0 = 
0, delay of two years for stage 1, interest rate = 5%, and p = 0.5 for both urns. This figure 
gives a feel for the interplay of the parameters in this complex model. As expected, the 
conservative strategy is the most efficient in the absence of fixed costs because of the 
ability to update the initial estimate of p in allocating resources for stage 2. However, the 
efficiency improvement is only 1.5% and the absolute benefit is reduced by 40%, 
presumably due to the high probability of rejecting an effective drug based on only one 
PoC trial. Although the efficiency benefits of the conservative strategy are somewhat 
larger if the two urns have unequal values of p (not shown), the effect is still small 
compared to the dramatic reduction in throughput. This suggests that the optimum will 
change when fixed non-development costs are taken into account. 
 
Figure 5:  
 

 

 
 
In the heat map on figure 6 (left side), we indeed see that with increasing fixed non-
development costs C0, the optimal efficiency is seen first at intermediate values of n1, and 
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finally the aggressive strategy. Moreover, the conservative or aggressive strategy are 
always within 5% of the optimum, warranting a simplified optimality map shown on the 
right, given that in actual practice it may not be possible to determine the exact location 
of a portfolio on the heatmap. 
 
Figure 6: 
 

  
 
The optimal strategy represents a tradeoff between adaptively using information and 
maximizing throughput. As can be seen from Figure 6, the optimal strategy is relatively 
robust to the value of p, which is again fortunate, as this is difficult to estimate, and is 
largely determined by the value of the fixed non-development costs C0. Only at low fixed 
costs is the conservative strategy optimal. Intermediate strategies may be optimal but are 
never dramatically superior to the extreme strategies under these conditions, thus 
potentially warranting a simplified optimality diagram. 
 
The above analysis does not take into account other disadvantages of the conservative 
strategy such as diminished chance of first in class status. However, the above analysis 
also assumes that the prior and posterior estimates of p are reasonable and unbiased 
estimates of the outcome. The value of the conservative strategy may be much greater 
when this condition does not hold. Ongoing research is evaluating the various strategies 
when the true value of p and p’ are very different from the estimates, for example when 
the drug developers believe drug A is better than drug B, when in fact drug B is better 
than drug A. 
 
 

4. Future Directions 
The work described herein considers efficiency from the point of view of the drug 
developer. We are also conducting ongoing research in which separate efficiency 
functions are developed from the viewpoint of different stakeholders. This research may 
illuminate scenarios where, for example, the incentives of sponsors and the public health 
need to be more carefully aligned [12].  
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Recently, we have been involved in a qualitative analysis of arrays of platform trials 
organized into clinical development pipelines [13]. The work described herein on arrays 
of PoC trials could be usefully applied to arrays of platform trials. 
 
Finally, in the era of precision medicine portfolios should be considered to include not 
only putative therapies, but also putative predictive biomarkers as assets [7]. Methods to 
optimize such portfolios remain to be developed. 
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