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Abstract

The dynamic nature of air quality chemistry and transport makes it di�cult to
identify the mixture of air pollutants for a region. In this study of air quality in the
Houston metropolitan area we apply dynamic principal component analysis (DPCA)
to a normalized multivariate time series of daily concentration measurements of �ve
pollutants (O3, CO, NO2, SO2, PM2.5) from January 1, 2009 through December
31, 2011 for each of the 24 hours in a day. The resulting dynamic components are
examined by hour across days for the 3 year period. Diurnal and seasonal patterns
are revealed underlining times when DPCA performs best and two principal compo-
nents (PCs) explain most variability in the multivariate series. DPCA is shown to be
superior to static principal component analysis (PCA) in discovery of linear relations
among transformed pollutant measurements. DPCA captures the time-dependent
correlation structure of the underlying pollutants recorded at up to 34 monitoring
sites in the region. In winter mornings the �rst principal component (PC1) (mainly
CO and NO2) explains up to 70% of variability. Augmenting with the second princi-
pal component (PC2) (mainly driven by SO2) the explained variability rises to 90%.
In the afternoon, O3 gains prominence in the second principal component. The sea-
sonal pro�le of PCs' contribution to variance loses its distinction in the afternoon,
yet cumulatively PC1 and PC2 still explain up to 65% of variability in ambient air
data. DPCA provides a strategy for identifying the changing air quality pro�le for
the region studied.

Key Words: dynamic principal component analysis, moving window PCA, multi-
pollutant analysis, time series

1 Introduction

Chemical processes are complex and nonlinear. Their dependency structures are
contaminated with cross and auto correlations, seasonality, diurnal cycles, outliers,
and noise. Direct data visualization or even basic statistical summaries are unable to
reveal the key underlying patterns and distributions of the mixtures of air pollutants.
Multivariate data analysis (MDA) has been e�ectively utilized in discovering these
latent structures. Principal component analysis (PCA) is one such tool that can
identify linearly related variables that describe most of the variability in the data.

Recently PCA has gained traction in the study of air quality (AQ). Buhr [7] used
PCA to examine sources of nitrogen oxides (NOx) and carbon monoxide (CO) from
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other pollutants. Trainer [38] studied formation and loss of ozone (O3) through PCA
and bivariate regression of pollutants. Gonçalves [12] related child morbidity and
meteorology patterns to ambient AQ through PCA of pollutants and meteorological
factors.

Many authors recognize the seasonal characteristics of environmental data and
analyze winter and summer observations separately. Pissimanis [33] applied PCA
to examine spatial distribution of max (O3) concentrations in the summer months.
Álvarez [2] applied rotated PCA to assess spatio-temporal variability in winter and
summer. Statheropoulos [27] related key principal components (PC) to emissions
and ozone via PCA on winter and summer data.

Some other authors recognize the diurnal pattern of the air pollution data. Buhr
[6] contrasted air pollution to emission ratios with the help of PCA performed on
morning data. Abdul-Wahab [1] employed PCA to construct uncorrelated compo-
nents based on air pollution and environmental data separately aggregated for the
day and night hours. Lengyel [24] examined day and night AQ via PCA of air pollu-
tion and meteorological observations. Sousa [37] exploited hourly air pollution data
and meteorology to construct the components.

Still most analyses ignore the non-stationary structure of environment AQ data
[43]. Since PCA assumes �xed distribution parameters, an application of static
PCA on observations from a distribution with time-dependent parameters is im-
proper and de�cient. While dynamic PCA variants have been applied to chemical
processes ([22]), climatology ([20]), (to our knowledge) it has not been used to study
air pollution until now.

We construct DPCA components on a two dimensional time domain (hours of
a day × days of studied time period) and investigate the organization of principal
components and their contribution to overall variability. We de�ne DPCA as a
moving window static PCA. Such form of DPCA was studied by [17], [25], [39] and
applied to electroencephalography in [41].

The novelty of this paper is its application of DPCA to air pollution observations
with the objective to

1. Demonstrate a proper application of PCA technique to cyclostationary time-
series

2. Approximate non-linear dependence with a linear technique

3. Assess absolute and relative performance of such application

4. Interpret linearity between PCA input variables and translate it to original
AQ indicators

5. Reveal diurnal and seasonal patterns of strong and weak linear dependence
among PCA input variables

This paper stops short of use of the identi�ed dynamic PCs in forecasting, con-
struction of air quality indicators (AQI), dimension reduction, etc. Some of the
aforementioned papers (and references therein) have already demonstrated such ex-
tensions to PCA. Also, we do not account for spatial information, which has been
investigated by other authors (e.g. [2, 33]). Instead, we construct spatially-averaged
observations (SAO) to achieve a greater degree of robustness.
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The paper is organized as follows. Section 2 discusses PCA assumptions, method-
ology and interpretation. It also de�nes DPCA and a notation helpful when referenc-
ing dynamic factors. Section 3 describes data pre-treatment, determines a suitable
transformation, and veri�es dynamic correlations to justify the use of DPCA. In
Section 4 we apply DPCA to construct an informative 3D pro�le, identifying the
contribution to the explained variability of each PC. We then evaluate contributions
averaged across each hour and study dynamic PC loadings for two times of a day,
namely 7am and 2am. Finally, we compare our DPCA e�orts to employment of static
PCA on air pollution data. We close with a short section of concluding remarks.

2 Methodology

2.1 Assumptions

PCA assumes the distribution of a data matrix X is characterized by constant mean
and covariance parameters. In other words, since PCs are linear combinations of
input variables (columns of X), the latter must be linearly related on the full obser-
vational interval [36]. This condition is problematic, since most observed processes
are not linearly related and their distribution parameters may change with state,
space, or time (even if the distribution family remains the same). For example,
environmental and meteorological data often exhibit trend non-stationarity as the
process mean exhibits seasonal and diurnal patterns. Fortunately, this behavior,
termed cyclostationarity, still exhibits stationarity on a neighborhood of any point
of a cycle. This local stationarity can be tested and local observations can be fur-
ther explored with the usual PCA [18, p.314], [20, 8]. Similarly, in this paper, we
perform static PCA on a �xed-size window, sliding in time along observations. This
yields time-changing (dynamic) PCs on samples that are su�ciently small to remain
weakly stationary, but still seize the local dependence structure.

Still, there is a body of literature discussing the assumption of whether X must
have independent and identically distributed (iid) rows, each of which are multi-
variate normal (MVN) for PCA to make sense [18, p.19], [28, p.229], [3, p.488],
[16, p.102]. The authors determine that theoretical derivations, descriptive use of
PCA, and most results of a sample PCA do not require normality. In the case of
time series, a weak stationarity of X is usually su�cient for consideration of the
consistent estimates of the �rst two moments of the distribution of X [35, p.485],
[16, p.365]. The assumption of normality adds an additional meaning to the inferred
PCs. An interested reader may not that in some disagreement, a few authors imply
that MVN assumption is important [10, p.558], [21, p.151], some claim that MVN as-
sumption can be omitted altogether [18, p.39], [35, p.490], some develop alternative
approximations to overcome the MVN assumption [34], and most simply proceed
with PCA without explicitly noting any assumptions. We use and test normality
only to determine the robustness point at which data outliers become insigni�cant.

2.2 Robustness

PCA, as a least squares method, is dangerously sensitive to outliers. These �atypical�
observations may signi�cantly a�ect estimation of the components of the analysis,
such as the eigenvectors and eigenvalues of the covariance matrix of X. PCA ro-
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bustness can be achieved in a variety of ways, ranging from the least-recommended
removal of peripheral observations (or even variables) and transformation of the
input data to robustifying the intermediate covariance matrix or the terminal PC
components [18, p.233], [16, p.365], [40].

In practice, real world environmental data often exhibits ill-suited skewness and
can be �symmetricized� with several favored non-linear transformations, such as log-
arithms, roots, powers (e.g. Box-Cox transform), ratios, log di�erences, reciprocals,
logit transforms (of proportions), and alike [11, 32]. This data pre-treatment often
coincides with normalization (herein de�ned as aligning data to MVN), which can,
in turn, be checked with a battery of statistical tests. Among popular MVN tests
are those developed by Mardia, Henze-Zirkler's and Royston. Mardia's skewness
and kurtosis tests give a greater insight on the shape �t to MVN [14, 21]. We use
one such MVN test to identify a suitable transformation for our data. With air pol-
lution data, in particular, natural logarithm of some or all variables helps stabilize
asymmetric variability and diminish the e�ect of extreme events [11, 1, 6, 8, 30].

2.3 De�nition and interpretation

Consider a centered data matrix X = [xnp] ∈ Rn×p with n observations and p
variables, where each row follows the same multivariate, but not necessarily normal,
distribution with �xed mean and variance parameters, estimated as (0,Σ). A (static)
principal component analysis (PCA) is de�ned as a linear transformation of these
correlated variables to uncorrelated principal components, PCp, k = 1..p,

z.k := PCk = v1kx.1 + · · ·+ vkpx.p

= [x.1 . . . x.p] vk. = Xvk. (2.1)

where v′k. = [v1k . . . vpk] ∈ R1×p are the suitable loading coe�cients, and x′.p =
[x1p . . . xnp] ∈ R1×n. In other words, PCA decomposes X into two component (or
factor) matrices, latent values (PC scores) and latent vectors (PC loadings). For
convenience, the components are ordered by their contribution to the overall vari-
ability of the transformed data set. So, PC1 has the largest contribution to variance,
PC2 - second largest, and so on.

One interpretation of PCA is that in the process of decorrelation of original vari-
ables it breaks up the entire variability of uncorrelated PCs into summable variances
represented by squared eigenvalues of Σ. The largest eigenvalues identify principal
components most relevant to the analysis since they contain most of variability. The
smallest eigenvalues are thought to represent the noise in the data. Hence, if the
noise components are identi�ed, a reasonable approximation of X can be recovered
from the surviving dominant patterns.

Since PCA is scale-dependent, disparate units and scales of input variables hinder
interpretability of the results [28, p.219]. It is, thus, common to scale raw observa-
tions in some standardized way (usually, to mean 0 and variance 1), so that neither
variable dominates the sample covariance matrix, and, consequently, the resulting
components. Such standardization deems the input variables unitless, thereby cloud-
ing the subsequent inference. A good rule of thumb is to keep data in their original
units, if PCA on a standardized dataset is not signi�cantly di�erent from that of
PCA on raw data. Also, note that scaling up pure noise observations (with low
variance) will enhance their impact in the analysis [40].
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Still direct reading of PC loadings remains challenging since loading coe�cients
can take negative values (weights) and void the sum-of-parts interpretability that is
prised in other popular factorization techniques, such as negative matrix decompo-
sition (NMF). Hence, PC loadings may bene�t from an additional transformations
to ease interpretation [35, p.492].

2.4 Decomposition

The workhorse behind PCA is a singular value decomposition (SVD) of a data matrix
Xn×p, or, equivalently, the eigenvalue decomposition (EVD) of its sample covariance
matrix, Σp×p.

The former is a factorization

Xn×p = Un×p · Λp×p · V ′p×p

where Λ is diagonal. U, V are orthogonal , i.e. U ′U = Ip = V ′V (or U ′ = U−1 and
V ′ = V −1) . These are left and right eigenvectors of X.

As with any symmetric positive semi-de�nite (PSD) matrix, the EVD of Σ is (up
to a scaling factor)

Σ ∝ X ′X =
(
UΛV ′

)′ (
UΛV ′

)
= V Λ2V ′

ΣV ∝ V Λ2V ′V = V Λ2

The components in both decompositions exist and are unique. Note that SVD
eigenvalues are equal to EVD eigenvalues. Also, right eigenvectors of X are the
eigenvectors of X ′X, and left eigenvectors of X are the eigenvectors of XX ′.

To summarize, PC transformation relates X to its score matrix Z as Zn×p :=
UΛ = XV or z.k := u.kλk = Xv.k, where we index components by k and variables
(pollutants herein) by p (k, p = 1..p), v.k are loading coe�cients from (2.1), and

• Λ = diag {λk | 0 ≤ λk+1 ≤ λk} is diagonal matrix of (ordered) singular values
of Σ (in other words, standard deviations of PCs). O�-diagonal zeros imply
uncorrelated PCs.

• Λ2 is a diagonal matrix of (ordered) eigenvalues of Σ and represent the variances
of PCs.

• V = [v.1 . . . v.p] = [vpk] is a standardized PC loading matrix with columns as
standardized PC loadings of X, representing PC directions or eigenvectors of
Σ. The elements of V , vpk, are PC loading coe�cients or weights; and, p × p
matrix V Λ = [λ1v.1 . . . λpv.p] is V 's non-standardized counterpart.

• U = [u.1 . . . u.p]n×p is a standardized PC score matrix with columns as stan-
dardized PCs of X and rows (transformed observations) as row scores, also
termed factor scores or z-scores, of PCs. The nth element of z.k, znk, is the
PC score (or factor score) of the pth PC for the nth observation. The matrix
Z := UΛ = [z.1 . . . z.p] is its non-standardized analog.

An expanded matrix notation of PCA factorization is
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correlated
variables

[x.1...x.p]︸ ︷︷ ︸
X

eigenvectors
(PC loadings)

[v.1...v.p]︸ ︷︷ ︸
V

=

observationsx
′
1.
...
x′n.

 V =

uncorrelated
PCs

[z.1...z.p]︸ ︷︷ ︸
Z

=

PC scoresz
′
1.
...
z′n.

 (2.2)

where, in a time series context, multivariate observations xn. ∈ Rp and PC scores
zn. ∈ Rp are chronologically indexed by time.

PCA o�ers some properties useful in interpretation of the results. Explained
variance (EV) is the proportion of the total variability (of the PCs) accounted for
by a speci�c PC. These are the diagonal values of Λ2/Trace

(
Λ2
)
matrix. Variables

of primary interest are EV and cumulative EV (CEV):

EVk = λ2
k/Trace

(
Λ2
)

(2.3)

CEVk =
∑
i=1..k

EVi

A more detailed discussion of PCA is established in [28, 10, 16, 31].

2.5 DPCA notation and diagram

Application of static PCA on a data with time-dependent structure is unreliable and
improper, since the procedure attempts to linearly approximate the complex non-
linear relations between variables [22]. Instead, dynamic PCA (DPCA), a simple
extension of PCA, can reveal the dynamics of the underlying data structure. Our
de�nition of DPCA is an application of the sample PCA on a sliding window of
�xed width ` [17, 39]. For a cyclostationary time series, a local (in time) sample
of observations is approximately weakly stationary with (some) �xed distribution
[18]. PCA applied on a windowed data captures the linear relation of the variables.
As the window slides forward at a constant rate of one observation at a time, the
time-indexed PC loadings and scores express the overall non-linear relation.

Since we apply PCA on a window sliding across time, all resulting statistics
are time dependent. For reasons discussed in Section 3.2, we consider time to be
a two dimensional domain of hours × days. This avoids diurnal and seasonal non-
stationarities and allows for separate diurnal and seasonal data analysis. Whenever
notation EVk may be ambiguous, we underline the speci�c time dependencies:

EVh.k := [EVhdk]∀d ∈ Rd
+ (2.4)

EV..k := [EVhdk]∀h,d ∈ R24×d
+

where h is an hour of a day, d is a day of the time period, and k identi�es the
corresponding kth PC. In our dataset we have d = max {d} or 1095 days.

Similarly, dynamic PC loadings are de�ned via a 4 dimensional array V =
[vhdpk] ∈ R24×d×p×p with analogous de�nitions vh.pk ∈ Rd, vhd.k, vhdp. ∈ Rp, vhd.. ∈
Rp2 , v.dp. ∈ R24×p, vh... ∈ Rd×p×p, etc. A dot increments a dimension of the vari-
able by the maximum of the corresponding index placeholder. One dot designates a
vector, two - a matrix (�rst dot de�nes rows, second - columns), three - a 3D array
(third dot de�nes the size of the third dimension). So [vh.pk]∀p,k is a p× p matrix of
n-vectors as elements. This ameliorates visualization of dynamic loadings and other
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variables. In the same way we assign notation for dynamic PCs: [PChdk] ∈ R24×n×p,
PCh.k ∈ Rn, PC..k ∈ R24×n, etc.

Schematically, our application of DPCA is exhibited in Figure 2.1, with an ex-
ception of forecasting.

Figure 2.1: Application of DPCA. The correlated indicators are spatially-averaged
observations (SAO) constructed in Section 3.2.

3 Data

Texas Commission on Environmental Quality (TCEQ) provides an access to mea-
surements of air pollutant concentrations from Texas monitoring stations (sites). The
dataset contains hourly observations of 5 pollutants: ozone (O3), carbon monoxide
(CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter less than
2.5 micrometers (PM2.5), from 1/1/2009 00:00 CST to 12/31/2011 23:00 CST (that
is 1095 days or 26,280 samples) collected from 35 monitoring sites throughout the
area of Houston, Texas; see Figure 3.1. The study region excludes sites that are
non-representative of air pollution pro�le of the Houston metropolitan area (HMA).
For example, the Galveston Bay area is an oceanic coastal line with concentrations
expected to di�er from those in HMA. The Houston Ship Channel, unlike HMA,
is an industrialized home to numerous petroleum re�neries, and port and chemical
manufacturing plants [4, 19]. Some other sites are considered too remote. Gas con-
centrations are measured in (dimensionless units of) parts per billion (ppb), whereas
PM2.5 is in µg/m3.

Spatial information is lost once we construct spatially-averaged observations
(SAO) in Section 3.2.

3.1 Missing observations

In this preferential sampling (i.e. chie�y surveying the areas of heightened concern,
[26]) with high screening costs, not all pollutant concentrations are tracked at each
monitoring site. Out of 35 sites, only C416 (black pin in Figure 3.1) measured all
5 pollutants. Also, TCEQ uses nearly 30 codes to identify invalid measurements
resulting from downtimes, data losses, rejected measurements, equipment malfunc-
tions, etc. Our dataset contained 16 such codes, which we consider to be missing
data.
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Figure 3.1: Monitoring sites in Houston, Harris County, TX, USA. Area of study
excludes some sites located near Galveston Bay and Houston Ship Channel, or too
distant from Houston. Pin colors: black - tracks all 5 pollutants, red - 4, blue - 3,
green - 2, orange - 1. Pin numbers: 9 - tracks OCNSP (short for O3, CO, NO2, SO2,
PM2.5, respectively), 8 - OCNS, 7 - OCNP, 6 - ONP, 5 - OCN, 4 - OC, 3 - OS, 2 -
ON, 1 - N, 0 - O). Data source: www.tceq.state.tx.us

We impute short temporal stretches of NAs, de�ned as up to 4 contiguous hourly
NAs from the same site within each air pollutant, with monotone Hermite splines [9].
The advantage of this method is that imputed observations stay within the bounds
of starting and ending observed values, which prevents negative imputations near
extreme observations noted with other methods. A similar approximation could
have been achieved with linear approximates, but we feel that splines can better
incorporate the nearby diurnal structure, if only a few consecutive observations are
missing.

The larger gaps are replaced by the spatial averages within each pollutant, when
we construct a spatially averaged observations (SAO) indicator in Section 3.2.

The summary of missing values and data imputations are given in Table1. Ap-
parently, most sites are equipped to gauge ozone, while CO, SO2, and PM2.5 are
quanti�ed at only a handful of locations. The short NA gaps are least troublesome
with PM2.5 and O3 observations. Notably, NO2 and PM2.5 stand out with larger
proportion of missing data.

Adjustment for daylight savings time yield little improvement and we leave details
to an appendix of the paper.
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O3 CO NO2 SO2 PM2.5

Long runs 2.89 1.90 3.16 1.94 6.30
Short runs 0.95 1.44 2.13 1.36 0.58
Total 3.84 3.34 3.34 3.30 6.88
#sites 34 7 13 6 5

Table 1: Proportion of missing values (in %) attributed to Long and Short runs
O�-line sites (non-contributing for over one month) are dropped from NA summary
for the non-participation period: C695, C696 for CO and C555, C572, C695, C696
for O3.

3.2 Spatially-averaged observations (SAO)

It is common to spatially average observations from multiple monitoring sites. While
the true average estimator is unknown, a mean-based indicator, x̄hdp, is a popular
choice in literature. Here we index our observations by hour h = 0..23, by day
d = 0..1095, and by measured air pollutant p = 1..5, representing O3, CO, NO2,
SO2, and PM2.5 respectively. Such equi-weighted measure of centrality assumes
homogeneity among monitoring sites. In this paper we prefer a more robust, median-
based, measure of spatially averaged observations (SAO), SAOhdp := x̃hdp, and the
related matrix SAOh := SAOh.. = [x̃hdp]∀dp =∈ R1095×5

+ .
In our PCA median-based SAOh performs better than its mean-based counter-

part, yielding a clearer cyclostationary EV pattern, more stable PCh.1 coe�cients
(see Section 4). Other indicators considered in practice and literature include the use
of a maximum (i.e. aids in study of air pollution peaks and health), a combination
of averaging functions, and a multi-level aggregation, such as spatial clustering of
sites based on some notion of similarity. Bruno [5], Lee [23] and references therein
present a good overview of various air quality indicators.

Raw (non-standardized) SAO are shown in Figure 3.2 along with rolling (` = 45-
day) mean and standard deviation. Note the non-stationarity of the data expressed
with time-dependent mean and variance. For example, the �rst two sample moments
NO2 and SO2 are elevated in winters, those of PM2.5 - in summers. The clustered
behavior persists across all pollutants. Yet, covariance is more di�cult to observe
due to dissimilar scale and embedded noise.

3.3 Normalization and standardization

As part of robustifying SAOh, we have assessed logarithmic and other non-linear
transformations, which are common in the examination of AQ data. Since normal-
ization (herein aligning data to MVN) is usually associated with robustifying PCA
(see Section 2.2), it is reasonable to use an MVN test to target the desirable trans-
form. The 45-day moving window p-values, phd, of Henze-Zirkler's MVN test are
presented in Figure 3.3. That is ph. ∈ R1095 is a non-local time series of (daily)
p-values �xed at h ∈ {0..23}, hour of a day. The plot has a 5% signi�cance level cut
o�; and, more blue indicates a greater likelihood of tested data following MVN. The
summary observations from Figure 3.3 are:

1. The top panel shows that non-transformed data, SAO7am, fails to exhibit nor-
mality at 7am. This time of a day is representative of daily tra�c build up.
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Figure 3.2: Spatially averaged observations at 7am, SAO7am. Measurements (µg/m3

for PM2.5, ppb for others) are adjusted for DST. Overlaid curves are 45-day rolling
statistics: simple mean (black), standard deviation (red).

2. The middle panel re�ects a slight improvement in MVN test of log transform

x̂hdp := log (1 + x̃hdp)

LSAOh := x̂h.. ∈ R1095×5

where x̃hdp is de�ned in Section 3.2.

1. The bottom panel illustrates log di�erencing as a considerably promising nor-
malization. It is a routine method in �nancial models, which use log returns,
or percent change, computed analogously from the observed stock prices. Sim-
ilarly, we de�ne normalized SAO as

yhdp := x̂hdp − x̂h,d−1,p (3.1)

NSAOh := yh.. ∈ R1095×5 (3.2)

Also, as expected, median-based SAOh exhibits greater normality than a similar
mean-based measure across the evaluated transformations. Other MVN tests (see
Section 2.2) also support the use of the median-based transform de�ned in (3.1).
Likewise, other transforms listed in Section 2.2 yield similar-to-slightly-inferior per-
formance as that of log mapping (LSAOh). When NSAOh is assessed at other hours
of a day (night time, tra�c time, etc.), the MVN test's conclusions are similar.

Outliers, assessed for the same three transformations, are presented in Figure
3.4 and also support the use of use of log di�erencing. Hence, we proceed with the
analysis on median-based NSAOh data.

Raw concentrations use di�erent scales and are not suited for PCA, as noted in
Section 2.3. A common approach is to standardize the units to have mean 0 and
variance 1 prior to application of PCA [6, 40]. We do so on each 45-day window. For
instance, CO measurements dominate the results of PCA of SAOh.2, if left unscaled
(see data summary in Table 2). Similarly, non-standardized O3 observations govern
PCA of LSAO and NSAO because its variability is up to twice that of other variables.
In fact, when PCA was tried on unscaled NSAO7, PC7.1 explained 80% of variability
with dynamic loadings for the (normalized) O3 quantities playing a prominent part.
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Figure 3.3: Horizon plots showing 45-day rolling p-values, p7. , of (Henze-Zirkler's)
MVN tests on SAO7, LSAO7, and NSAO7 datasets. More blue indicates higher
likeliness of the underlying data following MVN, implying fewer outliers, and, thus,
greater suitability of PCA. See [21].
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Figure 3.4: Horizon plots showing 45-day rolling proportions of outliers for SAO7,
LSAO7, and NSAO7 datasets. Detection is based on adjusted robust Mahalanobis
distance, rMD (·), with decision on parameter α ∈ [.5, 1] (we use α = .75). We note
a consistent relative outcome: SAO7 contains most outliers (more blue) NSAO7 has
least. See [21]

In contrast, normalized O3 participation is similar to that of CO and NO2 in PC7.1,
when NSAO7 is standardized. Since PCs are designed to capture and attribute
variables' variability, the former PC7.1 is likely in�ated by variability of O3.

Table 2 describes raw, log and log di�erenced pollutant indicators. Note that
NSAO variable's mean and median are nearly identical, an expected property of
data from MVN distribution. While SAO and LSAO exhibit dramatic di�erences
in various statistic measures (across pollutants), NSAO pollutants' statistics (min,
max, ...) are better aligned. In our analysis we do not require strict normality. Our
primary goal is to prepare data for DPCA by minimizing the e�ect of outliers on
each rolling subsample.

3.4 Dynamic correlation

PCA maps highly correlated variables to uncorrelated components. It would make
little sense to apply PCA to uncorrelated variables. So, we quickly check the degree
of association between normalized pollutants. Indeed, as shown in Figure 3.5, some
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SAO... LSAO... NSAO...
O3 CO NO2 SO2 PM2.5 O3 CO NO2 SO2 PM2.5 O3 CO NO2 SO2 PM2.5

Min 0 6.6 .8 0 .1 0 2.0 .6 0 .1 -1.7 -1.6 -1.1 -1.3 -2.2
1Q 13.0 142.3 4.6 .1 7.3 2.6 5.0 1.7 .1 2.1 -0.1 -.1 -.1 -.1 -.1

Med 23.0 182.6 7.3 .3 10.2 3.2 5.2 2.1 .3 2.4 0 0 0 0 0
Mean 24.8 220.7 9.7 .6 11.3 3.0 5.3 2.2 .4 2.4 0 0 0 0 0

3Q 34.0 242.3 12.1 .7 14.2 3.6 5.5 2.6 .6 2.7 .1 .1 .1 .1 .1
Max 101.0 2076.5 50.5 19.8 81.4 4.6 7.6 3.9 3.0 4.4 2.4 1.5 1.2 1.4 1.6
SD 15.7 149.6 7.4 .9 5.8 .9 .5 .6 .4 .5 .3 .2 .2 .2 .2

Table 2: Summary statistics for SAO, LSAO and NSAO
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Figure 3.5: Pearson correlations for the paired NSAOh variables are computed
on a 45-day rolling window in the morning (7am, left) and afternoon (2pm, right).
Positive/negative correlations are shown in blue/red, both on a positive axis.

variables of NSAOh∈{7,14} exhibit a high degree of contemporaneous dependency. O∗3
are strongly associated with CO∗ and NO∗2 in the morning, but not in the afternoon
(where * indicates a normalized observation). NO∗2 is correlated with CO∗ in both
samples.

In general, morning correlations are more substantial than those in the afternoon.
Also, a seasonal pattern is observable in some correlations. For example, morning
CO∗ to O∗3 correlations are more negative in the winters and than in the summers.
Thus, we have established that the issue of co-dependence is signi�cant and the use
of PCA is just. Also, the presence of seasonal cycles underlines the cyclostationary
structure of the data and supports the use of DPCA.

3.5 Choice of a window size

Air pollution data carries clear seasonal and diurnal patterns. Its cyclostationarity
allows us to assume a �xed mean and variance on a short (length `) window of
observations. We assume that ` = 45 days carries su�cient information to grasp the
approximately stationary structure at a particular time of a year.
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4 Results and discussion

4.1 Explained variance (EV)

Examination of the dynamic nature of the explained variance for PCh.1, PCh.2 and
the pointwise sum of the two for the NSAOh, at each hour of a day, over the three-
year study period yields key insights. Figure 4.1 depicts these components. In
general, higher explained variance corresponds to a better PCA �t and stronger
linear relations among PCA input variables that make up the PCs.

We use R (version 3.x) core (base, stats), xts and lattice packages for most
of data scrubbing, imputation, PCA and visualization. Non-local NSAOh are stan-
dardized on each 45-day window before PCA is applied and Figure 4.1 of dynamic
EV is drawn. This 3D plot pro�les EV components over a 2D time domain as a
non-local (daily) pattern of EVh.k and local (hourly) pattern of EV.dk .

Admirably, just two PCs explain up to 90% of variability in the components (in
morning winters). But, more importantly, such pro�ling presents the EV pattern
of the components (PC..k∈{1,2}) dissected by time of day and day of the observed
period.

The daily explained variability by the �rst principal component at hour h, EVh.1,
exhibits a strong seasonal trend, spiking in cool winters and sinking in hot and humid
Texas summers, for any �xed hour of a day. A trend non-stationary EV..1 ranges
from about 30% to about 75% with overall mean, EV1, of approximately 51% as
shown in Table 3.

The seasonal form of CEVh.2 follows that of EVh.1 because the marginal di�er-
ence, i.e. EVh.2, is relatively too small and less variable. The mean of EVh.2 is less
than half of the mean of EVh.1 (23% vs 51%, see Table 3). Overall mean variance

explained by the �rst two principal components is CEV2 ≈ 74%.
The measure EV.d1 exhibits a strong diurnal pattern, when the �gure panels

are assessed vertically with changing hours of a day. The contributions are higher
overnight, from late evening to early morning, peaking with sun rise at around 7am.
These times of a day exhibit very little direct solar radiation. Contributions drop
in the afternoons, reaching lowest points around 4-5 pm. Such diurnal pattern is
strongest in the winters. Diurnal contributions from the second component, EV.d2,
slightly smooth out this diurnal pattern with elevated contribution mid-day and
lower contributions at night. As a result, the patterns are less prominent in the right
panel showing CEVh.2.

Naturally, static EVk fails to capture such complex diurnal and cyclostationary
dynamics.

4.2 Mean explained variance

Eyeballing 3D EV (Figure 4.1 on page 14) is helpful as it reveals a great deal of
detail. However, for a quick assessment of intraday contribution behavior, one may
consider non-locally averaged EV, computed at a speci�c hour as
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Figure 4.1: Heatmaps of the dynamic explained variance (EV) from PCh.1, PCh.2,
and PCh.1 + PCh.2 of the NSAOh, h = 0..23, left, right and center, respectively.

EVhk :=
1

d

∑
d

EVhdk (4.1)

CEVhk :=
1

d

∑
i≤k

EVhi

where number of days d = 1095.
The plots in these section focus on analysis of quantities in (4.1) and their (some-

what limited due to aggregation) use as a measure of PCA performance.
To start o�, we want to evaluate our choice of SAO averaging function and

normalizing transformation. We brie�y consider Figure 4.2 for such comparison.
It exhibits EVhk based on SAOh (identity transform), LSAOh (log transform), and
NSAOh (log di�erencing transform), where input SAOh is computed either via mean
or median function, i.e. x̄hdp and x̃hdp, respectively (see Section 3.2). The overall
shapes appear similar across all spatial averaging and normalizing methods. That
is EVhk spikes at 7am and dips in the afternoon (1-5pm). Thus, at least with the
EVh1 measure, these methods do not grossly di�er at representing the aggregate
dynamics of underlying variables. Still x̄hdp performs poorer (vs. x̃hdp) around
a peak (7am) and performs vaguely better in the afternoon (the bottom of the
curve). Also, LSAOh and NSAOh of x̃hdp perform best near peak, but the former
beats the latter at most hours of a day. If this aggregate was a single measure
of performance of PCA analysis, then we would perform PCA on LSAOh, as it is
frequently done. However, the consideration of robustness in Figure 3.4 demands
for PCA on NSAOh, which produces clearer DPCA components. That is dynamic
EVh.1 possess a coherent seasonal structure in Figure 4.1 and dynamic loadings in
Figure 4.3 are more interpretable, as compared to those of LSAOh, whose EV plots
we added to supplemented material.
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Figure 4.2: Comparison of EVhk. Dotted lines use SAOh based on spatial mean
(x̄hdp), i.e. averaging of contemporaneous observations among monitoring sites. Solid
lines uses SAOh based on spatial median (x̃hdp). Blue line computes EVhk based on
NSAOh, green - LSAOh, brown - SAOh. Ordinate units are in proportions, abscissa
- in hours of a day (0 to 23).

We now return to examination of EVhk from PCA of NSAOh based on x̃hdp.
Figure 4.3 reveals the relation between �rst three EVhk variables (k = 1..3, h =
0..23). It shows that EVh1 is negatively correlated with EVh2. So, when PCh.1 gains
prominence in capturing variability (around 6-8am and midnight), PCh.2 gives up
almost as much, and vise versa. The average explanatory power exceeds 60% at 7am
and dives just below 45% in the afternoon (2-6pm).

The box-and-whisker plot is a compact way to describe a sample variability or
its distribution's shape. These (static) descriptions are illustrated in Figure 4.3 for
EVh.1 at each hour h. Greater number of outliers appear to coincide with poorer
performance of DPCA (in terms of explained variability) around afternoon hours.
Recall (from Figure 4.1) that afternoon hours were also blurring the seasonality in
EVh.1 .

Note that EVhk oversimpli�es the results. It favors a clearer (�big picture�)
diurnal dynamics, while hides the seasonal structure of the underlying EVh.k. Still,
the plots support the superiority of DPCA in the morning and near-midnight NSAOh

and inferiority of such analysis on data in the afternoon hours. If cyclostationarity
of EVh.k needs to be explicitly exempli�ed, then boxplots can be assessed on a
windowed time interval (of, say, 45 days).

Further aggregation along the dimension of day hours is exhibited in Table 3.
We compare these EVk values to what other authors have achieved with static PCA,
in Section 4.4.

EV1 EV2 EV3 CEV2 CEV3

.51 .23 .14 .74 .88

Table 3: Cumulative and non-cumulative overall mean explained variance, i.e.
EVk = 1

24

∑
h EVhk.

4.3 Dynamic loading coe�cients

Furthermore, we scrutinize the linearity of relationships and participation of NSAOh

variables (i.e. percent change in pollutants) in PCs. The two most remarkable hours
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Figure 4.3: Left : Individual (solid) and cumulative (dotted) EV for the PC1,
PC2, PC3 by hour. Right : Distribution of EVh.1 over 3 year period (ignoring non-
stationarity). The centered bullet dots are 24 medians of the underlying samples.
Note clustering of outliers near hours of poor explanatory power (low EVh1 values).
Ordinate units are in proportions, abscissa - in hours of a day (0 to 23).

of a day are 7am and 2pm (see Figure 4.3), when EVhk reaches its highest and lowest
values, respectively. Figure 4.4 depicts corresponding PC loadings for h = 7, 14.

From the �gure we observe that in the morning PC7am.1 (i.e. �rst dynamic PC for
NSAO7am) is a fairly consistent linear function of all 5 variables with weights main-
taining their approximate mean and relation to other variables. CO∗ (i.e. normalized
and standardized CO) is the largest driver behind PC7.1 with weights averaging 0.53
and reaching 0.6 in summer 2010. Coe�cients appear somewhat seasonal with CO∗

playing a bigger part of PC7.1 in hot summers. O∗3 and NO∗2 are also in�uential. O∗3
weights oppose those of all other variables, implying inverse relationship between log
increments of O3 and other pollutants.

Largest (yet unstable) contribution to PC7.2 comes from SO∗2. PM∗2.5, second
largest, has opposite sign weights, implying o�setting contribution to PC7.2. In
particular, PM∗2.5 gains prominence in PC7.2 during summers, reaching weights of
−0.8. PC7.3 largely depends on PM∗2.5 and PC7.3 - on O∗3. PC7.5 is overwhelmingly
dependent on values of CO∗ with mean of absolute coe�cients (MAC) of 0.77. O∗3
and NO∗2 appear to weigh in seasonally in winters and summers respectively. Other
variables appear to bring noise to the components.

In the afternoon (right �gure) we note that the decomposition of PC2pm.1 is
more distorted. CO∗ and NO∗2 are still signi�cant (and positively) contributors,
but their weights are now more variable (more rugged curve). Also, O∗3 is now a
major contributor to PC2pm.2, while appears as noise in PC2pm.1 . SO∗2 is a second
major contributor to PC2pm.2. However, its MAC dropped to 0.52 from 0.57. PM∗2.5
dominates PC2pm.3 and PC2pm.5. The shapes of the remaining loading coe�cients
in other components are less discernible.

When evaluated at complementary hours (�gures not shown), other dynamic
loadings show similar trend in characteristics. That is higher EV1h (peaking at
7am) correspond to greater linearity among loading, and vise versa.

Loading weights control variables' participation in the make up of the PCs.
Hence, a greater (in absolute terms) loading coe�cient of a variable implies greater
contribution (from the associated variable) to the variance of the corresponding PC.
So, when v7..1 (see Figure 4.4) is juxtaposed with the corresponding EV7.1 (see Fig-
ure 4.1), we notice the seasonal variability of NSAO7 (see Figure 6.3 in Section 6.1)
passing through the stable coe�cients of v7..1 yielding a seasonal variability of PC7.1
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Figure 4.4: Dynamic loadings at 7am (left) and 2pm (right).

and EV7.1 . While we observe this in morning hours (near 7am, when MAC peaks),
this relationship is weaker in the afternoon, especially 2pm.

Left panel of Figure 4.4 presents 5 × 5 loadings matrix,
[
v7.pk ∈ Rd

]
p,k=1..5

,
computed from a PCA on a (standardized) 45-day window sliding in time along
NSAO7am. d = 1095 is number of days. Matrix columns, [v7.pk]∀p, are dynamic
PC loadings. Matrix elements, [v7.pk], are a daily TS of kth PC loading's coe�-
cients (or weights), placed in plot panels. Linear combination (at a corresponding
hour× day index) of kth PC loading and transformed observations results in a kth
PC. For example, PC7.1 is a linear combination of weighted (transformed) pollutant
concentrations, i.e. PC7.1 =

∑
p v7.p1 � NSAO7.p ∈ Rd, where � is a Hadamard

product, and v7.11 is a top left (daily TS in blue) element of loading matrix and so
on. Refer to (2.2) for more info. Legend values (in gray on each panel) indicate the
mean of absolute coe�cients (MAC), i.e. v711 = 1

d

∑
d |v7d11| = .47. Largest MAC,

maxp vhpk, of kth loading sets the direction, i.e. sign, of all kth loading's elements,
since signs are arbitrarily set by many PCA computational packages (see prcomp()
help manual in R). So, (p̊, k) := argmaxpvhpk is largest MAC's location (panel). We
�ip signs of pointwise coe�cients via vhdpk · sign (vhdp̊k), so as to keep vhdp̊k > 0.
Finally, we smooth coe�cient series with a 45-day mean. Re�ection and smoothing
ease their visualization and interpretation. Horizontal units are days in a �mm/yy�
format with vertical grid bars placed at 6 month increments.

When also tried varimax orthogonal rotations of loadings, but rotated coe�cients
were not materially more revealing.

4.4 Comparison to previous work

While application of PCA has recently gained traction in the perusal of environmen-
tal (and meteorological) data, unfortunately, most applications are still constrained
to the static assessment. It is perspicuous that a time-invariant PCA is unable to
seize the aforementioned two-dimensional rami�cations of DPCA on a cyclostation-
ary data, exampled with air pollution concentration series. Static PCA assumes that
an observed sample is randomized, time ordering is unimportant and the underlying
data patterns remain constant in time [22].

Some of the widely cited works of Statheropoulos and Abdul-Wahab ([27], [1],
respectively) rely on employment of static PCA to dynamic air pollution data. Inter-
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estingly, the former e�ort includes plots exhibiting non-stationary (seasonal) dynam-
ics of daily time series of raw pollutant concentrations (and meteorological observa-
tions) and the latter discusses the diurnal dynamics of the pollutants. Both papers
(and many other e�orts) stepped in the direction of dynamic analysis by applying
PCA separately to winter and summer seasons (Statheropoulos) and day and night
time (Abdul-Wahab). Still this assumes that the data structure wobbles between
two constant states, which is not the case with environmental and meteorological
data. Moreover, there is limited discussion of PCA assumptions and robustness of
the results. The latter paper utilizes standardized log (ozone) observations, but ap-
pears to leave other variables intact. The former publication does not mention any
transformation of the notably cyclical observation series (see �gures therein). Not
surprisingly the EVstatic

k in both works remain low, under 35% for EV1.
We consider our work an improved and proper extension of these two papers

in application of PCA. In fact, when we employed their methods to our normal-
ized set (with winter/summer and day/night observations identi�ed analogously),
we discovered a greatly improved EVstatic

k , as shown below in Figure 4.5. Seasonal
cycles appear much stronger in our work (see Figure 4.1) and summer/winter EVstatic

k

appear to capture this with similar pattern strength in winter observations. Decom-
position of day and night observations is less informative, likely due to the hours
chosen by the authors (6am-5pm as day and remainder as night). Our analysis
reveals the diurnal (local) dynamics among variables and suggests clustering night
and morning hours separately from afternoon hours. In fact, it may be helpful to
have three groups: night, morning and afternoon. Naturally, such discovery may go
unnoticed without performing our DPCA technique on each hour of the day.

EV1 CEV2 CEV3 CEV4

summer .50 .70 .84 .96
winter .58 .78 .88 .96

daytime .47 .69 .86 .96
night time .46 .68 .86 .97

Figure 4.5: Cumulative explained variance based on static PCA work of Statheropou-
los (lagging O3 observations; summer vs winter) and Abdul-Wahab (contemporane-
ous analysis; night vs day). We analogously aggregated hourly SAO data; then
normalized with log di�erencing de�ned in (3.1) and employed PCA.

Finally, dynamic PCA yields a greater information, when compared to static
PCA, about seasonal patterns in the variables, with EVh.1 reaching 70 − 75% (see
Figure 4.1) in winter nights of our dataset. Our DPCA application enables a higher
quality air pollution analysis targeted at a particular season or time of day. The
components can further be used in regression or other statistical methods for the
purposes of quality prediction and air pollution studies.

5 Conclusion

The objective of our study was to highlight the dynamic nature of air pollutants. We
accomplished this objective by applying non-local DPCA at each of the 24 hours of a
day to investigate Houston's air pollution pro�le. Thus, we constructed a two dimen-
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sional analysis over hours×days domain, essentially separating diurnal and seasonal
cycles. We have discovered that daylight savings have an insigni�cant impact on
the analysis. We then chose and tested a suitable normalizer (log di�erencing) that
transforms our data set SAOh to an approximately multivariate normal, NSAOh

(percent change in averaged pollutant concentrations). Still, we brie�y compared
(at the aggregate level of MAC) DPCA done on NSAOh versus those on the original
SAOh and (frequently used) LSAOh datasets. We presented the dynamic explained
variance and loadings at each hour.

The key �nding was that the air pollution pro�le remains non-constant through-
out a day and throughout a year. The best EV is achieved in the morning (around
7am), when loading coe�cients exhibit linear and consistent (non-local) structure
regardless of the season. PCh.1 captures seasonal pro�le at any hour h, although its
seasonal structure is poorest in the afternoon. This is when many of the dynamic
loadings are least meaningful as well.

The novelty of this paper is a new and proper application of PCA to an air
pollution dataset. We show that given the nature of complex pollutant associations
with daily and annual cycles, it's not only important, but also highly worthwhile to
apply PCA on a subset of cyclostationary data. Such practice identi�es patterns of
strengthening and weakening of correlations among studied variables throughout a
day or a year.

We then compared our results to existing (static PCA) research e�orts and con-
cluded that DPCA unveils a much richer and more complete dynamics of the ana-
lyzed data.

This work does not attempt to build predictors, reduce dimensionality, or con-
struct air pollution indicators. Yet, the determined uncorrelated PCs are suitable
for application of further extensions such as regression, self organizing maps (SOM),
arti�cial neural networks (ANN), and other techniques.
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6 Appendix

6.1 Daylight saving time (DST)

Most businesses operate in local time, setting pace for tra�c hours and, hence, pol-
lutant emissions [13, 42, 15]. Likewise, most of the Americas use DST to extend
evening hours into daylight at the expense of morning hours. In particular, Hous-
ton, and the whole of Texas, are in the Central Time (CT) zone. This zone follows
the Central Daylight Time (CDT) convention from a �jump� day in mid-March to
a �compression� day in early November and the Central Standard Time (CST) con-
vention for the remainder of the calendar year. CDT and CST are 5 and 6 hours
(respectively) behind Coordinated Universal Time (UTC), which is Greenwich Mean
Time (GMT), which does not observe DST.

Initially, our raw data is indexed with UTC-6:00 (i.e. ignores CST/CDT adjust-
ments) uninterrupted (no jumps or compressions) hourly increments. However, the
relation of pollutants to tra�c and diurnal human activity prompts the investigation
of the e�ect of DST [29] on PCA outcome. Apparently, the use of the CST/CDT
index has made only a diminutive amelioration (of 0.01%) in EV1. The whole im-
provement came from the PCA of a moving window over the jump and compression
days.

Still we carry on the analysis in local (i.e. CST/DST) time zone. This results
in one missing 2am observation when CDT goes into e�ect on jump day, and one
duplicate when CST takes e�ect on compression day in each year. For simplicity, we
interpolate the former and delete the later.

Figure 6.1 exempli�es a jump in observations when time shifts from CDT to CST.
The left panel shows non-local observations, i.e. daily concentrations at a �xed time
(at a 24 hour lag). The right panel shows local observations, i.e. consecutive hourly
concentrations, as de�ned in [8]. Note that (averaged) non-local CO levels remain
higher for the adjusted data at 8am, i.e. black curve is atop blue curve on the left
panel. This is expected, since the CST/CDT-indexed concentrations re�ect morning
tra�c's CO emissions faster than the UTC-6:00 indexed measurements. The right
panel shows a shadow e�ect as unadjusted concentrations remain one hour behind
the adjusted ones.
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Figure 6.1: DST e�ect on CO measurements (in ppb). In 2009 CST/CDT jump
occurred on March 8 at 2am. On jump day local time shifts forward by one hour
from UTC-6:00 to UTC-5:00, i.e. 1am CST → 2am CDT and so on. Left : Daily
measurements at 8am. Right : Hourly measurements around time change (jump
event).
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Figure 6.2: LSAO7am. Measurements are adjusted for DST. Overlaid curves are
45-day rolling statistics: simple mean (black), standard deviation (red). Asterisk in
O∗3 is the notation for the transformed O3 concentrations.
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Figure 6.3: NSAO7am. Measurements are adjusted for DST. Overlaid curves are
45-day rolling statistics: simple mean (black), standard deviation (red). Asterisk in
O∗3 is the notation for the transformed O3 concentrations.
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Figure 6.4: Heatmap of dynamic explained variance (EV) from PCh.1 and PCh.2

of SAOh and SAOh, h = 0..23. Left and center : non-cumulative for the �rst two
components. Right : cumulative for both components.
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Figure 6.5: Heatmap of dynamic explained variance (EV) from PCh.1 and PCh.2

of SAOh and LSAOh, h = 0..23. Left and center : non-cumulative for the �rst two
components. Right : cumulative for both components.

Dotted lines (in matching colors) represent the non-local means across the whole 3
year period. Vertical units are proportions on 0-1 scale (1 is 100% contribution to
variance).
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Figure 6.6: CEV from PC1 and PC2 of SAOh, h = 0..23 hours.

JSM 2016 - Section on Statistics and the Environment

2788



0.2
0.3
0.4
0.5
0.6
0.7

0am 1am 2am 3am 4am 5am

0.2
0.3
0.4
0.5
0.6
0.7

6am 7am 8am 9am 10am 11am

0.2
0.3
0.4
0.5
0.6
0.7

12pm 1pm 2pm 3pm 4pm 5pm

0.2
0.3
0.4
0.5
0.6
0.7

Ju
l−0

9

Ja
n−

10

Ju
l−1

0

Ja
n−

11

Ju
l−1

1

6pm

Ju
l−0

9

Ja
n−

10

Ju
l−1

0

Ja
n−

11

Ju
l−1

1

7pm

Ju
l−0

9

Ja
n−

10

Ju
l−1

0

Ja
n−

11

Ju
l−1

1

8pm

Ju
l−0

9

Ja
n−

10

Ju
l−1

0

Ja
n−

11

Ju
l−1

1

9pm

Ju
l−0

9

Ja
n−

10

Ju
l−1

0

Ja
n−

11

Ju
l−1

1

10pm

Ju
l−0

9

Ja
n−

10

Ju
l−1

0

Ja
n−

11

Ju
l−1

1

11pm

Figure 6.7: EV from PC1 and PC2 of SAOh, h = 0..23 hours.
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Figure 6.8: CEV for the �rst two components (EVihd, i = 1, 2) of LSAOh, h = 0..23
hours.
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Figure 6.9: EV for the �rst two components (EVihd, i = 1, 2) of LSAOh, h = 0..23
hours.
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Figure 6.10: CEV for the �rst two components (EVihd, i = 1, 2) of NSAOh, h = 0..23
hours.
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Figure 6.11: EV for the �rst two components (EVihd, i = 1, 2) of NSAOh, h = 0..23
hours.
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