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Abstract
There is a wide and growing literature on growth curve modeling based on longitudinal data,
including parametric and semi-parametric (spline-based) random effects models, functional
data analysis methods and latent growth curve models. We compare and contrast these
various methods in terms of how well they do in terms of predicting individual child growth
trajectories, based on data from the HBDGki project. Prediction accuracy is assessed using
a ”leave one out” strategy for fitting and then comparing predicted values with the observed
values of those left out. Methods are also presented for extracting key growth features such
as faltering and catch-up. We conclude with recommendations about how growth data can
be most effectively modeled in epidemiological cohort studies such as the ones encountered
in the HBGDki project.
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1. Introduction

The Healthy Birth, Growth and Development knowledge integration (HBGDki)
project is a collaboration funded by the Bill and Melinda Gates Foundation with
the aim of integrating information from an extensive database of studies of child
growth and development from across the world. The majority of these studies are
from low or middle income countries, and the ultimate goal of this project is to
create a knowledge platform to inform decisions about interventions in these lower
and middle income countries to help improve overall health and wellbeing.

It is therefore crucial to understand the factors and conditions which impact on
the development of children. It is critical that we have reliable methods that allow
us to characterise of different growth patterns. For example, we need to distinguish
between children who are growing successfully and those whose growth is faltering
[1]. When children falter, we wish to quantify the timing and the extent of their
recovery [2] [3] [4]. Once we have identified methodology for characterising growth
patterns, we can start to investigate the factors which predict faltering and recovery.
In turn, this will allow exploration of the relationship between faltering and other
outcomes such as cognitive development [5] [6] [7].

Scientists and health professionals identified the link between socio-economic
status as long ago as the early 19th century [8]. A historical overview of growth
modelling is provided by [9], but this paper will focus primarily on modern statisti-
cal approaches. One of the first such methods proposed was the LMS method [10], a
precursor to the SITAR method which is in common use today [11]. There has been
a recent surge in the use of statistical growth modelling approaches for child devel-
opment as a result of the increasing availability of computer software [12] [13]. The
bulk of the existing literature has been based on raw growth measurements, rather
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than modelling growth relative to a global or local standard. Most people will be
familiar with the use of standardized growth charts to assess how an individual child
compares to the population distribution for children of the same age and gender.
These charts allow us to quantify a child’s relative height or weight at a particular
age using what is known as a Z-score. If we continue to monitor a child’s progress
as they get older, we will obtain multiple Z-scores at different ages. These Z-scores
can be used to identify whether a child’s relative growth is improving or declining
over time. Standard Deviation Scores (SDS, [14]) can be computed to quantify
these changes in Z-scores over time, but assessing the significance of such changes
requires sophisticated consideration of the expected variation in centile crossing as
well as the potential impact of regression to the mean [15] [16] [17].

SDS-based measurements identify growth changes between two timepoints for
an individual child, and do not provide us with a mechanism for characterising
more complex growth patterns. Many epidemiological studies, including those in
the HBGDki database, involve children observed at multiple timepoints, and these
timepoints are not necessarily the same for each child. In this paper we suggest
that faltering and recovery can be investigated more extensively by estimating a
growth trajectory for each child using longitudinal modelling techniques. The idea
of extracting indicators and measures of child growth rates from fitted longitudinal
models is not new. Grajeda et al. (2016) [18] consider linear mixed effects models
based on regression splines, and derive the associated derivatives of these models
to characterize child-specific growth rates. However, the application discussed in
their paper is based on modelling of raw growth data rather than Z-scores. One
important contribution of our paper will be to explore Z-score modelling in more
detail, and to provide a quantitative comparison to raw data modelling.

Section 2 provides a detailed description of the data available in the HBGDki
database, including a discussion of the types of outcome data which will be modelled.
In Section 3, we provide an overview of the growth modelling literature and discuss
their advantages and disadvantages in our context. In Section 4, a selection of these
methods are applied to a variety of datasets from the HBDGki database, and we
use a novel validation approach to test their efficacy. We conclude with a discussion
in Section 5.

2. Data

The HBDGki project is an ongoing initiative which has so far amassed data from
well over 100 studies. At the time of analysis, 23 of these studies contained data
with sufficient longitudinal measures of the two main child growth outcomes, height
(or length) and weight. In total, these longitudinal datasets contain around 800,000
observations made on over 100,000 children.

Table 1 provides a summary of the studies which were analysed in this paper.
For data confidentiality reasons, we have labelled these datasets using letters rather
than references to their location or source. The second column outlines the number
of children in each study, while the third column displays the total number of height
(and/or weight) measurements within the study. The next three columns provide
the minimum, maximum and median number of observations per child, while the
final three columns show the minimum, maximum and median age range over which
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children were measured.

The studies vary in terms of the number of growth observations per child, with
a median of 23 observations per child for Dataset C compared to just two per child
for Dataset A. The studies cover a wide range of ages; for example Dataset K covers
children from birth to roughly 18 months, while Datasets F and H measure subjects
all the way to adulthood. The variety of these data makes it difficult to propose a
‘one size fits all’ modelling approach, but in this paper we seek to make recommen-
dations which allow for a degree of consistency in the analysis of the datasets. This
consistency will be crucial for the final aims of the HBGDki project, which include
characterising growth patterns across multiple studies, and combining the results
from these studies to identify global trends in growth.

Table 1: Summary of relevant studies within the HBGDki project
Dataset # Children # Num Obs Obs Per Child Child Age (in days)

Min Max Median Min Max Median

A 7637 18983 1 4 2 168 927 541
B 197 2352 1 15 14 95 1903 804
C 373 12478 23 37 34 1 1111 558
D 3125 35506 1 37 9 1 1846 446
E 197 4405 10 41 21 1 702 116
F 20510 158892 1 19 6 1 6954 718
G 380 8436 2 26 23 1 1175 343
H 1544 28823 1 77 16 1 6954 2746
J 315 2548 1 13 10 119 493 269
K 203 1427 1 17 7 1 521 136
L 27363 122139 1 6 5 1 960 92
M 2954 41587 1 69 13 0 900 309
N 2144 46499 1 25 25 1 732 336
P 629 11828 1 43 21 1 2199 644
Q 529 8656 1 30 16 731 6696 3257
R 153 1839 1 16 13 1 679 185
S 412 2279 1 8 7 193 1282 628
T 16898 174233 1 14 11 1 3287 275
U 700 9741 1 16 16 1 756 175
V 302 1140 2 4 4 153 457 265
W 278 3177 1 33 13 1 525 211
X 2027 15637 1 10 8 18 1095 280
Y 14086 64867 1 10 5 1 1132 115

3. Methods

There is a large literature on growth modelling and it is not the purpose of this
paper to provide an exhaustive review. However in this section we provide a broad
overview of the different approaches that can be used for modelling growth data
and provide some key references. Our focus lies in the characterization of individ-
ual growth trajectories, and therefore we consider only methods of relevance for
longitudinal studies and do not discuss the extensive literature on the analysis of
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cross-sectional growth data. While the range of growth trajectory methods are quite
varied, they have an underlying commonality in that they hypothesise that indi-
vidual children vary stochastically about a population curve [18]. In other words,
it is assumed that there exists an overall mean curve for a particular population,
and the differences between children can be explained as deviations from this mean
curve.

Consider a study which observes the growth of N children over time in terms
of a particular growth measurement. This measurement might reflect a physical
characteristic such as height or weight, or may represent a mental characteristic
such as a cognitive score. Suppose that the ith child has this growth measurement
taken at a series of timepoints ti1, ti2, . . . tini

and let Yij represent the growth mea-
surement taken at time tij . Note that there may be different numbers of growth
measurements for each child, and that the measurements are not necessarily taken
at regular intervals.

Clearly the growth of a child will depend on both their age and their gender.
There are two broad ways to account for this; either the age and gender can be built
into the modelling process, or the model can be based on age and gender standard-
ised versions of the growth measurements. The majority of the papers on growth
modelling work with raw growth data [10] [11] [13] [18] [19]. Our contribution will
be to explore statistical approaches which can be used to model the standardised
Z scores. Explicitly modelling age and gender effects might be interesting from a
biological perspective [12], but the trade-off is that some of our degrees of freedom
are used to capture the actual growth patterns rather than focusing on the trends.
In this paper, we will compare modelling techniques based on raw and standardised
data. Note that trajectories modelled under one approach can easily be converted to
the other for illustrative purposes, so the purpose of our comparison is to see which
form of data should be modelled on. Our standardised data is based on height and
weight for age Z-scores (HAZ or WAZ), calculated with respect to the World Health
Organisation standard population [20].

This section will discuss the existing growth methodologies, with a particular
focus on the six proposed growth models which will be compared in Section 4.

3.1 Laird and Ware Linear Model

In an early paper that laid the groundwork for much of the last several decades of
work on longitudinal growth curve modelling, Laird and Ware (1982) [21] proposed
the use of random effects as a means of characterising child-specific departures from
a global mean. Their approach allows each child to have a random intercept and
slope via the following model

Yij = β0 + β1tij + γ0i + γ1itij + ǫij. (1)

Here, γ0i represents the ith child’s deviation from the global intercept β0 and γ1i
is their deviation from the global slope β1. Here (γ0i, γ1i) are assumed to follow a
joint normal distribution, independent of the error term ǫ, which also follows a nor-
mal distribution. This model is applicable on both the raw and standardised scale;
in either case we would fit an individual straight line through our data for each child.
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3.2 Laird and Ware Quadaratic Model

It is clear that the random intercept and slope model is very simplistic and is unable
to capture nuances such as growth faltering and catchup. However, it is straight-
forward to extend this formulation to capture more complex non-linear trends. For
example, one can add a quadratic time effect as follows:

Yij = β0 + β1tij + β2t
2
ij + γ0i + γ1itij + γ2iit

2
ij + ǫij , (2)

where γ2i is an addtional random effect, representing the ith child’s departure from
the global quadratic term. Note that to avoid confusion we will hereafter refer to
this method as lwquad, and use lwlinear to refer to the linear version outlined in
the previous subsection. Higher degree polynomials can also be accounted for by
adding further parameters to this formulation in a similar manner. However, such
fully parametric approaches may struggle to capture the true growth trajectory,
and we may be able to capture subtle aspects of the data more accurately using
more flexible models. Spline-based approaches provide a more flexible framework for
modelling individual growth trajectories, and have therefore been used extensively
in this field.

3.3 SITAR

Cole et al. (2010) [11] proposed a method known as Superimposition by Translation
and Rotation (SITAR), which involves each individual having a curve which is a
shifted and transformed version of the mean growth curve. Shifting the curve up or
down corresponds to mean changes, shifting it left or right corresponds to different
growth times and the transformation of the curves.

The SITAR model is defined as follows

Yij = ωi + h

(

tij − λi

exp(−κi)

)

(3)

where ωi, λi and κi are subject-specific random effects, and h is a natural cubic
spline curve with h(t) representing the mean curve.

A key advantage of the SITAR approach is that it describes each trajectory in
terms of three biologically interpretable parameters. The parameter ωi adjusts for
child-specific differences in height, λi accounts for different timing of growth spurts,
and κi accounts for different durations of growth spurts. The actual growth curve
h() forms an explicit part of the model. A consequence of this is that it is more
natural to fit SITAR to the raw data, unlike the other methods outlined in this
section which can be applied to either type of data..

3.4 Brokenstick

Van Buuren (2014) [22] proposed a piecewise linear model known as the ‘broken-
stick’ model. The author proposes modelling growth via a combination of linear
segments with different slopes. This approach is essentially a linear spline model,
where the knots are used to represent changepoints in the growth trajectory.
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This model is based on a partition with two knots at the endpoints of our
dataset, and an additional M internal knots which represent changepoints. Linear
segments can then be fitted between each pair of knots, giving a global trajectory
with a total of M +1 segments. A set of subject specific random effects are used to
control each individual child’s deviation from each segment of the global trajectory.
The brokenstick model is outlined as follows:

Yij =
M+1
∑

m=0

βmt̃im +
M+1
∑

m=0

γimt̃im + ǫij (4)

where βm is a fixed effect population coefficient and γim is a subject specific ran-
dom effect for child i. Here, t̃im represents a B-spline transform of tij . The sum
ψim = βm + γim can be interpreted as the conditional mean for child i at the mth
knot, and the set of ψim values can be connected by linear segments in order to
model the trajectory of child i.

It is important to give consideration to both the number and location of the in-
ternal knots when fitting this model. We must choose a sufficient number of knots to
capture the changes in growth pattern over time, but we must also avoid overfitting.
The author gives some general advice that one should not select more knots than
the average number of growth observations per child. The locations of the knots
are also important to the overall accuracy of the growth trajectory estimates. The
author recommends that the locations are selected to represent specific stages in a
child’s development, but it should be noted that this is in the context of fitting on
the raw scale. This choice may be less crucial when fitting on the Z-scale, because
many developmental changes may already be accounted for by the transformation,
and evenly spaced knots may provide a more straightforward representation of the
growth trajectory.

3.5 Multilevel Spline Model

The brokenstick approach is based on linear splines, but higher degree polynomials
can also be used to model growth trajectories. Durban et al. (2005) [23] proposed
the use of cubic splines, thus allowing for more flexible global and individual growth
trajectories. Additionally, they used penalisation as a means of reducing the impact
of overfitting. A consequence of this is that they did not have to worry about knot
choices when fitting the model. The penalised splines are represented as a mixed
model, thus allowing for fast and computationally efficient fitting using existing
mixed model software.

This model is defined as follows:

Yij = f(tij) + gi(tij) + ǫij (5)

where f is a smooth function which represents the population trend and gi is a
smooth function which represents child i’s deviation from the population trajec-
tory. The individual trajectory gi consists of a combination of a linear component
and a non-linear component. The choice of penalised splines for both f and gi
is more robust to the user’s choice of the number of knots, because of its inbuilt
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penalty for overspecification of knots. Note that this method will hereafter be re-
ferred to using the shortened form PS.

3.6 Functional Principal Components Analysis

As was outlined for the previous model, the longitudinal growth data can be con-
sidered to be a form of functional data, and therefore techniques from the field of
functional data analysis have been proposed. Xiao et al. (2016) [24] outlined the
FACE approach, which was designed specifically for sparse longitudinal data of the
form outlined in this paper. This approach assumes that the data take the form

Yij = f(tij) + hi(tij) + ǫij (6)

where f is a smooth function which represents the population curve and hi() repre-
sents individual departures from the population curve. Here, hi() is considered to
be a stochastic process with mean 0 and covariance function C(). The covariance
function C() is estimated via a two-stage approach by first constructing a raw ma-
trix and then applying a bivariate smoother. This covariance function is then used
to specify hi() and thus identify the child-specific deviation from the mean curve.

3.7 Software

As part of the HBDGki initiative, we have developed the hbgd software package
which allows the user to fit Models (1)-(6) under consistent conditions. This package
is available at https://github.com/HBGDki/hbgd.

4. Comparison of selected methods

We wish to compare the six proposed models to identify the best performers in
terms of the estimation of growth trajectories. In addition, we wish to determine
whether modelling on raw or standardised data is more likely to yield accurate tra-
jectories. Therefore, in total we will compare eleven different modelling approaches:
SITAR on the raw data only, and each of the other five methods on both raw and
standardised data.

We propose a novel leave-one-out validation approach to compare the perfor-
mances of these models across the various datasets. Leave-one-out validation is
commonly used in regression modelling, but has rarely been applied to longitudinal
data. A single observation is removed from each child, and then the model is fitted
to the remaining dataset. Note that children who were only observed at a single
timepoint were removed from the validation process. The models obtained from the
reduced dataset were then used to obtain a prediction of the removed observation,
and the mean squared error (MSE) was used to quantify the difference between the
true and predicted values. Let y = (y1, . . . , ym) be a vector containing the observed
values of our held out data from m children, and let ŷ = (ŷ1, . . . , ŷm) be the vector
of predictions for those values. Then the mean squared error is given by:

MSE =
1

m

m
∑

i=1

(yi − ŷi)
2. (7)

JSM 2016 - Section on Nonparametric Statistics

2797

https://github.com/HBGDki/hbgd


A lower MSE suggests that a model did a good job of accurately predicting the
value of the removed observation. Note that to ensure consistency, the MSEs were
always calculated on the Z-scale. In the cases where the models were fitted on the
raw data, we transformed the resulting trajectory to the Z-scale in order to calculate
the MSE. The Z-transformation is monotonic, and therefore our results are not af-
fected by our decision to calculate the MSEs on the Z-scale rather than the raw scale.

Two different validation approaches were used; a ‘random value’ approach and
a ‘last value’ approach. For the random value approach, we selected the validation
observation at random from the set of all observations for the child. This approach
tests the accuracy of the overall model fit, by focusing on how well it can inter-
polate at unobserved time points. A similar approach was outlined by Grajeda et
al. (2016) [18], who randomly removed 20% of observations per child. However,
we also include a novel ‘last value’ approach, which involves removing the final ob-
servation for each child, that is the observation at which the child is oldest. This
approach tests the predictive ability of the models, with a particular focus on the
type of short-term extrapolation for which such models could realistically be used.
Prediction is particularly important in the context of the HBGDki project, where
we may wish to use a child’s observed trajectory to make inference about the effects
of an intervention on future growth.

4.1 Illustrative Example - Dataset U

Section 4.2 will summarise the results obtained from each of our 23 datasets. How-
ever, for the purposes of illustration, we will present detailed results from Dataset
U. This dataset contains height and weight measurements from 700 children in a
low income country in Asia. A total of 9741 height observations were taken over
the study period, with a median of 16 observations per child.

Figures 1 and 2 display the fitted growth trajectories of a single randomly se-
lected child under each of our eleven proposed modelling strategies. In each case,
we used the random holdout approach and fitted the model to the remaining data.
For each panel of the plots, the points represent observed HAZ scores for the child,
while the line is the fitted trajectory under the selected model. The filled point is
the one which was held out for validation. Figure 1 displays the cases where the
models were fitted on the raw data, while Figure 2 is based on the Z-scores. Note
that the third panel of Figure 2 does not have a fitted line because we cannot fit
the SITAR model on the Z-scores.

Figure 2 shows that the Laird and Ware approaches are not flexible enough to
model a sensible growth curve based on these data. Each of the other three models
appear to do a reasonable job of estimating the growth trajectories of the children.
It appears that the brokenstick and face approaches perform best in terms of how
well they predicted the holdout value. These models have more flexibility to ac-
count for this child’s fluctuation in HAZ score between the ages of 200 and 300 days.
The penalised spline model provides a reasonable fit, but appears to be slightly too
smooth to capture this fluctuation.
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4.2 Results

The comparison process outlined in Section 4.1 was repeated on each of the other
22 datasets. Each of these datasets have different features, and we are interested
in comparing the methods in terms of MSE to test how robust each method is to
different data structures.

The results of the random value validation approach are shown in Table 2, with
the lowest MSE for each dataset displayed in bold. Across the 23 datasets, we can
see that the brokenstick and FACE approaches provide lower MSE values than any
of the other approaches whether they are fit on the Z-score or raw scale. In the
majority of cases, the penalised spline method provides the third best MSE, while
the lwlinear and lwquad approaches perform more poorly. The SITAR approach is
unable to provide a fit on many of the datasets, but performs well in the cases where
it managed to fit successfully. We note that for the random holdout approach, fit-
ting on the Z-score scale tends to provide lower MSE values. This is unsurprising,
since fitting on the raw scale will typically use up some of our degrees of freedom
on the overall curve fit, rather than just focusing on an accurate fit relative to a
standard growth curve.

If we focus on the two best approaches, we can see FACE provides better esti-
mates than brokenstick for most datasets, though there are five datasets (Datasets
A, B, S, V and Y) where the brokenstick approach is more effective. The main thing
which these five datasets have in common is that they have a low number of ob-
servations per child, which makes it more difficult for FACE to accurately estimate
the necessary principal components. There were also three datasets (Datasets F, N
and T) where FACE was unable to provide a successful fit due to the large size of
the datasets. FACE is a more computationally complex approach than brokenstick,
and is thus more likely to run into such issues.

The relative performance of the modelling approaches was similar under the last
value validation approach, as shown in Table 3. However, in this scenario, there
was less of a difference in performance between the raw scale and the Z-score scale.
This is likely to be because we are extrapolating from our data, which is likely to
lead to larger deviations from the truth. If we are fitting on the Z-scale, these larger
errors will be inflated when transforming to the true curve.

Again, FACE provides the lowest MSE for most of the datasets, but was unable
to provide a fit for the very large datasets. The FACE approach also performs very
poorly in Dataset A, which is likely to be due to the small number of observations
per child. This dataset has a median of just two observations per child, which means
that FACE is often trying to predict a child’s trajectory with just a single data point.
Overall, however, it appears that the FACE approach represents the most accurate
of the modelling approaches discussed here, both in terms of internal and external
prediction. However, the brokenstick approach provides a credible alternative, and
may prove to be particularly useful in cases where we have larger datasets, or where
the number of observations per child is very low. The brokenstick approach is likely
to work successfully on a wider range of datasets, and as a result we recommend it
as the optimal modelling approach.
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We are also interested in comparing the models fitted on the Z-scale to those
fitted on the raw data. Figure 3 presents a comparison of the MSEs obtained from
modelling raw and Z-scale data using the brokenstick model with random holdout.
Each point represents a single dataset, and the x-axis displays the MSE from fitting
on the Z-scale while the y-axis displays the MSE from fitting on the raw data. We
can see that almost all of the points lie above the line of equality, which means
that the MSEs were lower when we fitted the data on the Z-scale. Figure 4 shows
similar results for the FACE model. We can see that fitting on the Z-scale leads to
more accurate estimation, and as a result, we recommend fitting our models on the
Z-scale in all cases.

Table 2: MSE results for random validation. The lowest MSE for each dataset is
displayed in bold.

BS (Z) BS (raw) face (Z) face (raw) lwlin (Z) lwlin (raw) lwquad (Z) lwquad (raw) PS(Z) PS (raw) sitar (raw)
A 0.02 0.03 0.04 0.19 1.75
B 0.03 0.03 0.03 0.03 0.05 0.06 0.05 0.05 0.06 0.60
C 0.19 0.21 0.10 0.11 0.48 1.09 0.37 0.62 0.24 0.24
D 0.12 0.27 0.07 0.09 0.31 1.14 0.28 0.72 0.25 0.27
E 0.04 0.07 0.03 0.04 0.07 0.31 0.06 0.08 0.06
F 0.16 1.73 0.53 5.77 0.41 2.92 0.29 0.72
G 0.12 0.12 0.07 0.07 0.33 2.63 0.27 0.44 0.14 0.13 0.21
H 0.06 0.73 0.03 0.04 0.21 5.10 0.17 1.57 0.14 0.17
J 0.02 0.03 0.02 0.03 0.08 0.10 0.07 0.08
K 0.14 0.16 0.12 0.13 0.49 1.00 0.45 0.54 0.55
L 0.16 0.50 0.07 0.08 0.46 3.76 0.43 1.28 0.41 4.00
M 0.31 0.36 0.27 0.32 0.56 1.51 0.54 0.76 0.54 0.78 0.58
N 0.09 0.11 0.27 1.73 0.23 0.54 0.20 0.27
P 0.17 0.68 0.13 0.15 0.41 2.83 0.33 1.46 0.31 0.33
Q 0.05 0.05 0.04 0.04 0.11 0.18 0.09 0.10
R 0.06 0.11 0.05 0.07 0.15 0.89 0.13 0.23 0.16
S 0.02 0.01 0.03 0.03 0.05 0.06 0.06 0.05 0.07 2.15
T 0.61 1.17 1.01 5.95 0.94 2.14 0.81 0.95
U 0.05 0.11 0.03 0.02 0.17 1.47 0.13 0.52 0.11 0.11 0.16
V 0.02 0.02 0.03 0.02 0.08 0.09
W 0.17 0.18 0.11 0.15 0.64 1.14 0.55 0.64 1.31
X 0.09 0.14 0.10 0.11 0.30 1.50 0.26 0.49 0.88 2.03
Y 0.55 0.87 0.19 0.36 1.22 2.98 1.21 1.65 1.19 5.01

Table 3: MSE results for last value validation. The lowest MSE for each dataset
is displayed in bold.

BS (Z) BS (raw) face (Z) face (raw) lwlin (Z) lwlin (raw) lwquad (Z) lwquad (raw) PS(Z) PS (raw) sitar (raw)
A 0.03 0.01 1.25 0.02 0.19 1.15
B 0.05 0.04 0.04 0.04 0.13 0.08 0.11 0.10 0.28 0.37
C 0.06 0.04 0.06 0.06 0.56 0.49 0.27 0.41 0.09 0.21
D 0.10 0.14 0.10 0.09 0.50 0.88 0.47 2.04 0.54 5.15
E 0.04 0.04 0.03 0.04 0.14 0.87 0.10 0.21 0.11
F 0.10 0.29 0.40 1.83 0.36 0.58 0.58 0.14
G 0.03 0.02 0.02 0.02 0.22 1.00 0.35 0.80 0.06 1.37 0.22
H 0.03 0.15 0.01 0.33 4.57 0.23 0.55 0.20 5.43
J 0.01 0.02 0.01 0.02 0.08 0.11 0.07 0.08
K 0.13 0.12 0.10 0.09 0.45 0.99 0.40 0.53 0.49
L 0.10 0.28 0.05 0.06 0.78 22.53 7.73 77.90 0.53 0.56
M 0.29 0.24 0.25 0.25 0.57 1.68 0.55 0.81 0.52 1.36
N 0.05 0.04 0.25 1.21 0.19 0.50 0.14 0.19
P 0.11 0.21 0.07 0.07 0.49 1.23 0.36 0.67 0.53 0.39
Q 0.02 0.02 0.02 0.02 0.16 0.46 0.14 0.18
R 0.06 0.10 0.08 0.05 0.26 2.71 0.21 1.29 0.23
S 0.02 0.02 0.06 0.05 0.12 0.13 0.11 0.12 0.11 1.98
T 0.42 0.24 0.86 12.72 0.81 3.06 0.80 2.21
U 0.07 0.07 0.07 0.09 0.33 2.67 0.27 1.62 0.27 0.58 0.17
V 0.02 0.03 0.11 0.18
W 0.19 0.18 0.17 0.18 0.68 1.35 0.58 0.77 0.71
X 0.26 0.24 0.88 4.29 1.04 2.59 0.73 2.03
Y 0.32 0.31 1.06 5.37 1.08 4.12 1.18 11.51

5. Discussion

This paper provides a thorough comparison of commonly used methods for charac-
terising child growth trajectories. Six different models were tested across 23 datasets
and compared in terms of the accuracy of their model fit and their ability to pre-
dict future growth patterns. Our results showed that two models, brokenstick and

JSM 2016 - Section on Nonparametric Statistics

2800



FACE were consistently the best performing approaches. The FACE model provided
slightly better estimation overall, but had some difficulties with larger datasets and
also those with a very small number of observations per child. The brokenstick ap-
proach was more robust in these circumstances because it is a less computationally
complex model. We identified that the Z-score models were superior to raw data
models in terms of accurate fitting, and that there was little difference between
the approaches in terms of predicting future growth. One of our overall goals is to
provide an integrated modelling framework for all of these datasets, and therefore
it is important to have consistency in our modelling approaches. As a result, we
recommend the use of the brokenstick model with standardised Z-score data. A
key advantage of the brokenstick model is that it is easier to fit and provides easily
interpretable estimates of child growth trajectories.

The work presented in this paper may motivate future work in the area of growth
modelling. For example, one may wish to use indicators extracted from our growth
trajectories to investigate the effects of growth faltering on other outcomes, or to
consider the factors which may lead to growth faltering in the first place. We have
identified sensible techniques for accurately modelling growth trajectories, and have
shown that they still perform well on sparse datasets. It may therefore be possible
to design more efficient studies with a smaller number of measurements per child,
while still retaining the ability to accurately model growth.

The goal of the HBGDki project is to pool together information from a wide
range of studies from across the world in order to improve health and wellbeing in
children. It is crucial that we identify accurate and reliable models for characterising
growth trajectories in order to distinguish between children who have healthy growth
and those whose growth is faltering. This allows us to explore factors which predict
faltering, and also the effect of poor growth on future health, thus providing a
framework for influencing decision making both in the field and at the governmental
level.
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Figure 1: Fitted growth trajectory of a single child based on fitting each of our six
models on the raw scale.
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Figure 2: Fitted growth trajectory of a single child based on fitting five of our
models on the Z-scale (SITAR was not fitted on this scale).
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Brokenstick with Random Holdout MSEs: Z−Scores v Raw Data

MSE for fitting on Z−scores
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Figure 3: Comparison of results from fitting the brokenstick model on raw data
and on Z-transformed data. Each point represents the MSE values obtained from
random holdout on one dataset.
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FACE with Random Holdout MSEs: Z−Scores v Raw Data

MSE for fitting on Z−scores
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Figure 4: Comparison of results from fitting the FACE model on raw data and on
Z-transformed data. Each point represents the MSE values obtained from random
holdout on one dataset.
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