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Abstract 
Given two samples drawn from two normal populations, we wish to test if two populations 
are identical. The traditional test of the equality of two means requires the assumption of 
the equality of two variances. But the variances that are assumed equal are less pragmatic 
to be equal in real life. Since a normal distribution is characterized by two parameters mean 
and variance, the test of identical normal distributions might be carried out using two 
means and variances, simultaneously. As such, several tests have been attempted 
incorporating means and variances, simultaneously. The power of the underlying tests 
will be obtained using a Monte Carlo simulation from two populations.  
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1. Introduction 

Let 𝑥 and 𝑦 represent the measurement of the same variable for two populations or two 
different groups. Let 𝑥 and 𝑦 be both distributed as normal. For example, 𝑥 and 𝑦 could be 
intelligence quotient (IQ) for male and female, respectively, which are normal. Given 𝑥 
and 𝑦 follow normal distributions, we would like to investigate if 𝑥 and 𝑦 follow an 
identical normal distribution. Since a normal distribution is characterized by two 
parameters mean and variance, it seems ideal to test for the identity of the two normal 
populations by considering means and variances, simultaneously. As of now, we test 
equality of two means and variances by employing two separate tests. However, the 
classical test of equality of two means depends on the equality of two variances. In this 
paper, we wish to test identity of two normal populations on the basis of tests 
involving simultaneously both means and variances. The estimated power and level of 
significance will be investigated via simulation by noting consistent behavior of the test 
statistics under alternative and null distributions. 

 
2. Notations 

Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) be two samples from two normal 
populations, and 𝑥̅ and 𝑦̅ be their respective sample means. Let 𝑠𝑥

2 and 𝑠𝑦
2 be sample 

variances of 𝑥 and 𝑦. Let 𝑥̅(𝑝) and 𝑦̅(𝑝) be the sample means with 𝑝% data values trimmed 
from both tails of the samples. Let 𝑠𝑥

2(𝑝) and 𝑠𝑦
2(𝑝) be the sample variances of 𝑥 and 𝑦 

after trimming 𝑝% of data values. 

___________________ 
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Given 𝑥 and 𝑦, we wish to test  

H0: 𝑥 and y have an indentical normal distribution 

against  

H𝑎: 𝑥 and y do not have an indentical normal distribution 

 

3. Methods 

In classical 𝑡-test, we assume that the two populations have an identical variances to test 
the equality of two population means. For the test of equality of two population variances, 
we employ an 𝐹 test. In our study, we consider tests for means and variances 
simultaneously to determine the identity of two normal distributions. To this end, we 
investigate a number of approaches and their performances in terms of the estimated level 
of significance and power resulting from the simulations. For each approach, we wish to 
test the same null and alternative hypotheses: 

H0: 𝑥 and y have an indentical normal distribution 

against  

H𝑎: 𝑥 and y do not have an indentical normal distribution 

Below we address briefly the methods that will be investigated for their performances 
empirically via simulation and/or using examples.   

3.1 Classical 𝒕 and 𝑭 tests 

In order to test null hypothesis H0, we use classical 𝑡- and 𝐹-test simultaneously, given 
respectively by: 

𝑇1 =
𝑥̅ − 𝑦̅

𝜎𝑝̂√2/𝑛
~𝑡2(𝑛−1) 

and  

𝐹1 =
𝑠𝑥

2 

 𝑠𝑦
2 

~𝐹(𝑛 − 1, 𝑛 − 1) 

where  

𝜎𝑝̂ =
(𝑛 − 1)(𝑠𝑥

2 + 𝑠𝑦
2)

2(𝑛 − 1)
 

We reject the identity of the two normal distributions if either of the two tests 𝑇1 and 
𝐹1 results in the rejection after the Bonferroni type of adjustment for a given significance 
level 𝛼, and otherwise, we accept the identity of the two normal distributions.  
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3.2 Pooled Test 

In order to test null hypothesis H0, we use pooled sample mean and pooled sample variance 
to form 𝑡- and 𝐹-test. Under the null hypothesis, it is reasonable to estimate mean and 
variance using the combined sample given by: 

𝜇𝑝̂ =
𝑛(𝑥̅ + 𝑦̅)

2𝑛
 

𝜎𝑝̂ =
(𝑛 − 1)(𝑠𝑥

2 + 𝑠𝑦
2)

2(𝑛 − 1)
 

We then define 𝑍𝑥 =
𝑋−𝜇𝑝̂

𝜎𝑝̂
 and 𝑍𝑦 =

𝑌−𝜇𝑝̂

𝜎𝑝̂
. 

We wish to test 

H0: 𝑥 and y have an indentical normal distribution 

against  

H𝑎: 𝑥 and y do not have an indentical normal distribution 

by utilizing the test statistics 

𝑇2 =
𝑍𝑥
̅̅ ̅ − 𝑍𝑦

̅̅ ̅ 

𝜎𝑝̂√2/𝑛
~𝑡2(𝑛−1) 

and 

𝐹2 =
𝑠𝑧𝑥

2  

 𝑠𝑧𝑦
2  

~𝐹(𝑛 − 1, 𝑛 − 1) 

simultaneously, to test for equality of means (𝜇𝑥 = 𝜇𝑦) and equality of variances (𝜎𝑥
2 =

𝜎𝑦
2).  

We reject the identity of the two normal distributions if either of the two tests 𝑇2 and 
𝐹2 results in the rejection after the Bonferroni type of adjustment for a given significance 
level 𝛼, and otherwise, we accept the identity of the two normal distributions.  

3.3 Trimmed Test 

Under this approach, we test identity of the two normal distributions by simultaneously 
applying 𝑡- and 𝐹- test to the trimmed 𝑥 and 𝑦 for a given value of trimming (𝑝). Let 𝜇𝑥(𝑝) 
and 𝜇𝑦(𝑝) be two population means with 𝑝% of data points trimmed from both tails of the 
distributions of 𝑥 and 𝑦, respectively.  

We wish to test 

H0: 𝑥 and y have an indentical normal distribution 

against  
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H𝑎: 𝑥 and y do not have an indentical normal distribution 

by utilizing the test statistics 

𝑇3 =
𝑥̅(𝑝) − 𝑦̅(𝑝) − (𝜇𝑥(𝑝) − 𝜇𝑦(𝑝)) 

𝜎̂(𝑥̅(𝑝) − 𝑦̅(𝑝))
 

and 

𝐹3 =
𝑠𝑥

2(𝑝) 

 𝑠𝑦
2(𝑝) 

 

simultaneously, for a given value of 𝑝, to test for equality of means (𝜇𝑥 = 𝜇𝑦) and equality 
of variances (𝜎𝑥

2 = 𝜎𝑦
2).  

Under 𝐻0, 𝑇3 is expected to follow a 𝑡-distribution with degrees of freedom 𝑡2𝑛−4⌊𝑛𝑝⌋−2, 
and 𝐹3 as 𝐹(𝜈1, 𝜈2)-distribution with degrees of freedom 𝜈1 and 𝜈2, where  𝜈1 = 𝜈2 = 𝑛-
2⌊𝑛𝑝⌋-1 and for a given value of 𝑝.  

One can estimate 𝜎̂(𝑥̅(𝑝) − 𝑦̅(𝑝)) by either 

𝜎̂2(𝑥̅(𝑝) − 𝑦̅(𝑝)) =
1

2𝑛 − 4⌊𝑛𝑝⌋ − 2
[ ∑ (𝑥(𝑖) − 𝑥̅(𝑝))

2
𝑛−⌊𝑛𝑝⌋

𝑖=⌊𝑛𝑝⌋+1

+ ∑ (𝑦(𝑖) − 𝑦̅(𝑝))
2

𝑛−⌊𝑛𝑝⌋

𝑖=⌊𝑛𝑝⌋+1

] 

or, 

𝜎̂2(𝑥̅(𝑝) − 𝑦̅(𝑝)) =
∑ (𝑥(𝑖) − 𝑥̅(𝑝))

2
𝑛−⌊𝑛𝑝⌋
𝑖=⌊𝑛𝑝⌋+1

𝑛 − 2⌊𝑛𝑝⌋ − 2
+

∑ (𝑦(𝑖) − 𝑦̅(𝑝))
2

𝑛−⌊𝑛𝑝⌋
𝑖=⌊𝑛𝑝⌋+1

𝑛 − 2⌊𝑛𝑝⌋ − 2
 

where ⌊𝑛𝑝⌋ =floor of (𝑛 × 𝑝/100) for 𝑝% trimmed sample. 

An estimate of 𝜎̂2(𝑥̅(𝑝) − 𝑦̅(𝑝)) can also be obtained using the bootstrap procedure. An 
algorithm for estimating 𝜎̂2(𝑥̅(𝑝) − 𝑦̅(𝑝)) using bootstrap procedure is given below: 

Given 𝑥 and 𝑦, generate 𝐵 bootstrap samples. For each bootstrap sample and given 𝑝, 
compute 𝑑𝑗∗(𝑝) = 𝑥̅𝑗∗(𝑝) − 𝑦̅𝑗∗(𝑝), for 𝑗 = 1,2, … , 𝐵, where 𝐵 is the desired value of the 
bootstrap replication size. An estimate of 𝜎̂2(𝑥̅(𝑝) − 𝑦̅(𝑝)) using bootstrap replications is 
given by: 
 

𝜎 ∗̂ =
1

𝐵 − 1
∑ (𝑑𝑗∗(𝑝) − 𝑑̅∗(𝑝))

2𝐵

𝑗=1
 

where 𝑑̅∗(𝑝) = ∑ (𝑥̅𝑗∗(𝑝) − 𝑦̅𝑗∗(𝑝)) /𝐵𝐵
𝑗=1 . 

 
The choice of bootstrap replication size can be considered following Efron (1987), Booth 
and Sarker (1998), Hall (1992), etc. In this paper, however, we utilized Yuen’s trimmed 
mean test, Yuen (1974), available in R via PairedData package, and F-test simultaneously 
to test for equality of means (𝜇𝑥 = 𝜇𝑦) and equality of variances (𝜎𝑥

2 = 𝜎𝑦
2).  

We reject the identity of the two normal distributions if either of the two tests 𝑇3 and 
𝐹3 results in the rejection after the Bonferroni type of adjustment for a given significance 
level 𝛼, and otherwise, we accept the identity of the two normal distributions.  
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3.4 Kolmogorov-Smirnov Test 

Given two normal distributions, to test 𝐻0: The two normal distributions are identical 
against 𝐻1: The two normal distributions are not identical, we also consider the 
Kolmogorov-Smirnov test given by 

𝐷𝑛 = 𝑠𝑢𝑝
𝑥

|𝐹𝑋,𝑛(𝑥) − 𝐹𝑌,𝑛(𝑥)| 

where 𝐹𝑋,𝑛 and 𝐹𝑌,𝑛 are the empirical distribution functions, also termed as cumulative 
distribution functions (CDFs) of the first and the second sample, respectively, and 𝑠𝑢𝑝 is 
the supremum function. We implement this test in R and compute the 𝑝-value to decide so 
as to accept or reject the null hypothesis. Considering this test would allow us to justify 
and compare the performances of other three tests as reference to this test. 

4. Simulation 

In this section, we consider simulations from selected normal distributions to investigate 
the testing power and size of the underlying tests. The estimated power and size are the 
rejection rates of identity of normal distributions under alternative and null models, 
respectively, over all simulations for a Monte Carlo size of 𝑀 = 1000. Let 𝑥~𝑁(𝜇𝑥 , 𝜎𝑥

2) 
and 𝑦~𝑁(𝜇𝑦 , 𝜎𝑦

2). We consider the following two forms of alternative models: 

(i) 𝑀1: 𝜇𝑥 = 𝜇𝑦 + ∆, ∆≠ 0 
(ii) 𝑀2: 𝜎𝑥

2 = 𝑘𝜎𝑦
2, 𝑘 ≠ 0,  1 

For estimating the level of significance, we consider distributions of 𝑥 and 𝑦 under the null 
model (𝜇𝑥 = 𝜇𝑦 , 𝜎𝑥

2 = 𝜎𝑦
2 and 𝑥, 𝑦~𝑁(𝜇𝑥 , 𝜎𝑥

2)) and estimate the proportion of rejection 
over all simulation.  

In simulation, we set values of ∆ arbitrarily equal to 0.25, 0.50, 0.75, 1, 1.50, and values of 
𝑘 arbitrarily equal to 0.5, 2, 2.5, 3 to determine the effect of ∆ and 𝑘 on underlying tests. 
We also consider the sample size arbitrarily equal to 10, 15, 20, 25, 30, so as to understand 
the finite sample performance of underlying tests measured by the testing power and 
estimated level of significance.   

The performance of the simulation study under models (i) and (ii) are reported in Tables 1 
and 2, in terms of the testing power, for varying values of the sample size. The estimated 
level of significance under the null model has been reported in Table 3. The simultaneous 
performance of classical 𝑡- and 𝐹-test are reported under the heading (𝑇1, 𝐹1), the 
simultaneous performance of pooled 𝑡- and 𝐹-test are reported under the heading (𝑇2, 𝐹2), 
the simultaneous performance of trimmed 𝑡- and 𝐹-test are reported under the heading 
(𝑇3, 𝐹3), and the performance of Kolmogorov-Smirnov test are reported under the heading 
(𝐾 − 𝑆). 
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Table 1: Estimated power for varying values of ∆ and sample size 𝑛 

∆  (𝑇1, 𝐹1)  (𝑇2, 𝐹2)  (𝑇3, 𝐹3)  (𝐾 − 𝑆) 
   𝑛 = 10     

0.25 0.073 0.073 0.085 0.025 
0.5 0.123 0.123 0.125 0.049 

0.75 0.262 0.262 0.258 0.123 
1 0.455 0.455 0.453 0.245 

1.5 0.813 0.813 0.810 0.578 
  𝑛 = 15   

0.25 0.089 0.089 0.091 0.037 
0.5 0.208 0.208 0.221 0.140 

0.75 0.397 0.397 0.398 0.300 
1 0.650 0.650 0.649 0.522 

1.5 0.939 0.939 0.938 0.879 
    𝑛 = 20     

0.25 0.091 0.091 0.101 0.073 
0.5 0.245 0.245 0.244 0.227 

0.75 0.53 0.530 0.511 0.449 
1 0.804 0.804 0.786 0.728 

1.5 0.992 0.992 0.988 0.976 
  𝑛 = 25   

0.25 0.091 0.091 0.106 0.083 
0.5 0.320 0.320 0.316 0.259 

0.75 0.650 0.650 0.628 0.548 
1 0.890 0.890 0.879 0.826 

1.5 0.999 0.999 0.998 0.989 
   𝑛 = 30     

0.25 0.119 0.119 0.123 0.098 
0.5 0.352 0.352 0.351 0.299 

0.75 0.711 0.711 0.696 0.613 
1 0.933 0.933 0.928 0.878 

1.5 1.000 1.000 1.000 0.997 
   𝑛 = 50     

0.25 0.164 0.164 0.167 0.144 
0.5 0.591 0.591 0.588 0.520 

0.75 0.939 0.939 0.940 0.887 
1 0.995 0.995 0.998 0.992 

1.5 1.000 1.000 1.000 1.000 
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Table 2: Estimated power for varying values of 𝑘 and sample size 𝑛 

𝑘 (𝑇1, 𝐹1) (𝑇2, 𝐹2) (𝑇3, 𝐹3) (𝐾 − 𝑆) 
  𝑛 = 10   

0.5 0.119 0.119 0.111 0.017 
2 0.111 0.111 0.113 0.010 

2.5 0.202 0.202 0.179 0.020 
3 0.293 0.293 0.258 0.026 
 15 𝑛 = 15   

0.5 0.152 0.152 0.154 0.024 
2 0.177 0.177 0.173 0.054 

2.5 0.257 0.257 0.240 0.041 
3 0.417 0.417 0.371 0.051 
 20 𝑛 = 20   

0.5 0.240 0.240 0.229 0.049 
2 0.237 0.237 0.211 0.052 

2.5 0.387 0.387 0.356 0.065 
3 0.548 0.548 0.498 0.083 
 25 𝑛 = 25   

0.5 0.298 0.298 0.285 0.073 
2 0.335 0.335 0.291 0.073 

2.5 0.487 0.487 0.412 0.090 
3 0.652 0.652 0.561 0.112 
 30 𝑛 = 30   

0.5 0.361 0.361 0.329 0.060 
2 0.373 0.373 0.349 0.062 

2.5 0.586 0.586 0.523 0.091 
3 0.731 0.731 0.666 0.130 
 50 𝑛 = 50   

0.5 0.585 0.585 0.530 0.092 
2 0.598 0.598 0.551 0.090 

2.5 0.838 0.838 0.763 0.150 
3 0.921 0.921 0.905 0.239 
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Table 3: Estimated level of significance (𝛼 = 0.05) for varying value of the sample size 
𝑛 under the null model 

𝑛 (𝑇1, 𝐹1) (𝑇2, 𝐹2) (𝑇3, 𝐹3) (𝐾 − 𝑆) 
10 0.042 0.042 0.047 0.014 
15 0.048 0.048 0.049 0.023 
20 0.044 0.044 0.044 0.033 
25 0.049 0.049 0.057 0.039 
30 0.053 0.053 0.058 0.046 
50 0.054 0.054 0.055 0.035 

5. Results and Discussion 

Estimated testing power for underlying tests have been reported in Tables 1 and 2 for 
varying values of ∆ and 𝑘, and an arbitrarily chosen set of sample size. The estimated level 
of significance (at 5% level of significance) has been reported in Table 3 for varying sample 
size. It appears that the performance of (𝑇1, 𝐹1) and (𝑇2, 𝐹2) are identical with respect to 
estimated power and level of significance. The estimated power of three tests (𝑇1, 𝐹1), 
(𝑇2, 𝐹2) and (𝑇3, 𝐹3) are much higher than (𝐾 − 𝑆). 

It also follows that, under the model (i), the power of all tests increases significantly as the 
value of the mean difference ∆ increases. The estimated power also increases with the 
increasing values of the sample size 𝑛. It also follows that for lower mean difference (∆=
0.25), the performance of (𝑇3, 𝐹3) seems little better than that of (𝑇1, 𝐹1) or (𝑇2, 𝐹2). While 
the estimated testing power of (𝐾 − 𝑆) is lower than other three tests for lower sample size, 
the power is comparable for large 𝑛. 

Under the model (ii), the power of all tests increases significantly as the value of the 
variance ratio 𝑘 between the two population increases. The sample size also has an 
increasing effect on the estimated power. Interestingly, while the performance of (𝑇1, 𝐹1), 
(𝑇2, 𝐹2) and (𝑇3, 𝐹3) seems to be comparable with increasing 𝑘, the power of (𝐾 − 𝑆) test 
breaks down completely with much lower power than is expected for a 5% level of 
significance.  

As far as the estimated level of significance is concern, the (𝐾 − 𝑆) test provides lower rate 
of rejection, below the nominal level of 5% even for large sample size. The performance 
of (𝑇1, 𝐹1) are (𝑇2, 𝐹2) are identical and is comparable with (𝑇3, 𝐹3). 

6. Conclusion 

In this paper, we sought for testing identity of two normal populations by employing three 
tests incorporating means and variances, simultaneously, and using the Kolmogorov-
Smirnov test. The idea is to simultaneously test the equality of two means and variances. 
In order to control for Type I error rate (𝛼), we used Bonferroni type adjustment 
(Bonferroni, 1936; Holm, 1979; Miller, 1991) to simultaneously implement 𝑡 and 𝐹 tests. 
The results of simulation suggest that the three simultaneously performed (𝑡, 𝐹)-tests 
(𝑇1, 𝐹1), (𝑇2, 𝐹2) and (𝑇3, 𝐹3) provided better power as compared to the Kolmogorov-
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Smirnov test. The power of all tests increases as the mean-difference, variance-ratio 
difference, and the sample size increase. However, (𝐾 − 𝑆) test provided lower power 
consistently. Even though the estimated level of significance of all tests seem to be 
satisfactory for controlling Type I error rate, the (𝐾 − 𝑆) test seems provide an under 
estimate of true level of significance. Given these facts, we recommend the use of either of 
the three tests (𝑇1, 𝐹1), (𝑇2, 𝐹2) or (𝑇3, 𝐹3) for testing the identity of two normal populations 
so as to achieve a better performance than the traditional use of the (𝐾 − 𝑆) test.  
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