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Abstract

Count data occur naturally in a number of disciplines ranging from economics and the social sci-

ences to �nance as well as medical sciences. Most count data are plagued with over-dispersion

and excess zeros making it dif�cult to model them with vanilla linear models. Different models

have been proposed to capture this peculiarity in count data viz.: Classical models such as the gen-

eralized Poisson regression model and the negative binomial regression model have been used to

model dispersed count data. Hurdle and zero-in�ated models are also said to be able to capture

over-dispersion and excess zeros in count data. In this paper, we compare the performance of Pois-

son and Negative Binomial hurdle models, zero-in�ated Poisson and Negative Binomial models,

classical Poisson and Negative Binomial regression models as well as the zero-in�ated compound

Poisson generalized linear models to modelling frequency of auto insurance claims in a typical

emerging market. The model parameters are estimated using the method of maximum likelihood.

The models performances are compared based on their information criteria (AIC and BIC) and the

Gini index. The zero-in�ated compound Poisson generalized linear models out performed the other

models considered.
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1. Introduction

Count data occur naturally in a number of disciplines ranging from economics and the so-

cial sciences to �nance as well as medical sciences. Naturally, a typical data set containing

the number of insurance claims made over a period is considered as count data (see (Hidayat

and Pokhrel, 2010), (Cameron and Trivedi, 1996) and (Famoye and Singh, 2006)). Mod-

elling the number of claims is a crucial part of insurance pricing. Count regression analysis

allows identi�cation of risk factors and prediction of the expected frequency claims based

on the type of policy taken out and the characteristics of the policy holders. Most insurers

would calculate the premium by combining the expected claim amount with the conditional

expectation of the number of claims given the risk characteristics. Some insurers may also

consider experience rating when setting the premiums, so that the number of claims re-

ported in the past can be used to improve the estimation of the conditional expectation of

the number of claims for the following year (Boucher and Guillen, 2008).

Over the years, Insurers gradually amassed sizeable longitudinal information on their

policy holders, this somewhat availability of data has allowed research in this area to expand

so that the literature on count regression analysis has grown considerably in the past years.

(Boucher and Guillen, 2008) in their paper addressed panel count data models in the context

of insurance, to showcase the advantages of using the information on each policy holder

over time for modelling the number of claims. They argue that new panel data models

presented in their work allow for time dependence between observations and are closer to

the data generating process that one can �nd in practice.

Most count data are plagued with over-dispersion and excess zeros making it dif�cult

to model them with vanilla linear models.
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Different models have been proposed to capture this peculiarity in count data, (Ozmen

and Famoye, 2007) apply the Poisson, NB, GP, ZIP and ZIGP to zoological data set where

the count data may exhibit evidence of many zeros and over-dispersion. by modelling the

number of C. caretta hatchlings dying from exposure to the sun. (Ismail and Zamani, 2013)

�tted negative binomial and generalized Poisson regression models to Malaysian OD claim

count data and zero-in�ated negative binomial and zero-in�ated generalized Poisson re-

gression models were �tted to the German healthcare count data.(Gurmu, 1998) applies

generalised hurdle models suitable for the analysis of over-dispersed or under dispersed

count data allowing for asymmetric departures from the binary logit model to Medicaid

utilisation data. (Shi and Valdez, 2014) investigate alternative approaches to constructing

multivariate count models based on the negative binomial distribution. They considered

two different methods of modelling multivariate claim counts using copulas. The �rst one

works with the discrete count data directly with the mixture of max-id copulas that allows

for �exible pairwise association as well as tail dependence. The second one employs el-

liptical copulas to join continuitized data while preserving the dependency among original

counts. The empirical analysis looks into an insurance portfolio from a Singapore auto

insurer where claim frequency of three types of claims (third party property damage, own

damage, and third party bodily injury) are considered. The results demonstrate the superi-

ority of the copula based approaches over the common shock model.

Nigeria was named one of the emerging economies in 2014 along with Mexico, In-

donesia and Turkey (BBC, 2014). Recently, the Nigerian economy has been badly hit by

election uncertainty coupled with a huge dip in oil prices and religious insurgency. Al-

though, the Nigerian economy seems to rock immensely under the new leadership, our

staggering population projected at over 180 million still makes us an attractive destination

for consumer goods and services especially new and used automobiles. The Nigerian road

use laws (http://www.highwaycode.com.ng/iv-vehicle-insurance.html) stipulate that an au-

tomobile user shall take out either third party or comprehensive insurance policies, so that

most people typically subscribe to some insurance scheme majorly for statutory reasons.

However, what we observed is that most automobile users do not make claims even if they

can legitimately make one.

This study compares the performance of Poisson and Negative Binomial hurdle models,

zero-in�ated Poisson and Negative Binomial models, classical Poisson and Negative Bino-

mial regression models as well as the zero-in�ated generalized compound Poisson models

to modelling frequency of auto insurance claims in Nigeria. The model parameters are es-

timated using the method of maximum likelihood. The models performances are compared

based on their information criteria (AIC and BIC) and the Gini index compares the lift of a

model against another model.

The rest of this paper is structured as follows: In Section 2, we discuss the models

considered, we give useful details regarding the Zero In�ated models in Section 2.2 and

that of the Hurdle models in Sections 2.3. Section 3 describes the data used. The results

are presented in Section 4. Finally, Section 5 concludes.

2. Methods

2.1 Generalised Linear Models (GLM)

Consider a set of n observations yi . . . yn and a vector of regressors x. The Generalised

Linear Model (GLM) is given as: f(λ) = β0 + β1 ∗X1 + β2 ∗X2 + · · ·+ βn ∗Xn with

variance function V ar(Y ) = ϕ ∗ V (λ)/w The conditional distribution of yi | x is a linear
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exponential family with pdf

f(y : λ, ϕ) = exp

(
y · λ− v(λ)

ϕ
+ w(y, ϕ)

)
(2.1.1)

where λ is the canonical parameter that depends on the regressors via a linear predictor

and ϕ is a dispersion parameter that is often known. GLMs calculate the coef�cients that

maximize likelihood, and w is the weight that each record gets in that calculation. The

GLM Variance Function is determined by the distribution e.g.

• Normal: V (λ) = 1

• Poisson: V (λ) = λ

• Gamma: V (λ) = λ2

The following assumptions are made on generalized linear models

• Target variable Y does not depend on the value of Y for any other record, only the

predictors

• Distribution of Y is a member of the exponential family of distributions

• Variance of Y is a function of the mean of Y

• f(λ) is linearly related to the predictors. The function f(.) is called the link function

• The functions v(·) and w(·) are known and determine the member of the family

of distributions used. The exponential family of distributions include the following:

Normal, Poisson, Gamma, Binomial, Negative Binomial, Inverse Gaussian, Tweedie.

Common choices for GLM log link functions include:

• Identity:f(λ) = λ

• Log: f(λ) = ln(λ)

• Logit: f(λ) = ln(1λ)

Generalised linear models allow us to quantify uncertainty in parameter estimates e.g.the

Wald's con�dence interval for mean of parameter. The Wald Chi Square test can also be

used to test for the signi�cance of an individual parameter in the model.

2.2 Zero In�ated models

Zero-in�ated models have been proposed as a class of models more capable of dealing with

excess zeros in count data than the classical GLMs ((Mullahy, 1986); (Lambert, 1992)).

They are two-component mixture models combining a point mass at zero with a count

distribution such as Poisson, geometric or negative binomial. Thus, there are two sources

of zeros: zeros may come from both the point mass and from the count component. For

modeling the unobserved state (zero vs. count), a binary model is used: in the simplest case

only with an intercept but potentially containing regressors (Zeileis et al., 2008). Formally,

Zero-in�ated models mix a point mass at zero I0(y) and a count distribution fcount(y;x, β).
The probability of observing a zero count is in�ated with probability π = fzero(0;x, γ):

fzeroinfl(y;x, z, β, γ) = fzero(0;x, γ) · I0(y) (2.2.1)

+ (1− fzero(0;x, γ)) · fcount(y;x, β)
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Where I(·) is an indicator variable and the unobserved probability π of belonging to the

point mass component is modelled by a binomial GLM π = g−1(zᵀγ). The corresponding
regression equation for the mean is

µi = πi · 0 + (1− πi) · exp(x⊤i β)

using the canonical log link. The vector of regressors in the zero-in�ation model zi and the
regressors in the count component xi need not to be distinct in the simplest case, zi = 1
is just an intercept. The default link function g(π) in binomial GLMs is the logit link, but

other links such as the probit are also available. The full set of parameters of β, γ, and
potentially the dispersion parameter ϕ (if a negative binomial count model is used) can

be estimated by ML. Inference is typically performed for β and γ, while ϕ is treated as a

nuisance parameter even if a negative binomial model is used.

2.3 Hurdle models

The hurdle model was originally proposed by (Mullahy, 1986). They are two-component

models: A truncated count component, such as Poisson, geometric or negative binomial,

is employed for positive counts, and a hurdle component models zero vs. larger counts.

For the latter, either a binomial model or a censored count distribution can be employed

(Zeileis et al., 2008).

Hurdles models combine a count data model fcount(y;x, β) and a zero hurdle model

fzero(y;x, γ). The models are such that fcount(y;x, β) is left truncated at y = 1 and

fzero(y;x, γ) is right truncated at y = 1:

fhurdle(y;x, z, β, γ) =

{
fzero(0;x, γ) if y = 0,

(1− fzero(0;x, γ)) · fcount(y;x,β)
1−fcount(0;x,β)

if y > 0.
(2.3.1)

The model parameters β, γ, and potentially one or two additional dispersion parameters

ϕ (if fcount or fzero or both are negative binomial densities) are estimated byML, where the

speci�cation of the likelihood has the advantage that the count and the hurdle component

can be maximized separately. The corresponding mean regression relationship is given by

log(µi) = x⊤i β + log(1− fzero(0; zi, γ))− log(1− fcount(0;xi, β))

using the canonical log link. For interpreting the zero model as a hurdle, a binomial GLM

is probably the most intuitive speci�cation. Another useful interpretation arises if the same

regressors xi = zi are used in the same count model in both components fcount = fzero: A
test of the hypothesis β = γ then tests whether the hurdle is needed or not.

2.4 Model evaluation

We compare model performances by employing the following penalised measures:

1. Akaike Information Criterion (AIC): It penalizes the loglikelihood for additional

model parameters. AIC provides an asymptotically unbiased estimator of the ex-

pected Kullback discrepancy between the generating model and the �tted approxi-

mating model. it is computed as follows:

AIC = −2 ln f(y | θ̂k) + 2k

(Schwarz, 1978).Given a set of candidate models for the data, the preferred model is

the one with the minimum AIC value.
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2. Bayesian Information Criterion (BIC): It also penalizes the loglikelihood for addi-

tional model parameters, however this penalty increases as the number of records

in the dataset increases. BIC provides a large-sample estimator of a transformation

of the Bayesian posterior probability associated with the approximating model. it is

computed as

BIC = −2 ln f(y | θ̂k) + k lnn

(Schwarz, 1978) and (Kass and Raftery, 1995). Given again a set of candidate models

for the data, the one with the lowest BIC is preferred.

Note 2.1. It is noteworthy that AIC and BIC feature the same goodness-of-�t term, however,

the penalty term of BIC is more stringent than the penalty term of AIC. (For n ≥ 8, k lnn
exceeds 2k.) Consequently, BIC can be too restrictive and tends to favor smaller models

than AIC.

We evaluate the model lift using the Gini Index before we discuss the Gini Index, we

will brie�y de�ne the Lorenz curve

2.4.1 The Lorenz curve

For a given population, let y be personal income, x a pre-speci�ed level of income, F (x) a
fraction of the population with y ≤ x with density function f(x) = F

′
(x). Furthermore,

denote the average income (assuming all income is negative) by ȳ =
∫∞
0 yf(y)dy. The

The lorenz function is a function L : [0, 1] → R, satisfying,

P = F (x) =⇒ L(P ) =

∫ x
0 yf(y)dy

ȳ

. Where P is a proportion of the said population (Atkinson and Bourguignon, 2000) and

(Aghion and Durlauf, 2005).

The Lorenz curve is simply the graph of (P,L(P )).

2.4.2 Gini Index

The Gini index (also called the Gini coef�cient or the Gini ratio) is de�ned on the basis of

the Lorenz curve and is a measure of the degree of income inequality in society. The Gini

index is de�ned as

Gini =

∫ 1
0 (P − L(P ))dP

1/2
.

A high value of Gini means high degree of inequality in the distribution of income.

If everybody had the same income, then the Lorenz curve would coincide with the 45o

line and the Gini index would be zero. In the context of this paper, a high value of Gini

means a model has a higher lift than the other and if the models were the same, the Lorenz

curve would coincide with the 45o line on the axis of the plot and the Gini index would be
zero(Atkinson and Bourguignon, 2000).

3. Data

The data consists of 616 policies issued between 2011-2015 by an indigenous insurance

company. The attributes available for consideration from the data source include: year

policy was taken our (year), gender of the policy holder, class of the car (private or commer-

cial), premium, insurance type (third party or comprehensive) and the number of claims.Table

1 below shows the summary of the data considered.
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Table 1: Descriptive statistics of the data

Attribute Factors Frequency Percent

Year

2011 72 11.69

2012 101 16.40

2013 158 25.65

2014 200 32.47

2015 85 13.80

Gender
Male 526 85.39

Female 90 14.61

Motor class
Private 478 77.6

Commercial 138 22.4

Insurance type
Third party 17 2.76

Comprehensive 599 97.24

Claims

0 565 91.72

1 48 7.79

2 2 0.32

3 1 0.16

From Table 1 we see that the highest number of policies were taken out between 2013

and 2014, more than 85% of these policies were taken out by men. We also observed that

most of the customers who took out policies took them out on their private cars and there

was a preference for comprehensive insurance policies (>97%). Furthermore, we observed

that > 91% of the policy holders made no claims so that the data does have many zero (i.e.

it is zero in�ated).
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Figure 1: Premium amount by number of claims

In addition, we observe from Figure1 that the bulk of the customers with the no claims

fall within the lower average premium bracket. Furthermore

Since data consists of 97% comprehensive and 3% third party insurance policy holders

and none of the third party insurance policy holders made any claims in the time period

considered, we base the analysis on comprehensive insurance policy holders only.

4. Results

The Gini index (Table 2) and corresponding asymptotic standard errors (Table 3) were com-

puted based on the ordered Lorenz curve (Figure 2) for each of the 7 models considered. It

was observed that the GLM-type models had the least performance.

Table 2: Gini Index scores
poisreg negbin zeropois zeronegbin hurdlepois hurdlenegbin zicglm

Poisson 0.00 14.21 16.99 16.95 20.65 19.51 19.80

Negative binomial -11.12 0.00 16.30 16.30 21.19 20.19 18.03

Zero in�ated poisson -6.04 -5.05 0.00 -5.58 0.59 0.16 5.84

Zero in�ated negative binomial -6.01 -5.06 5.60 0.00 0.60 0.13 5.81

Hurdle poisson -12.28 -13.49 7.79 7.81 0.00 7.06 10.92

Hurdle negative binomial -11.37 -12.73 9.30 9.33 -4.70 0.00 11.90

Zero in�ated generalised compound poisson -4.50 -2.21 2.11 2.16 1.58 2.08 0.00

We observed from Table 2 (Greyed areas represent better lift) ) that the zero in�ated

models as well as the hurdle models have better lift than the classical Possion and Negative

Binomial models. Furthermore, the classical Negative binomial model also has better lift

than the classical Poisson model. The zero in�ated models also have better lift than the
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hurdle models. The zero in�ated generalised compound poisson model outperforms all the

other models. In addition, according to the �min-max� argument, the selected best model

is the Zero in�ated generalised compound poisson model (ZIGCPM).

Table 3: Corresponding standard error for Gini Index scores
poisreg negbin zeropois zeronegbin hurdlepois hurdlenegbin zicglm

Poisson 0.00 8.30 8.35 8.36 7.74 8.15 7.86

Negative binomial 8.71 0.00 8.50 8.50 7.79 7.86 8.20

Zero in�ated poisson 8.48 8.56 0.00 7.91 8.81 8.52 7.65

Zero in�ated negative binomial 8.48 8.56 7.91 0.00 8.78 8.52 7.65

Hurdle poisson 7.82 7.79 8.68 8.66 0.00 7.75 7.95

Hurdle negative binomial 8.19 7.85 8.40 8.40 7.90 0.00 7.90

Zero in�ated generalised compound poisson 8.08 8.26 7.93 7.92 8.21 8.14 0.00

• Figure 2 is the plot of the ordered Lorenz curves for the data.
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Figure 2: Lorenz curve

The results of the model selection criteria (Akaike information criteria (AIC) and Bayesian

information criteria (BIC)) are presented in Table 4. The results of the AIC and BIC criteria

for the models agree with that of the Gini index as the ZIGCPM still shows up as the best

model since it has the smallest AIC and BIC.
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Table 4: AIC and BIC results for each model
AIC BIC

Poisson 370.10 392.08

Negative binomial 371.66 398.03

Zero in�ated poisson 374.11 413.67

Zero in�ated negative binomial 376.11 413.67

Hurdle poisson 372.91 408.07

Hurdle negative binomial 374.07 407.23

Zero in�ated generalised compound poisson 234.93 265.70

5. Summary

Zero In�ated models have been proposed as better models for modelling count data with

excess zeros. This work applied the Classical Poisson and Negative binomial, Zero in�ated

Poisson and Negative binomial models and Hurdle Poisson and Negative Binomial models

as well as Zero In�ated Generalised Compound Poisson model to auto insurance claims

data from a typical indigenous Nigerian insurance company. The results selected the Zero

In�ated Generalised Compound Poisson model as the optimal model.
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