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Abstract
Predictive modeling of inpatient fall of stroke patients is challenging. Tradi-

tionally, logistic regression or survival models could be applied, but . This study
presents a framework of analyzing discrete-time data as a binary classification
problem. With its great flexibility of the novel framework, the potential relation-
ship between clusters can be incorporated. Comparisons in experiments suggest
that the proposed models consistently yield better predictive performances than
classical statistical modeling for survival data. The proposed method is applied
to electronic patient records data from 2007 to 2014 collected by Kessler foun-
dation.

Key Words: Discrete-time survival model, multi-task learning, ensemble al-
gorithm, electronic medical record, patient fall

1. Introduction

To stroke survivors, fall is one of the most commonly occurring adverse
events. Studies found that falls occurred more frequently in stroke pa-
tients than in other populations [Yates et al., 2002, Weerdesteyn et al.,
2008]. In acute care setting, fall incidence of stroke patients ranges from
14% to 64.5%. In rehabilitation centers, fall incidence does not improved
much. 24% - 47% stroke patients reported fall experience in the rehabil-
itation setting [Weerdesteyn et al., 2008]. Falls usually result in serious,
sometimes fatal, consequences, and thus it is one of the high-priority safety
risks. Therefore, preventing falls is an important strategy for improving
care among stroke patients.

The Joint Commission International accreditation standards for hospi-
tals states that the first step to fall prevention is to assess patients for risk
of falling within 24 hours of admission, and identify and educate patients
at risk of falls [JCI, 2013]. Different tools have been developed, including
well-known instruments such as Morse Fall Scale (MFS) [Morse, 2006], St.
Thomas’s Risk Assessment Tool in Falling Elderly Inpatients (STRATIFY)
[Oliver et al., 1997], the Hendrich Fall Risk Model [Hendrich et al., 1995,
2003], and new approaches like Lee et al. [2016] proposed an automated fall
risk assessment system Auto-FallRAS based on electronic medical records
(EMR) data. But these tools do not always show high accuracy across
institutions [Milisen et al., 2007, Chow et al., 2007]. Thus, Oliver et al.
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[1997] recommended to use an institutional and patient-specific validated
risk assessment tool.

The keystone followed by almost all fall-risk assessment tools is the
simplicity to use in practice. For example, MFS and STRATIFY consist
of only 5-10 items, which enable nurses to score patients’ conditions on
each item easily. While useful as demonstrated by studies, these paper-
based tools still increase workloads of care providers. Ideally, it is better
to develop an automated risk assessment system to quickly assess fall risk,
improve patient safety and reduce the heavy workload [JCI, 2013].

The main goals of this study are to (1) investigate a new learning al-
gorithm which can incorporate cluster effects, and (2) evaluating the per-
formance of an ensemble algorithm. As observed by many studies, there
exists institution-specific performance when applying risk assessment tools,
which may be explained by institutional-level factors. This observation mo-
tivates us to consider a learning algorithm which can incorporate such prior
cluster information. With the proposed novel method as a sub-learner, we
also aim to examine an ensemble algorithm to see what we can gain with
a meta-learner in predicting inpatient fall.

The rest of the paper is organized as follows. Section 2 describes details
of the new algorithm starting with its connection to discrete-time hazard
model. In section 3, the method will be applied to predict inpatient fall
event based on EMR data which combines data from Inpatient Rehabili-
tation Facility Prospective Payment System (IRF PPS) with information
from incident report system in each rehabilitation site. While comparing
with other learning algorithm, one ensemble algorithm will also be exam-
ined in section 3. In the final section, we will provide a brief discussion on
learning algorithms in patient fall prediction.

2. Discrete-time hazard model

2.1 Notation

Let’s denote by Ti ∈ {1, 2, ...} a discrete survival outcome with covariate
vector xi. Correspondingly, Ci ∈ (1, 2, ...) is a random censoring time. Here
it is assumed that Ci is independent of τi. Thus, the time period during
which Subject i is under observation is denoted by τi := min(Ti ≤ Ci). The
random variable δi := I(Ti ≤ Ci) indicates whether τi is right censored.

The hazard function of a discrete time survival model is defined as
the conditional probability of an event at time point j experienced by a
subject, hij = P (Ti = j|Ti ≥ j,X = x). Then, the survival function is given
by S(t|x) = P (Ti > j|X = x), where Ti is the true time to event, which is
unobserved for censored subjects. The hazard hij is conditional probability.
Individual only contribute information at time Ji if they experienced/didn’t
experience the event at the period Ji. Thus, the likelihood of his entire
event history, represented by the vector yi = (yi1, ..., yiJi) with yij = I(Ti <
j), is given by
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L =
n∏
i=1

(hiJi Ji−1∏
j=1

(1− hij)

)δi ( Ji∏
j=1

(1− hij)

)1−δi
 (1)

with the assumption of ignorable missingness, i.e. no information contri-
bution from censored subjects. As noted by Allison [1982] and Singer and
Willett [1993], if represent the event history in terms of response yi, the
likelihood can also be written as

L =
n∏
i=1

Ji∏
j=1

{
h
yij
ij (1− hij)1−yij

}
. (2)

Subject’s hazard is affected by various factors. Thus, we have the hazard
function of the form

g(hij) = αj + f(βTxi), (3)

where β = (β1, β2, ..., βp), g and f are pre-specified link functions. f(z) is
usually set to be an identity link, with which we assume linear relationship
in the covariates. Options for g can be logistic function or complementary
log-log function.

Equation (2) is identical to the likelihood function for a sequence of
J1 + J2 + · · ·+ Jn independent Bernoulli trials with parameter hij [Allison,
1982, Singer and Willett, 1993]. As such, the event response for an individ-
ual at each discrete time period can be treated as a separate, independent
observation. This allows application of likelihood-based algorithm for stan-
dard binary classification. However, it assumes a common set of parameter
β in Eq (3) for all time periods, which may not reflect the reality in which
factors can potentially have heterogeneous effect on patients over time due
to changes of disease status. We thus consider to relax the restriction.

2.2 Relation to multi-task learning framework

The completely unconstrained discrete time model is to model each time
point separately. Instead of letting time-specific β completely random, a
more sensible, and intuitive as well, approach is to smoothen the transition
between consecutive time points in the unconstrained model. Thus con-
structing a model with all time points together is more attractive, since we
can attach certain controls for achieving various purposes, such as parame-
ter selection and transition smoothening. This leads to a case of multi-task
model, in which each time point is treated as an individual task [Zhou et al.,
2013]. The multi-task model provides us more flexibility as well, including
incorporating cluster structure of observed data.

Still, we consider a logistic model for the probability of event at a time
point: P (yij = 0) = {1 + exp(γj + θTj xi)}−1. For case i with an event at
time j, instead of coding as (yi1, ..., yij) = (0, 0, ..., 1), we expand his history
to the maximal observed time J in the population, i.e. (yi1, ..., yij, ..., yiJ) =
(0, .., 1, ..., 1), that is, all (yi,(j+1), .., yiJ) are a series of 1, which reflects the
scenario that an occurred event cannot change back, i.e. from yij = 1 to
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yi,j+1 = 0 (in modeling non-recurrent event). Then,

P (yi1, ..., yiJ |xi) =
exp

{∑J
j=1 yij(γj + θTj xi)

}
∑J

k=0 exp
{∑J

l=k+1(γl + θTl xi)
} .

For censored cases, we depend on a matrix W with wij ∈ {0, 1} being
patients’ observational status experienced by patients. wij = 1 indicates a
patient is censored, while wij = 0 indicates that a patient is still observed
in the study. Then the likelihood for all uncensored and censored patients
is:

L(Θ) =
ne∑
i=1

J∑
j=1

yij(γj + θTj xi)

+
n∑

i=ne+1

log

[
J∑
j=1

wij exp

(
J∑
l=j

(γl + θTl xi)

)]

−
n∑
i=1

log

(
J∑
k=0

exp

{
J∑

l=k+1

(γl + θTl xi)

})
(4)

where Θ = (Θ1, ...ΘJ) = (γ1,θ1, ..., γJ ,θJ).
The parameter Θ can be estimated through minimizing the following

objective function:

min
Θ

L(Θ) + ξ1

J∑
j=1

||Θj||22 (5)

The penalty term is for controlling generalization error, with ξ1 > 0 as
a regularization parameter. The model (5) is also known as the ridge
regression.

As discussed before, assuming parameter sets for time points are com-
pletely independent between each other may not reflect the longitudinal
scenario in which a close connection between time j and j + 1 may ex-
ists. To capture the smooth variation of parameters across time points, we
introduce the following regularization term:

Ωj = ξ2

J−1∑
j=1

||Θj+1 −Θj||22 (6)

where ξ2 > 0 is the regularization parameter for controlling the temporal
smoothness. In matrix format, the term can be expressed as ||ΘF ||22 where
F ∈ RJ×(J−1) is defined as Fij = 1 if i = j, Fij = −1 if i = j + 1, and
Fij = 0 if otherwise.

2.3 Modeling relationship between sites

Since patient records were built by individual rehabilitation sites, it is rea-
sonable to assume that data have site-specific characterizations [Yokota and
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Ohe, 2016]. To capture such information, site-specific tasks are constructed
in the multi-task model. Considering potential relationships between sites,
especially when the sites are under the same management system or from
the same geographical area, we build the model with additional parameters
for modeling the relationship between sites.

Denote clusters by h = 1, ..., H, and let R be a matrix with Rh,k describ-
ing a relation between site h and k. Then, we define a penalty based on the
graph Laplacian regularizer for incorporating the prior cluster knowledge:

Ωr =
H∑

h,k=1

Rh,k||Θh −Θk||22 (7)

Put terms (6) and (7) into the model, the objective function becomes

min
Θ

H∑
h=1

L(Θh) + ξ1

H∑
h=1

J∑
j=1

||Θh,j||22 + ξ2

H∑
h=1

J−1∑
j=1

||Θh,j+1 −Θh,j||22

+ ξ3

H∑
h,k=1

Ah,k||Θh −Θk||22 (8)

2.4 Optimization algorithm

This optimization problem can be efficiently solved using an alternatinge
approach which is similar to the block coordinate descent method [Nocedal
and Wright, 2006]. Parameter Θ and relation matrix R are optimized
alternatively with the other one fixed. Given R, the proximal gradient
descent method can be applied for optimizing Θ [Parikh and Boyd, 2014].
The proximal gradient descent is a commonly applicable algorithm when
solving optimization problems containing non-differentiable components. It
also has faster convergence compared to other methods such as subgradient
descent. Minimizing a corresponding upper bound function of the original
objective function is the basic idea of this algorithm. Given Θ, the relation
matrix R can be optimized using similar techniques in Zhou et al. [2011].

3. Simulation

We illustrate the proposed method with simulation studies. Generated
data includes 5 covariates: x1 ∼ uniform(2, 4), x2 ∼ N(0, 1), x3 ∼
uniform(0, 3), x4 ∼ uniform(0, 3), and x5 ∼ N(0, 1). Parameters are
set at (α, β1, ..., β5) = (−1.5,−2,−3, 0.9,−1.2,−0.8). The hazard function
is defined as

hki = h0 expαi + β1ix1 + β2ix2 + β3
√
x3i + β4 log x4i + β5x

2
5i,

with h0 be the baseline hazard rate leading to the simulated event rate
which is close to that in the observed data of inpatient fall. Three clusters
(sites) are formed with intra-cluster correlation (ρ1, ρ2, ρ3) = (0.08, 0.1, 0.15)
to construct a covariance matrix Σ. Event time of subject i in cluster k is
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then calculated using Tki = −h−1ki log(1 − Uki) where Uki ∼ N(0,Σ). The
generated sample size is n = 1000 in each run. All evaluation metrics are
averaged over 1000 runs.

The novel method will be compared with discrete-time logistic model
(GLM), discrete-time survival tree (DSTree), and Bayesian discrete-time lo-
gistic model (BGLM). Evaluation metrics include (a) Root mean squared
error (RMSE) or Brier Score: 1

n

∑n
i=1(yij−pij)2; (b) Misclassification error

rate (MER) using cut-off 0.5: 1
n

∑n
i=1 |yij − I(pij > 0.5)|; (c) Area un-

der the ROC curve (AUC); (d) False positive rate(FPR) using cut-off 0.5:
1

ny=0

∑n
i=1(1 − yij)I(pij > 0.5); (e) False negative rate(FNR) using cut-off

0.5: 1
ny=1

∑n
i=1(1− yij)I(pij ≤ 0.5);

Simulation results indicates the new method improves performance in
terms of evaluated metrics when comparing with several ordinary methods
(Table 1), though some has only slightly improved. This indicates that
incorporating cluster information can benefit model performance.

Table 1: Evaluation metrics estimated using simulated data.
Rate Learner RMSE MER AUC FPR FNR
0.05 GLM 0.0056 0.0063 85.7 0.0065 18.2

DSTree 0.0150 0.0427 73.4 0.0105 22.1
BGLM 0.0050 0.1031 87.2 0.0059 19.4
MTL 0.0043 0.0058 88.1 0.0055 15.3

0.10 GLM 0.0136 0.1062 93.0 0.0107 12.1
DSTree 0.0218 0.0713 83.5 0.0206 18.2
BGLM 0.0153 0.0931 93.6 0.0112 12.4
MTL 0.0093 0.0881 94.2 0.0135 12.1

4. Application in inpatient fall prediction

Electronic patient records from 2007 to 2014 were provided by Kessler
foundation, which consists of three campuses. Required by CMS as part
of the Inpatient Rehabilitation Facility Prospective Payment System (IRF
PPS), the electronic records collected information on patient identifica-
tion, disease diagnoses, functionality at admission, and status at discharge
as well using Inpatient Rehabilitation Facility - Patient Assessment In-
strument (IRF-PAI). With IRF-PAI, a set of function modifiers is col-
lected by assessing patients’ functionality in bladder level/frequency, bowel
level/frequency, tub transfer, shower transfer, distance walked/traveled in
wheelchair, etc. The function modifiers serve to assist in the scoring of re-
lated FIM instrument items, and to provide explicit information as to how
a particular FIM item score has been determined. Patients are assessed at
admission and discharge time. Only information at admission is used for
modeling in this study.

Kessler campuses have incident report system. The system recorded
every incident event patients experienced during their stay, including event
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date, type (fall, burn, etc.), and related diagnoses. Since all fall events in
incident reports were judged by medical staff in rehabilitation facilities, we
define a fall as “an event judged to be a fall for which a fall report was
created by medical staff at a rehabilitation center” in this study. No further
review is performed on each individual fall event by comparing fall reports
with medical records. The incident report data is merged with patients’
admission data which were cleaned first. Incident dates are the basis to
identify legitimate fall events, i.e. a fall event is considered as legitimate
only when the event date can be landed within an appropriate interval
determined by admission and discharge date. For patients with multiple
fall events, the first event is considered and identified based on event date.

Polychoric correlation is applied on ordinal function modifiers and FIM
item scores [Olsson et al., 1982]. On obtained correlation matrix, principal
component analysis (PCA) with PROMAX rotation is applied to find a
simple structure of factors. Factor loadings are computed based on the
structure of factors and are used in predictive model building.

Based on ICD-9-CM comorbidity diagnosis codes, Elixhauser comor-
bidity measures are created: separate indicator variables for 30 different
diseases, including cancer, cardiovascular/blood disease, endocrine disor-
ders, gastrointestinal disease, musculoskeletal/pain-related disease, neuro-
logic disorders, nutritional disease/obesity, psychological/behavioral dis-
ease, and miscellaneous disease [Elixhauser et al., 1998, Austin et al., 2015].

The data will be split into training set and test set. Predictive models,
including penalized logistic model(GLMp), random forest, multi-layer per-
ceptron (MLP), multivariate adaptive regression spline (MARS), support
vector machines with radial basis function kernel (SVM), and generalized
additive model using splines (GAM), are developed on the training set. Re-
peated 10-fold cross validation will be applied to tune parameters for each
model. Table 2 lists evaluation metrics of prediction with the validation
data set. The proposed method is at top of all learner in terms of AUC.

We consider to ensemble these learners with a genetic algorithm (GA).
The algorithm assigns weights to each classifier. Weight are proportional to
their performances on evaluation metrics. The basic procedure of a genetic
algorithm is first to generate a weight distribution vector randomly, and
then the performance of its corresponding meta-classifier will be evaluated
using the holdout subset. Based on the fitness of each member learner, GA
selects members for the next generation. And by crossover and mutation
operators, a new generation of weight distribution vectors is created. With
the set of new weight, the meta-classifier will be re-evaluated. Repeat the
above steps B times. With the ensemble algorithm, we achieved an AUC of
0.874, with a sensitivity of 0.983 and a specificity of 0.299, on the hold-out
test data set.

5. Conclusion

This study investigated an extended multi-task learning framework with
prior cluster information incorporated as tasks. The flexibility of the al-
gorithm enables us to integrate potential correlation among clusters. Ap-
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Figure 1: Scatter plots of AUCs from repeated 10-fold cross-validation
between MTL and other algorithms.

plication to a real world data set showed that the proposed framework
outperformed other algorithms.

As noticed in the experiment on EMR data, the ensemble learner per-
formed well in terms of sensitivity, but have a large space to improve in
specificity. This is probability due to the limitation of the data. This set
of EMR data did not collect any laboratory measurements. Furthermore,
for the functional modifier and FIM score, only measurements at admission
can be used. There was no intermittent measuring during patients stay.
Though measured at discharge, they are not helpful in terms of predicting
fall. Thus, there was no information on change in patients’ functionalities.
Such a change is found to be an important predictor of fall in our exercise
of building models with measurements at discharge included.
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Table 2: Performance of sub-learners from impatient fall data.
AUC Sensitivity Specificity

Mean 95% CI Mean 95% CI Mean 95% CI
MTL 0.830 0.816 0.844 0.947 0.942 0.952 0.366 0.339 0.393
RF 0.829 0.818 0.839 0.982 0.979 0.985 0.207 0.185 0.230
MLP 0.674 0.655 0.693 1.000 1.000 1.000 0 0 0
MARS 0.828 0.815 0.841 0.979 0.976 0.982 0.213 0.188 0.238
SVM 0.766 0.755 0.776 0.985 0.982 0.988 0.162 0.144 0.179
GAM 0.828 0.815 0.841 0.981 0.978 0.983 0.198 0.169 0.227
GLMp 0.820 0.804 0.835 0.998 0.997 0.999 0.007 0.003 0.012
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