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Abstract
We build a model to allow personalized prediction for different individuals on a large amount

of items based on both user features and item features, as in a recommender system. User and
item “preferences” are clustered through supervised learning by modeling the observed response
with a gaussian distributed regression model. Besides mean parameters, correlation structure of the
response variable is also modeled. Fusion type penalties are applied to identify similar users and
items. Simulation results show our model performs better than the popular matrix decomposition
methods.
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1. Introduction

Recent years have seen a wide application of recommender systems. For example, Amazon
recommends items for customers who browse their website, Netflix recommends movies to
its users, Expedia make recommendations about flight and hotels based on customer history
behavior and so on. Given users’ past preference on the consumed items, recommender
system predict the preferences of users on unseen items.

The earlist recommender system is through collaborative filtering developed in the mid-
1990s [1]. There are a lot variants of SVD decomposition type of methods proposed. These
methods use latent variables to represent users and items. But in reality, in many cases co-
variates of users or items are available. For example, the demographic information of users
may be known like gender, occupation, age, e.t.c.; for an item, some content information
may be known like the genre of a movie, the category of a product, the price of a hotel e.t.c.
The existing methods don’t take these covariate information into consideration, which are
likely to be very useful in predicting the behavior of users on the items. Our model utilizes
the available user and item feature information. For each user and item, we estimate their
individual “preference” on the item feature and user feature respectively. We assume the
user and item preferences form clusters and add fusion type of penalty to estimate it. More-
over, since the ratings on different items given by a single user is likely to be correlated,
we estimate the correlation structure between ratings given by one user. So our model is
a personalized recommender system with clustering structure and correlation struture. The
details of our model will be given in section 2.

2. Proposed Models

2.1 Models

Consider a situation where we have an n×m rating matrix R = (rij)n×m, with each row
and column corresponding to one user and one item, and rij is the rating of user i on movie
j. Some entries of R may be missing. To account for correlations among ratings on items
associated with the same user, we assume that ratings from a user follow a multivariate
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normal distribution with some covariance matrix, whereas ratings from different users are
independent.

To be specific, suppose user i rates mi items with index set Ii , {i1,i2, · · · , imi} ⊆
{1, 2, · · · ,m}, where i1 < i2 < · · · < imi . For observed ratings ri = (ri,i1 , ri,i2 , · · · , ri,imi

)T

from user i, we assume ri ∼ N(µi,Ω
−1
i ), where µi = (µi,i1,µi,i2 , · · · , µi,imi

)T is the
mean of the observed ratings from user i, and Ωi is the precision matrix to describe the
correlations of observed ratings from user i. Here the precision matrix is used as opposed
to the covariance matrix to facilitate computation, because the log likelihood is convex in
(Ω1, · · · ,Ωn) but not in the covariance matrix. More formally, our prediction model can
be written as

rij = µij + εij , µij = x
T
i αj + y

T
j βi, (εi,i1 , · · · , εi,imi

)T ∼ N(0,Ω−1i ); (1)

i = 1, 2 · · · , n, j = i1, i2, · · · , imi , where xi is user i feature vector such as demographic
information, yj is item j feature vector such as genre of movie j,αj is a vector representing
“preference” of item j over user feature variables, βi is a vector representing “preference”
of user i over item feature variables, and εij is the random error. Let α = (α1, · · · ,αm),
β = (β1, · · · ,βn), Ω = (Ω1, · · · ,Ωn). The log-likelihood can be written as

l(α,β,Ω) =
n∑
i=1

[
1

2
logdet(Ωi)−

(ri − µi)TΩi(ri − µi)
2

]
. (2)

To identify user and item clusters, we penalize the pairwise differences amongαj’s and
βi’s. For the precision matrix, an m ×m matrix ΩTi is estimated for all i. The submatrix
of ΩTi with row and column indices for items rated by user i is Ωi. If item k or item
pair (k, l) is rated by at least one user, pairwise differences of ΩTi entries ωTi,kk or ωTi,kl
across different i’s are penalized. The (k, l) entry of ΩTi for all i is fixed at 0 if no user
rated this pair. Specifically, for item pair (k, l) with k < l, suppose it is rated by at least one
user. Then we penalize the difference |ωTi,kl−ωTj ,kl| for all i 6= j. The diagonal difference
|ωTi,kk−ωTj ,kk| is also penalized for all item k and all i 6= j. Let Si = (ri−µi)(ri−µi)

T

and J be a general penalty function, the penalized log likelihood is

l(α,β,Ω) =
1

2

∑
i

[logdet(Ωi)− tr(ΩiSi)]−
λ1
2

∑
i<j

∑
t

J(|αit − αjt|)

− λ1
2

∑
i<j

∑
t

J(|βit − βjt|)− λ2
∑
i<j

∑
k6l,{k,l}⊆

n
∪

h=1
Ih

J(|ωTi,kl − ωTj ,kl|),
(3)

where λ1, λ2 > 0 are regularization parameters. We maximize (3) with respect to αi’s,
βi’s and ΩTi’s.

For the penalty function J , we considered two specific forms, the L1-norm and the non-
convex truncated L1 penalty [11], denoted as TLP. Techniques used for the L1 regularized
objective are the same as for minimizing the TLP regularized objective except the difference
of convex method is not used. So we only give the details about solving the problem with
TLP regularization. The TLP function is defined as Jτ (x) = min(|x|, τ), where Jτ (x)/τ
approximates the L0−penalty as τ > 0 goes to 0+. Details for solving this problem will
be given in the next section.

2.2 Algorithm

To minimize (3) with TLP, which is non-convex, we combine the difference of convex algo-
rithm, blockwise coordinate descent algorithm, alternating direction method of multipliers
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algorithm, and alternating minimization algorithm [3] to solve a convex relaxation of it.
We update the mean and the precision matrix alternately.

A DC decomposition of Jτ is Jτ (x) = |x| −max(|x| − τ, 0). By using this decompo-
sition we approximate the nonconvex TLP with a convex minorization iteratively.

First, we apply the d.o.c. at the outermost loop. Then in each iteration of the d.o.c.,
we use blockwise coordinate descent with α,β,Ω as the blocks. To deal with the fusion
type penalty on α,β and Ω, we use the alternating direction method of multipliers. The
alternating minimization algorithm is applied when we solve for the proxy variable for Ω.

3. Simulation Result

We did simulation of our models on 100 users, 30 items. The missing proportion of the
ratings is set at 0.8 for all users. The dataset is divided 3:1:1 for train, tune and test. We
compared four methods: (a.) the SOFT-IMPUTE in [8] which penalize the nuclear norm
in matrix completion, (b.) the special case of our proposed model which doesn’t consider
precision matrix (fix at identity matrix) with L1-norm clustering, (c.) our proposed model
with L1-norm clustering and (d.) our proposed model with TLP clustering. The tuning
parameters tried in the four models are grid values. We considered four choices of Ω: s1
and s2 are two scales, m1/m2 uses dependent/independent errors between train, tune, test.

To compare the performance of different methods, the root mean squared error (RMSE)
and weighted root mean squared error (wRMSE) on the test set are calculated. The wRMSE
uses the true test set precision matrix to weight the errors.

The simulation result is as shown in the following figure. Our methods compares favor-
ably to the SOFT-IMPUTE matrix completion method (about 50% improvement). Mod-
eling correlation structure shows advantage than ignoring it under settings m1 (7.5%-10%
improvement).

Figure 1: Simulation Results of Four Methods with SEs
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