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Abstract 
 
Because missing values are neither observable nor depend on observed values, data 
missing not at random (MNAR) poses unique challenges in data analysis. A simulation 
study that compares four multiple imputation (MI) methods under MNAR assumption 
was conducted to address regulatory concerns of missing data in a clinical trial. The four 
MI methods for comparison are jumping to control (JC), coping difference from control 
(CDC), imputation with observed means in each arm (GM), and last z-value carried 
forward (LZCF). A variety of scenarios of missing data proportions in drug and placebo 
arms was considered to evaluate these methods in terms of power and type I error rate. 
The simulation study shows that (1) CDC performs best among the four MI methods; (2) 
Intuitively conservative method, JC, does not necessarily protect against type I error rate 
better than CDC; (3) Analysis results are not sensitive to the number of imputations if the 
number of imputations is 10 or 100. 
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1. Introduction 
 
In longitudinal clinical trials where subjects are treated over a period of time, dropouts 
may happen during the follow-up period due to different reasons, e.g., adverse events, 
lack of efficacy, protocol violation, lost to follow-up, etc. Missing data are commonly 
classified into three types, missing completely at random (MCAR), missing at random 
(MAR) and missing not at random (MNAR) (Molenberghs and Kenward, 2007). MCAR 
assumes that the probability of missingness does not depend on either observed data or 
missing data. MAR assumes that the probability of missingness depend on observed data 
but not the missing data, which implies that the probability of a subject dropping out is 
conditionally independent of current and future observations.  When missing data are not 
MNAR or MAR, they are MNAR. If the probability of missingness depends on the 
missing data, missing data are MNAR. 
 
Statistical methods of handling missing data are valid under the certain assumption on 
missing data. The mixed-model repeated measures (MMRM) method is valid under 
MCAR or MAR assumption for continuous endpoints.  However, such an assumption 
might be difficult to verify in practice.  Therefore, a sensitivity analysis might be 
conducted to assess the impact of missing data on the bias of estimation of treatment 
effect and inflation of type I error rate.     
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Commonly used sensitivity analysis is based on imputation approach.  Last observation 
carried forward (LOCF) and baseline observation carried forward (BOCF) are the 
simplest methods, in which missing values are imputed as the last observed values and 
baseline observations. However, these two methods are criticized owing to the poor 
performance in the estimation of treatment effect. In contrast to single imputation, 
multiple imputation approach creates a collection of complete data sets. Each data set is 
then analyzed separately, and the collection of analyses is combined via Rubin’s 
approach (Little and Rubin, 2002).  In this paper, we compare several multiple imputation 
methods when data are potentially MNAR.  
 
The rest of the paper is organized as follows. We present four methods to handle missing 
data under MNAR assumption in Section 2. We then conduct a simulation study to 
compare the performance of different methods in Section 3. Section 4 concludes the 
paper with summaries and discussions. 
 
 

2. Imputation Methods 
 
We introduce four multiple imputation methods which are available widely in the 
literature.   

Group Mean (GM):  This approach will have, at a given visit, random draws generated 
from the normal distribution with the mean and standard deviation of the observed values 
and have missing values replaced by the random draws, in the respective treatment arms. 
 
For example, for subject i, assume (xi1, …, xik) is an observation vector, if all data 
observed, in the control arm. At a given visit j, compute �̅�𝑥𝑗𝑗 and 𝜎𝜎�1𝑗𝑗 as the observed mean 
and standard deviation for the placebo arm and impute a missing observation by random 
draw from N(�̅�𝑥𝑗𝑗, 𝜎𝜎�1𝑗𝑗2 ). Similar approach is used to impute missing observations in the 
drug arm, except with the observed mean 𝑦𝑦�𝑗𝑗 and standard deviation 𝜎𝜎�2𝑗𝑗 computed from 
the drug arm. 
 
This method is anti-conservative in general but selected to explore the degree of impact 
on the statistical inference. 
 
Jumping to Control (JC): At a given visit, missing data are imputed using random draws 
generated from a normal distribution with the mean and standard deviation equal to the 
observed mean and standard deviation from the placebo arm at that visit.  This approach 
imputes missing data in subjects on the drug arm under the assumption subjects who stop 
taking the drug will no longer benefit from it in the future, and tend to have outcomes 
similar to those in the control arm. 
 
Mathematically, at a given visit j, all missing observations, either in the placebo arm or in 
the drug arm, are imputed by random draws from N(�̅�𝑥𝑗𝑗, 𝜎𝜎�1𝑗𝑗2 ).  Note that �̅�𝑥𝑗𝑗 and 𝜎𝜎�1𝑗𝑗 are the 
observed mean and standard deviation from the placebo arm.  
 
Copying Difference from Control (CDC):  At a given visit, the observed mean difference 
between this visit and the previous visit in the placebo arm and the standard deviation of 
the differences are computed. Then random draws are generated from the normal 
distribution based on the observed mean and standard deviation as the differences of 
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between the observed value from previous visit and missing value at the current visit.  
The missing values are imputed by adding the differences to the observed values.  
 
At a given visit j, compute the observed difference dij=xij-xi,j-1 in the placebo arm and let 
�̅�𝑑𝑗𝑗 and �̂�𝜏1𝑗𝑗 be the mean and standard deviation of these differences.  A missing 
observation in either drug group or placebo group is imputed by the sum of the subject’s 
observation at visit j-1 and a random draw from N(�̅�𝑑𝑗𝑗, �̂�𝜏1𝑗𝑗2 ). 
 
Last Z-Score Carried Forward (LZCF): At a given visit, the z-score of observation from 
the previous visit is computed for each subject.  The missing observation is imputed by 
using the calculated z-score from the previous visit.  At a given visit j, let  �̅�𝑥𝑗𝑗−1 and 𝜎𝜎�1𝑗𝑗−1 
be the observed mean and standard deviation in the placebo arm. Let 𝑧𝑧𝑖𝑖𝑗𝑗−1 = (𝑥𝑥𝑖𝑖𝑗𝑗−1 −
�̅�𝑥𝑗𝑗−1)/ 𝜎𝜎�1𝑗𝑗−1 be the z-score for subject i in the placebo arm.  Impute a missing xij by a 
random draw from N(�̅�𝑥𝑗𝑗, (𝑧𝑧𝑖𝑖,𝑗𝑗−1𝜎𝜎�1𝑗𝑗)2) for the placebo arm, where �̅�𝑥𝑗𝑗 and 𝜎𝜎�1𝑗𝑗 are the 
observed mean and standard deviation in the placebo arm at visit j.   Missing values at all 
subsequent visits are imputed in the same way.  For the drug arm, the same approach is 
used.  
 
The idea of this imputation is to preserve the subject’s relative position before dropout 
and after dropout within each arm. If a subject is the half standard deviation away from 
the center of the group (mean) before dropping out, the subject, with imputed value, will 
remain the half standard deviation away from the center of the group in the period when 
the subject drops out.   This method was proposed by Hendrix and Wilcock (2009).   
 
 

3. Simulation Study 
 
A simulation study is conducted to compare 4 multiple imputation methods mentioned in 
the previous section to answer the following questions:  

(1) Which method is the best in terms of minimizing bias and type I error control?  Is 
it JC as recommended in some literature?   

(2) Is the best method reasonable in terms of minimizing bias and type I error 
control? 

(3) Does the best method have acceptable power? 
 
3.1 Clinical Trial Background  
 
The simulation study is set up to mimic a real clinical trial. Consider a randomized 
clinical trial comparing a test drug to a placebo in subjects with Alzheimer’s disease.  The 
co-primary efficacy endpoints of the trial are the changes from baseline in ADAS-Cog 
(Alzheimer’s disease assessment scale – cognitive subscale) and DAD (Disability 
assessment for dementia).  The trial duration is 78 weeks/18 months and there are 6 post-
baseline efficacy measurements, 13 weeks apart.  The objective of the trial is to show the 
test drug reduces patient decline in both ADAS-Cog and DAD at Week 78 relative to 
placebo. The estimand of interest is the difference in means between the test drug and 
placebo in all randomized subjects assuming all subjects adhere to assigned treatment and 
complete the trial.  
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In this type of longitudinal trial with long duration, some subjects will not be able to stay 
in the trial for the whole study period.  So there will be missing data. The MMRM 
analysis may not provide valid inference for the targeted estimand when missing data are 
MNAR.  
 
3.2 Generation of Incomplete Data Sets 
 
Complete clinical trial data are generated from 6-dimensional multivariate distribution for 
the placebo arm and 6-dimensional multivariate distribution for the drug arm.  The mean 
vectors are set equal in computing the type I error rate. For the power calculation, the 
mean vectors are selected such that the power of the study is 90% at 2-sided α=0.05. The 
covariance matrices in the multivariate distributions are chosen depending on the 
scenario considered. Each data vector generated represents change scores from baseline 
in ADAS-Cog over time. A larger change score implies that the subject deteriorates more 
from the baseline.  For simplicity but without loss of generality, we assume there is no 
covariate in the trial so no covariate data are generated. 
 
We consider 2 type of missing data: MNAR and MAR.  We create MNAR data first. 
Since we perform a modified intention-to-treat analysis in which subjects are required to 
have at least one post-baseline visit data to be included in the analysis. So we assume 
there is no missing data at Visit 1.  Also we assume missing data are monotone missing. 
Without loss of generality, we assume the subject who deteriorates more is more likely to 
drop out as MNAR, mirroring the reality that a subject is more likely to leave the trial 
with worse condition. So the probability of dropping out is a monotone function of 
missing observation. For visit j=2, the probability that observation xi2 drops out in the 
placebo arm is Φ((xi2-µ12/σ12+cp12), where Φ(·) is the cdf of a standard normal 
distribution, µ12 is the 2nd element of mean vector, σ12 is the 2nd diagonal element of  
covariance matrix, and cp12 is a scaling constant such that the proportion of missing data 
at Visit 2 is equal to a predefined proportion p12, and cp12 can be computed via 

1212 ][ pcZE p =+   where Z is the standard normal variable.  After MNAR data are 
simulated for visit j=2,  MNAR data can be created for visit j=3 with cp13 being computed 
by ( )121313 1/][ ppcZE p −=+  so that the missing data proportion is at the target 13p . 
Similarly MNAR data can be created in sequel for visit j=4, 5, and 6, with targeted 
missing data proportions 14p , 15p  and 16p  at Visits 4, 5, and 6, respectively.  After 
MNAR data are created, we create MAR data. For MAR data, the probability of being 
missing is conditionally independent of current and future observations. We simply 
assume the missing indicator is Bernoulli ( ( )161514131212 1/ pppppq −−−−− ) at Visit 2, 
where q12 is the target probability of MAR missing data.  Similarly MAR data can be 
created in sequel for visit j=3, 4, 5 and 6, with missing data proportions being 13q , 14q , 

15q and 16q respectively. 
 
Missing data in the drug arm can be created similarly when missing data proportions are 
chosen as ip2 ’s and  iq2 ’s. 
 
3.3 Analysis of Incomplete Data Set 
  
For each incomplete data set created in Section 3.2, we can impute the missing data and 
perform the analysis. The MAR data are imputed first using the regression approach 
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provided by SAS PROC MI.  The MNAR data are then imputed using the approaches 
introduced in Section 2.   We then get a complete data set.  When we fit MMRM for each 
imputed dataset, we will get 𝑄𝑄�𝑙𝑙 and 𝑊𝑊�𝑙𝑙, the point and variance estimates for the treatment 
difference between the two treatment arms from imputed dataset.  Per the method 
described in Little & Rubin (2002), the combined treatment difference from m 
imputations can be calculated as 

𝑄𝑄� =
1
𝑚𝑚
�𝑄𝑄�𝑙𝑙

𝑚𝑚

𝑙𝑙=1

 . 

The within-imputation variance is 

𝑊𝑊� =
1
𝑚𝑚
�𝑊𝑊�𝑙𝑙

𝑚𝑚

𝑙𝑙=1

 , 

and the between-imputation variance is 

𝐵𝐵 =
1

𝑚𝑚 − 1
�(𝑄𝑄�𝑙𝑙 − 𝑄𝑄�)2
𝑚𝑚

𝑙𝑙=1

 . 

Then the total variance of 𝑄𝑄� based upon m imputed datasets is 

𝑇𝑇 = 𝑊𝑊� + �1 +
1
𝑚𝑚
�𝐵𝐵 , 

whose associated degrees of freedom for t distribution is 

𝜈𝜈𝑚𝑚 = (𝑚𝑚 − 1) �1 +
𝑊𝑊�

(1 + 𝑚𝑚−1)𝐵𝐵
�
2

 , 

and the adjusted degrees of freedom is 

𝜈𝜈𝑚𝑚∗ = �
1
𝜈𝜈𝑚𝑚

+
1
�̂�𝜈obs

�
−1

 , 

where 𝜈𝜈obs = (1 − 𝛾𝛾)𝜈𝜈0(𝜈𝜈0 + 1)/(𝜈𝜈0 + 3), 𝛾𝛾 = (1 + 𝑚𝑚−1)𝐵𝐵/𝑇𝑇, and 𝜈𝜈0 is the complete-
data degrees of freedom. 
 
The p-value is computed from distribution 𝑡𝑡𝜈𝜈𝑚𝑚∗ (𝑄𝑄�, 𝑇𝑇) .  A claim that the drug is 
significantly different from placebo can be made if the p-value is no larger than 0.05.    
  
3.4 Simulation Results  
 
To compare different imputation approaches, we can repeat steps stated in Section 3.2 
and Section 3.3 many times. The simulated power or type I error rate can be computed as 
the number of times where the p-value ≤ 0.05 divided by the number of repetitions. The 
bias of estimate of treatment difference can be calculated as the average of treatment 
difference between the observed and true one over all repetitions.  To provide a better 
reference, the bias is standardized, i.e., the bias is rescaled by dividing the calculated 
average using the (true) standard deviation.  For power simulations, we used 1000 
repetitions and for type I error, we used 5000 repetitions.   
 
There are a few factors which could impact the performance of each imputation method: 
(1) variance matrices used to simulate the complete data, (2) missing proportions in each 
arm and distribution of missing data across different visits, (3) number of imputations. 
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We started with an un-structured variance matrix for both arms.  The un-structured matrix 
was based on data from a clinical trial. We also tried an un-structured variance matrix 
with its elements produced randomly and the conclusions based on that matrix are the 
same as presented below.   
 
When all MNAR data occur in the placebo arm (the extreme situation of more missing in 
the placebo arm), the results favor the placebo arm (less likely to detect the drug 
beneficial effect).  This is because all “bad” values in the placebo arm are missing and 
imputed largely by “good” values which are based on observed values in the placebo 
arm.  The same conclusion holds when there are more missing values in the placebo arm.   
We confirmed this via simulations.  Because favoring placebo raises little regulatory 
concern, larger portion of missing in the placebo arm is not of main interest and will not 
be further investigated. 
 
The impact of MNAR data was evaluated first.  Table 1 considers 3 missing data 
scenarios: (1) There are 15% MNAR data in the drug arm and 0% in the placebo arm, and 
there is no MAR data; (2) There are 10% MNAR data in the drug arm and 0% in the 
placebo arm, and there is no MAR data; (3) There are 8% MNAR data in the drug arm 
and 0% in the placebo arm, and there is no MAR data. Among all imputation methods 
considered, CDC appears to work best. It has the type I error rate about 10% when 
MNAR at 10% or below.  As noted, JC is not conservative at all, and the type I error rate 
by JC is at least twice of the rate by CDC.  Also the bias by CDC also appears as the 
smallest. So we will focus on CDC in the following. 
 
Table 1: Simulation Results When There Are More MNAR Data in the Drug Arm Than 

in the Placebo Arm and No MAR Data 
 MNAR = D15%, P0% 

MAR= 0% 
MNAR = D10%, P0% 

MAR= 0% 
MNAR = D8%, P0% 

MAR= 0% 
 Power Type-I 

Error 
Bias Power Type-I 

Error 
Bias Power Type-I 

Error 
Bias 

Complete 88.4 5.3 -.001 90.7 5.0 .008 90.2 5.4 -.000 
JC 99.5 37.1 .150 99.2 22.9 .116 98.9 16.5 .095 

CDC 96.6 11.7 .073 96.2 8.2 .054 95.5 6.9 .043 
GM 99.8 50.6 .177 99.7 30.2 .130 99.3 20.4 .103 

LZCF 99.7 46.7 .177 99.6 27.7 .130 99.3 18.9 .103 
Missing data are distributed equally across visits.  The number of imputations =10. 
 
At 10% difference of MNAR between the two treatment arms, more scenarios are 
explored to study the impact of different percentages of missing data. The simulation 
results are presented in Table 2. The general trend in this regard is that smaller ratios 
between the two arms (25%/15% < 20%/10% < 15%/5%) lead to smaller inflation of  
type I error rate, which is about 6%. This makes sense as when the difference between 

JSM 2016 - Biopharmaceutical Section

2718



arms is fixed and a small ratio indicates that there is no severe off-balance in missing data 
between 2 arms. An important implication of this observation is that as long as the 
difference of the MNAR proportions between 2 arms is under good control (say, less than 
10%), larger percentage of overall MNAR may not impact results more negatively than 
smaller overall MNAR percentage.   
 

Table 2: Simulations Results When the Difference of Proportion of MNAR Data 
between 2 Arms Is 10% 

 MNAR = D15%, P5% 
MAR=0% 

MNAR = D20%, P10% 
MAR=0% 

MNAR = D25%, P15% 
MAR=0% 

 Power Type-I 
Error 

Bias Power Type-I 
Error 

Bias Power Type-I 
Error 

Bias 

Complete 89.6 5.2 -.002 91.4 4.8 -.003 90.2 5.0 .001 
JC 98.1 14.2 .091 97.6 9.7 .077 94.3 7.9 .079 

CDC 94.7 6.2 .045 95.4 5.4 .040 91.7 4.6 .045 
GM 99.3 24.1 .107 99.6 19.7 .096 99.0 22.2 .105 

LZCF 98.7 19.5 .107 99.5 14.6 .096 98.1 16.5 .105 
  Missing data are distributed equally across visits.  The number of imputations =10. 
 
The presence of MAR in the data does not appear to have any impact on the conclusions 
drawn early on CDC. Regardless how the MAR distributes between 2 arms, the results as 
presented in Table 3 are generally identical across all scenarios.  This conclusion holds 
true also for larger percentage of MAR (20% instead of 5%). 
 

Table 3: Simulation Results When MAR Missing Data Are Added 
 MNAR = D15%, P5% 

MAR=D5%, P0% 
MNAR = D15%, P5% 
MAR=D2.5%,  P2.5% 

MNAR = D15%, P5% 
MAR=D0%, P5% 

 Power Type-I 
Error 

Bias Power Type-I 
Error 

Bias Power Type-I 
Error 

Bias 

Complete 92.2 5.2 -.000 91.6 5.3 .000 90.1 5.3 .002 
JC 98.2 13.9 .092 98.7 14.2 .093 97.7 14.3 .095 

CDC 95.5 6.7 .046 94.7 6.3 .047 93.9 6.8 .050 
GM 99.6 23.2 .108 99.6 23.9 .109 99.3 23.9 .112 

LZCF 99.3 18.7 .109 98.7 19.2 .109 98.7 19.3 .112 
  Missing data are distributed equally across visits.  The number of imputations =10. 
 
In all previous simulation results, we did not discuss the power performance of CDC. As 
one can see, the power of CDC is very reasonable.  
 
Next we investigate whether the missing pattern will impact the conclusions we have 
drawn.  In table 4, “Even” means that the missing data are distributed evenly across visits 
in both arms so the results are identical to the results in Table 3.  “LPLD” means that the 
missing data occur more at the later visits in both placebo arm and drug arm.   “LPED” 
means that the missing data occur more at the later visits in the placebo arm but more at 
the earlier visits in the drug arm.  “EPLD” means that the missing data occur more at the 
earlier visits in the placebo arm but more at the later visits in the drug arm.      “EPED” 
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means that the missing data occur more at the earlier visits in both arms.   Per Table 4, 
the type I error rate by CDC is robust to missing data pattern, while JC varies a lot 
pending on different missing data pattern.  
     

Table 4: Type I Error Rates with Different Missing Data Patterns  
 Missing Data Pattern 
MNAR=D 25%, P 15%;  MAR=0% Even LPLD LPED EPLD EPED 
Complete 5.0 5.5 5.3 5.4 5.2 
JC 7.9 8.3 1.2 24.9 4.2 
CDC 4.6 4.3 6.3 4.0 5.5 
GM 22.2 22.7 5.7 49.4 14.5 
LZCF 16.5 16.5 4.0 42.9 12.1 
The number of imputations =10. 
 
We also investigate the need to increase the number of imputations from 10 to 100. Per 
Table 5, it appears that 10 is sufficient. 
 

Table 5: Type I Error Rate with Different Imputation Numbers  
MNAR=D 15%, C 0%;  MAR=0% 100 Imputations  10 Imputations 
Complete 5.3 5.3 
JC 37.4 37.1 
CDC 11.4 11.7 
GM 50.8 50.6 
LZCF 47.4 46.7 

  Missing data are distributed equally across visits.   
 
 
3.5 Why JC Is Less Conservative Than CDC  
 
From simulation results, we see that CDC is more conservative than JC. Is it true all the 
time or does that just happen to be true for the simulation scenarios considered? In fact, 
CDC is more conservative than JC if (1) subjects who are getting worse are likely to drop 
out and (2) there are more missing data in the drug arm than in the control arm.   
 
Since subjects who are getting worse are likely to drop out, the missing values are likely 
worse than the average value in the placebo arm.  Replacing missing values by the mean 
in the placebo arm is actually replacing worse values by a less bad value. As there are 
more missing data in the drug arm, there are more replacements in the drug group.  So JC 
is less conservative.  For CDC, the missing values are replaced by the sums of the last 
observed values, which are worse than the average value of placebo arm at the same visit, 
and difference in means in the placebo arm, so the replaced values are not as good as the 
mean in the placebo arm. 
      
 

4. Conclusions and Discussions 
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MNAR data impose unique challenges in data analysis. Because the missing values are 
neither observable nor depend on observed values, there is no easy remedy to correct the 
impact of missing data on the data analysis. This simulation study has investigated four 
imputation methods and identified CDC as the top choice in terms of protecting type I 
error rate. CDC controls the type-I error rate reasonably well (~6.0%) when (1) the 
difference of percentages of MNAR data between 2 groups <10%, (2) the ratio of  
percentages of MNAR data between 2 groups <3, and/or (3) there exist MAR data.  We 
also concluded that the number of imputations =10 is good enough. 
  
This paper draws the conclusions mainly based on simulation results.  To make the 
conclusions are reliable, we have done extensive simulations to cover all different 
scenarios.  The conclusions appear consistent across all scenarios we considered. 
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