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Abstract 
A generalized, weighted multiple regression model with no intercept and equality-
constrained coefficients is investigated and modified to arrive at best linear estimators 
(BLE) in direct support of subsurface mineral composition studies in oil exploration. 
Subsurface analyses have historically required use of a model relating a spectral response 
vector, Y, to a matrix of standard yields, X, for elemental standards such as iron, silicon, 
quartz, calcium, etc. A primary motivation for the resulting model approach is the need to 
more appropriately account for heteroscedasticity within the independent variables, which 
is prevalent in petroleum environments. Monte Carlo simulations are utilized to explore 
the performance of these estimators in the presence of measurement error and 
heteroscedasticity. 
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1. Motivation 
 
Since their development, gamma ray spectrometry tools have been used (Hertzog (1980)) 
to conduct elemental analyses with a variety of applications (Pasternack, B. S. (1962)). 
One goal is to estimate the percentage of the gamma ray signal contributed by each of k 
elements and, thus, to estimate parameters subject to the constraint that they sum to 1. To 
do so in oil exploration, the tool is lowered into a borehole and gamma ray readings are 
measured. The observed total counts, Y, are then regressed against laboratory standards, X, 
for each of the contributing elements. While laboratory standard measurements carefully 
reflect borehole conditions, the actual element readings in the field are unobservable and 
subject to both random and measurement error. Several authors have published studies that 
employ ordinary weighted least squares (WLS) regression for this and similar problems. 
See, for example, Pasternack (1962), Hertzog (1980), Roscoe, Grau and Wraight (1986), 
Galford, et al. (1988), Gartner and Jacobson (1990), and Wensheng, Wei and Li (2014). 
Although Chhikara and Hallum (unpublished manuscript, 1986) developed constrained 
ordinary least squares (COLS) estimators, no one appears to formally build inherent 
parameter constraints into the WLS model but rather attempt to normalize the data. Neither 
do they consider the impact of measurement error on the resulting estimators. Wu, Zhang 
and Luo (2014) offer a nonlinear optimization method to address the constraint in this 
context and compare the results to existing WLS methods by comparing the correlation of 
estimates to parameter values, but do not consider impacts of potential measurement error. 
We provide the best linear estimators (BLE) for COLS and constrained weighted ordinary 
least squares (CWLS). We also provide a performance analysis that considers the effects 
on interval coverage of both inevitable measurement errors and statistical errors that appear 
in the weighting process. Although the derivations herein are motivated by the collection 
of gamma ray data in industry and associated laboratory standards, both measurements are 
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highly proprietary. Thus, the data used to drive the performance analysis are purely 
hypothetical. Efforts to obtain industry values similar to those in Wu, Zhang and Luo 
(2014) are ongoing. 
 

2. Equation Development 
 
2.1 Constrained Parameter Model 
First we consider the following model: 
 

Y = Xp + ε, 
 
where Y is the n×1 vector of gamma ray counts, X is the n×k matrix of laboratory standards, 
p is the k×1 vector of element proportions, ε is the n×1 error vector and, in the unweighted 
case, εi ~ iidN(0, σ2) for each i. Here p is also subject to the inherent equality constraint  
 

∑ 𝑝𝑝𝑗𝑗𝑘𝑘
𝑗𝑗  = 1 or Rp = t, 

 
where R is the 1×k vector, R = [1,1,1,…,1], and t = 1.  
 
The COLS estimators take the form of 
 
                                                    𝑝̂𝑝 = 𝑅𝑅+𝑡𝑡+𝑋𝑋0+𝑌𝑌0                                                                      (1) 
 
where + is the Moore-Penrose generalized inverse (Boullion and Odell (1971)), 𝑋𝑋0 =
𝑋𝑋(𝐼𝐼 − 𝑅𝑅+𝑅𝑅) and 𝑌𝑌0 = 𝑌𝑌 − 𝑅𝑅+t.  
 
The associated intervals become 
 

𝑝̂𝑝 ± 𝑧𝑧∝/2𝑉𝑉1 2⁄ ,   
 
where 𝑉𝑉 = vecdiag([𝑋𝑋0′ (𝜎𝜎�2𝐼𝐼)−1 𝑋𝑋0]+), 𝜎𝜎�2  is the mean squared error, and the vecdiag 
function simply selects the diagonal elements from its argument to form a k×1 vector of 
variances for the estimated proportions. Moreover, 𝑉𝑉1 2⁄  is the element-wise square roots 
of the coordinates in V.  
 
 
2.2 Constrained Generalized Linear Model with Relative Homoscedasticity 
Next we consider the situation in which the coefficient of variation remains constant, but 
the standard deviations do not. This is sometimes referred to as proportional measurement 
errors or relative homoscedasticity. Such errors have been considered in clinical chemistry 
(Linnet, 1993), but are not subject to parameter constraints. 
 
Here the model continues to take the form 
 

Y = X*p + ε, 
 
where Y is the n×1 vector of gamma ray counts, p is the k×1 vector of element proportions, 
ε is the n×1 error vector and εi ~ iidN(0, σ2). Again p is subject to the inherent constraint 
that ∑ 𝑝𝑝𝑗𝑗𝑘𝑘

𝑗𝑗  = 1 or Rp = t. Now, however, 𝑋𝑋∗ is an n×k matrix such that Xj is a n×1 random 

JSM 2016 - Section for Statistical Programmers and Analysts

2642



column vector with mean vector 𝑋𝑋�𝑗𝑗 and covariance Cov(Xj), for j = 1, …, k. Cov(Xj) meets 
an assumption of relative homoscedasticity, meaning that the coefficient of variation is 
constant or 𝐶𝐶𝐶𝐶𝑗𝑗 =  𝑠𝑠𝑖𝑖𝑖𝑖 𝑋𝑋�𝑖𝑖𝑖𝑖⁄  is constant for each row i in column j. In addition, we assume 
independence of Xj. 
 
Parameter estimation here requires significant prior information. Pilot studies may produce 
𝑝̂𝑝0, using the constrained estimators in (1). Expert knowledge of CV yields 
  

Cov(Xj) = (CVj)2Dj, 
 
where Dj is an n×n matrix with the squared means on the diagonal. The resulting CWLS 
estimators are 
 
                                     𝑝̂𝑝 = R+t + [(𝑋𝑋0∗)′(𝑉𝑉∗)−1𝑋𝑋0∗]+(𝑋𝑋0∗)′(𝑉𝑉∗)−1𝑌𝑌0,                                          (2) 
 
where 
 
              𝑆𝑆 = 𝑝̂𝑝012 Cov(𝑋𝑋1) + 𝑝̂𝑝022 Cov(𝑋𝑋2) + ⋯+ 𝑝̂𝑝0𝑘𝑘2 Cov(𝑋𝑋𝑘𝑘) + 𝜎𝜎�2𝐼𝐼, 
 
                                   𝑉𝑉∗ = vecdiag[(𝑋𝑋0∗)′𝑆𝑆−1(𝑋𝑋0∗)]+,   
 

𝑋𝑋0 = 𝑋𝑋(𝐼𝐼 − 𝑅𝑅+𝑅𝑅) and 𝑌𝑌0 = 𝑌𝑌 − 𝑅𝑅+t. 
 
The associated intervals then become 𝑝̂𝑝 ± 𝑧𝑧∝/2(𝑉𝑉∗)1 2⁄ . 
 
 

3. Performance Analysis 
 
3.1 The Data 
An example of the data collected, without scale information is presented in Figure 1.  
 

 
 
Figure 1: Gamma Ray Data (Herzog, 2016) 
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A defining characteristic of each element is the considerable range in the relative count rate 
across the spectrum. This is one motivation for the incorporating a relative 
homoscedasticity. Specifically, if one knows a reasonable CV that is applicable to an 
element in the field, then a reasonable variance can be derived from the lab-measured 
element values. 
 
The data in Figure 2 is motivated by natural gamma ray spectra, which seek to estimate 
potassium, thorium and uranium in shale. They are, however, purely hypothetical. Here k 
= 3 elements, using n = 11 observations (or channels). Let p1 = 0.10, p2 = 0.30 and p3 = 
0.60. Data with error in X, both with and without relative homoscedasticity are considered 
below. 
 

 
Figure 2: Example Data 
 
3.2 Coverage in the Presence of Errors in X 
To consider the impact of measurement error on the estimators in (1), we generated m = 
3000 Monte Carlo samples, each containing n = 11 channels.  The values presented in 
Figure 2 were taken as n×1 mean vectors 𝑋𝑋�𝑗𝑗, or laboratory standard vectors, for each of the 
three elements, so that Xj ~ N(𝑋𝑋�𝑗𝑗, σX

2), j = 1 – 3. The model error was simulated using εi ~ 
iidN(0, σ2) and 95% interval estimates calculated. The results appear in Figure 3 as a 
function of 𝜆𝜆 = σX σ⁄ . Here σ and σX take on values of 3, 5, 6, 9, 10, 12, 15, 20, and 25. 
Thus, λ takes on the values 1/4, 1/3, 1/2, 1, 2, 3, and 4. This allows consideration of 
circumstances where measurement error is considerably smaller than model error and vice 
versa. Results are presented only for estimates of p1, as the performance of the other two 
parameters is virtually identical.   
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Figure 3: Coverage as a Function of Error Ratios for p1, p2 and p3. 
 
Figure 3 presents coverage for the interval estimates for each of the three elements. Despite 
the errors in X, the constrained estimators performed consistently at or near 93%. That is, 
the 95% interval estimates contain the true elemental parameter value approximately 93% 
of the time. This is true for each of the k = 3 parameters. 
 
Table 1 provides the average widths for each of the parameters. Clearly, as expected, 
increases in either measurement error or model error variance increase interval width. 
 

σ σX λ p1 p2 p3 
3 3 1 0.042 0.073 0.053 
3 6 1/2 0.074 0.128 0.093 
3 9 1/3 0.109 0.188 0.136 
3 12 1/4 0.143 0.248 0.179 
6 3 2 0.059 0.103 0.074 
9 3 3 0.080 0.138 0.100 
12 3 4 0.102 0.177 0.128 
5 5 1 0.071 0.123 0.089 
5 10 1/2 0.123 0.213 0.154 
5 15 1/3 0.181 0.312 0.226 
5 20 1/4 0.236 0.409 0.296 
10 5 2 0.099 0.172 0.124 
15 5 3 0.133 0.230 0.166 
20 5 4 0.170 0.294 0.213 

 
Table 1: Interval widths 
 
 
3.3 Coverage in the Presence of Relative Homoscedasticity in X 
Figures 4 and 5 compare the performance of the estimators in (1) and (2) as a function of 
CV = CVj, for j = 1 – 3. Here independent variables are measured with error such that each 
Xj ~ N(µj, σij

2), j = 1 - 3, and σij
2  meets an assumption of relative homoscedasticity. We 

simulate five possible scenarios: 
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1) Relative homoscedasticity exists but is not modeled. 
2) Parameter values necessary to the calculation of S, p j, CVj, 𝑋𝑋�𝑗𝑗, σ2 are  known. That 

is, V* is known without error. 
3) A simulated pilot study produces 𝑝̂𝑝 and 𝜎𝜎�2 but CVj is known. 
4) A simulated pilot study produces 𝑝̂𝑝 and 𝜎𝜎�2 and CVj is misidentified as 90% of its 

true value. 
5) A simulated pilot study produces 𝑝̂𝑝 and 𝜎𝜎�2 and CVj is misidentified as 110% of its 

true value. 
 

We again calculate 95% intervals with m = 3000, n = 11, and k =3. Figure 4 shows 
simulated interval coverage for each of the five scenarios when σ = 10. As expected, the 
estimates produced by (1), which do not incorporate relative homoscedasticity, lose 
coverage as CV increases. Again not surprisingly, the estimates produced by (2) maintain 
coverage near 95% when all necessary values are known perfectly. If each parameter in V 
is known, the weighted constrained estimators in (2) improve coverage between 4 and 13% 
over the unweighted ones in (1). While coverage is improved by the use of (2), widths 
changed very little between the two scenarios and are not presented herein. 
 
 
 

 
Figure 4: Coverage as a Function of CV (σ = 10) 
 
Figure 5 shows analogous results for σ = 5. In this case, a lower model error variance in 
the model produces more accurate estimates for use in the weighted least squares. Thus, 
method (2) outperforms ordinary least squares for most CV values. This is true even when 
values necessary to the weighting are estimated through pilot studies. 
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Figure 5: Coverage as a Function of CV (σ = 5) 
 
 

4. Conclusions and Future Research 
 

The COLS estimators in (1), that assume constant variance, are not developed under a 
formal errors-in-variables model but maintain coverage of approximately 92% to 94%. 
This is true despite the error introduced by substituting laboratory standards, X, for the 
unobservable field values. As expected, when variances are derivable from the CVs under 
the assumption of relative homoscedasticity using accurate prior information, the CWLS 
estimator in (2) outperforms that of equation (1). This simulation indicates that, even when 
all the values necessary to the weights in CWLS are estimated, the CWLS outperforms 
constrained OLS whenever CV is fairly large relative to σ. The results to date appear to 
warrant further investigation of the CWLS method.    
 
Because the CWLS estimators rely heavily on a priori knowledge about p, σ and CV, it is 
worthwhile to develop and investigate the properties of analogous Bayesian estimators.  
Likewise, the authors plan to develop constrained the estimators under an errors-in-
variables model for comparison with the COLS and CWLS models investigated in this 
paper.   
 
Lastly, as mentioned in a number of the papers referenced herein, the effect of model 
misspecification is also of special interest. If the practitioner has either an error of omission, 
ignoring an element that should be included in the model, or of commission, including an 
element that should be excluded, the estimates of the element proportions can be impacted 
in a pronounced way.   
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