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Abstract 

Mostly employed in medicine and epidemiology research, the topic we discuss is of interest 
in any area that is concerned with covariate-based risk evaluation. A variety of indices, 
such as IDI (Integrated Discrimination Improvement), NRI (Net Reclassification 
Improvement), the area under the ROC curve (AUC) and difference in AUC and PEV 
(Proportion Explained Variation) as well as predictiveness curves that compare two 
models' predictive capacity are routinely used. They are often used however without 
adequate inferential tools. We provide such tools for the IDI and the Brier Improvement 
(BRI) when model parameters are estimated and indices are computed on the same data, 
i.e., when predictiveness is evaluated within the sample. We chose these two indices as the 
first measures discrimination difference and the latter mostly evaluates calibration 
differences between the two models. We show that both sample indices are consistent and 
asymptotically normal as long as the true indices are not null. We also provide consistent 
estimates for the standard errors, leading to confidence intervals for the true indices. We 
evaluate our confidence intervals with percentile Bootstrap intervals through simulation. 
We discuss our results in the context of existing work in epidemiology, and pay special 
attention to the zero-index case when two models cannot be distinguished by the index 
under discussion. 

Key Words: Probability Forecast; IDI; Brier Calibration Improvement; Within the sampe; 
Confidence Interval; Confidence Intervals; Asymptotic properties 

1. Introduction 

 
As long as the objective of an epidemiological study is explanatory and the monetary and 
availability costs of collecting information on patients is not an issue, or is not taken into 
account, it is most appropriate to select the best fitting model for the data. Model selection 
procedures for fit experienced many advances in recent years, most notably through 
regularization. For recent references see Friedman and Hastie (2010) and Meishausen and 
Bühlmann (2010). Arlot and Celisse (2010) provide an interesting survey of model 
selection developments in the context of cross validation, with a large bibliography. Final 
models are often selected using Akaike’s AIC (1973) or Schwartz’s BIC (1978) criteria. 
But if the study objective is risk prediction and the explanation of observed events and 
relationships are not considered, one is led to compare models by their predictive rather 
than fit qualities.  
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We point out that Akaike’s AIC is an approximation defined for “within the sample” 
evaluation of model fit as measured by Kullback Leibler information distance and 
maximum likelihood estimation. “Within the sample” simply refers to the evaluation of fit 
(or prediction) quality of a model on the same data that had been used for model estimation. 

Zheng et al (2013) have recently derived the asymptotic distribution of a modified Net 
Reclassification Improvement (NRI) measure of model discrimination when the same 
survival data are used for model estimation and modified NRI evaluation.  In this paper we 
present similar results for the sample IDI, 𝐼𝐷�̂� , and the sample 𝐵𝑅𝐼̂  (the  Brier 
improvement measure), when these are computed within the sample. 

The risk predicting models considered in this paper are parametric linear logistic models, 
although other linear parametric models such as probit models may be similarly analyzed. 
Several measures of the effectiveness of risk predicting models, or markers, have been 
discussed in the literature. Among important contributors are Pencina et al (2008), Gu and 
Pepe (2009) and Uno et al (2010) where additional references may be found. More recent 
contributions include Pepe et al (2013) and Muhlenbruch et al (2015) where some 
fundamental results are obtained.  

We selected two widely used measures of prediction improvement: the Integrated 
Discrimination Improvement (IDI), and the Brier’s Improvement measure (BRI) between 
two models. The latter is simply the difference in Brier Score of the two models under 
consideration: the smaller mode’s minus the larger model’s Brier score. These indices of 
discrimination and calibration respectively have not undergone a careful study of their 
asymptotic properties when the indices are evaluated on the same data on which model 
estimation was performed. When within-the-sample evaluation is carried out, the 
asymptotic approximation to the sampling distribution of the index must take into account 
the prior estimation. The main contribution of the present paper is the derivation of this 
distribution for the sample IDÎ and BRÎ . A concise discussion of earlier related 
contributions to the analysis of these and other discrimination or calibration measures is 
found in Lai et al (2011) and in the last section. 

The paper is organized as follows: In section 2 basic model and index definitions are 
presented. Section 3 is devoted to the presentation of the models under consideration and 
to issues associated with the fact that the ’true’ model generating the data cannot coincide 
with both models being compared, and therefore estimation under ’false models’ must be 
taken into account. Since we consider maximum likelihood estimation, we refer to Hjort’s 
(1992) seminal paper on the subject. The fundamental problem is that we consider two 
possible model for our data. Simple estimates of the asymptotic standard errors and 
confidence intervals for the IDI and the BRI are proposed (section 4) and compared to 
competing nonparametric bootstrap estimates and confidence intervals in a fairly large 
simulation study  (section 5). We provide only one consistency proof, which is a prototype 
for all our proofs, and is presented in section 4. Proofs for theorems 2-4 will appear 
elsewhere. We do not report the application of our methods to a Dementia study where the 
efficacy of the addition of genetic Markers to the usual predictors of dementia is 
considered, for lack of space. In section 6 we discuss our results within the framework of 
much statistical and epidemiological work in this area. 

2.   Framework 
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2.1 Description of the data set and the models to be compared 

The data consists of a sample of 𝑛 observations 𝑋𝑛 = (𝑋1, … , 𝑋𝑛) where 𝑋 = ( 𝑌, 𝑍 ) : the binary 
response variable Y and a p-dimensional real vector of covariates Z. The true model M has risk 
𝑅(𝑧) of occurrence of the event based on the covariates 𝑧 

𝑅(𝑧) ≔ 𝑃(𝑌 = 1|𝑍 = 𝑧,𝑀)                                                                                   (1) 

The true distribution of (𝑌, 𝑍) referred to as M is unknown, while two competing models M1 and 
M2 for the data are defined for the joint distribution of (𝑌, 𝑍) leading to two risk models to be 
compared using the data : 

𝑅1(𝑧) ≔ 𝑃(𝑌 = 1|𝑍 = 𝑧,𝑀1)                                                                                (2) 

𝑅2(𝑧) ≔ 𝑃(𝑌 = 1|𝑍 =  𝑧,𝑀2)                                                                                  (3) 

The risk models for 𝑅1(𝑍) and 𝑅2(𝑍) are often taken to be logistic or probit and 𝑀2 is nested in 𝑀1 
so that one or more covariates in 𝑀1 are not included in 𝑀2. Neither model 𝑀1 nor the smaller model 
𝑀2 are assumed to coincide with the true model M which remains unspecified in the sequel. We 
remark that some previous works (e.g., Uno et al (2011) and Kerr et al (2011)) considered maximum 
likelihood estimates when the assumed model is not necessarily the true model in a variety of 
contexts, but none derived the asymptotic properties of the sample IDI and BRI. Hjort (1992) 
showed that when maximum likelihood estimated are derived under a false model, these MLE’s do 
converge in probability to some parameter value that is the least false value in the sense that it 
minimizes the Kullback Leibler distance between of corresponding model and the true model. These 
MLE’1 have been also shown by Hjort (op. cit.) to be root-n asymptotically normal with an 
asymptotic variance provided by the author. 

For ease of presentation, we assume the two models to be logistic, but any parametric model that is 
linear in the covariates may be similarly treated. Let 𝑢 = 𝜃𝑇𝑧 be the scalar product of two (𝑝 + 1) 
dimensional real column vectors (𝜃 = (𝜃0, 𝜃1, … , 𝜃𝑝), 𝑧 = (1, 𝑧1, … , 𝑧𝑝)) , for 𝑝 ≥ 1  and 𝑔  the 
logistic function 

𝑔(𝑢) =   
𝑒𝑢

1 + 𝑒𝑢
                                                              (4) 

We have a data set 𝑋𝑛 = ((𝑌𝑖 , 𝑍𝑖), 𝑖 = 1,… , 𝑛) of i.i.d. random variables, and two logistic models:  

                𝑔1(𝑧) =  𝑔(𝜃1
𝑇 𝑧 )   

                𝑔2(𝑧) = 𝑔(𝜃2
𝑇 𝑧 ) 

Where some components of 𝜃1 and of 𝜃1 are predefined. In general the nesting model 1 may have 
several parameters that are not included in the nested model 1: 

𝜃1 = (𝜃0, 𝜃1, … , 𝜃𝑘 , … , 𝜃𝑘+𝑚) ; 𝑘 + 𝑚 ≤ 𝑝 ;𝑚 ≥ 1 

𝜃2 = (𝜃0
′ , 𝜃1

′ , … , 𝜃𝑘
′ ) 

2.2 Definition of the prediction performance criteria: IDI and BRI 

Where some components of 𝜃1 and of 𝜃1 are predefined. If we refer to the motivating example of 
the introduction, we have then 

From Pencina et al (2008), the IDI (Integrated Discrimination Improvement) of model 2 with respect 
to model 1 is 
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  𝐼𝐷𝐼2/1 = 𝐸[𝑅2(𝑍) − 𝑅1(𝑍)|𝑌 = 1] − 𝐸[𝑅2(𝑍) − 𝑅1(𝑍)|𝑌 = 0]                                      (5) 

where 𝐸 always denotes the expectation with respect to the true distribution of 𝑋. Denoting by  
the true 𝑃[𝑌 = 1], i.e. the population prevalence of the event under study 

 𝜌  ∶=    𝑃(𝑌 = 1)   =     𝐸[𝑅(𝑍)]   

we obtain a simpler expression for 𝐼𝐷𝐼2/1. In order to derive the first expression below from (5), we 
note that the expectation of 𝑅1(𝑍) − 𝑅2(𝑍) conditional on 𝑌 = 1 is obtained by integrating the 
function 𝑅1(𝑧) − 𝑅2(𝑧)  with respect to  𝑃(𝑍 = 𝑧|𝑌 = 1) which equals 𝑃(𝑌 = 1|𝑍 = 𝑧) ∗ 𝑃(𝑍 =
𝑧)/𝑃(𝑌 = 1) = 𝑅(𝑧) ∗ 𝑃(𝑍 = 𝑧)/𝜌. The remaining expressions are similarly obtained: 

 
𝐼𝐷𝐼2/1    =    

1

𝜌
 𝐸[(𝑅2(𝑍) − 𝑅1(𝑍))𝑅(𝑍)] −

1

(1−𝜌)
𝐸[(𝑅2(𝑍) − 𝑅1(𝑍))(1 − 𝑅(𝑍))]              (6) 

=    𝐸{[ (𝑅2(𝑍) − 𝑅1(𝑍))][(1/𝜌 + 1/(1 − 𝜌))𝑅(𝑍) − 1/(1 − 𝜌)]}                                      (7) 

=     𝐸[(𝑅2(𝑍) − 𝑅1(𝑍)) (
𝑅(𝑍)−𝜌

𝜌(1−𝜌)
)]                                                                                           (8) 

=     𝐸[(𝑅2(𝑍) − 𝑅1(𝑍)) (
𝑌−𝜌

𝜌(1−𝜌)
)]                                                                                           (9) 

 

The equality of (8) and (9) is proved by taking in equation (9) the expectation with respect to Z so 
that equation (9) may be written as: 

 𝐸 [(𝑅2(𝑍) − 𝑅1(𝑍))
(𝐸(𝑌|𝑍)−𝜌)
𝜌(1−𝜌)

] ≔ 𝐸[(𝑅2(𝑍) − 𝑅1(𝑍)) (
𝑅(𝑍)−𝜌

𝜌(1−𝜌)
)]                       (10) 

which is equal to (8). 

For a single model 𝑀1, the Brier’s score BR is defined as 

                𝐵𝑅(𝑀1) = 𝐸[(𝑌 − 𝑅1(𝑍))
2
]                                                                                  (11) 

It measures the difference between the observed (𝑌) and the predicted (𝑅1(𝑍)) risk of occurrence 
so that the bigger the Brier’s score the worst is the model. Thus we define the Brier’s score 
Improvement provided by model 2 with respect to model 1, denoted by 𝐵𝑅𝐼2/1, as 

 

                𝐵𝑅𝐼2/1 = 𝐵𝑅(𝑀1) − 𝐵𝑅(𝑀2)                                                                                            (12) 

= 2𝐸 [(𝑅2(𝑍) − 𝑅1(𝑍)) (𝑌 −
(𝑅1(𝑍)+𝑅2(𝑍))

2
)]                                                                 (13) 

 

A positive 𝐼𝐷𝐼2/1 , as well as a positive 𝐵𝑅𝐼2/1 , means that the discrimination or calibration 
properties respectively of model 𝑀2 are better than those of model 𝑀1. 

 

3.   Estimation of IDI and BRI 

We now assume that we have a sample of size 𝑛 of 𝑋, and the two prediction models are two nested 
logistic models 𝑔(𝜃𝑗𝑇

 
𝑧), defined for 𝑗 = 1,2 through the respective parameters 𝜃𝑗; 𝑗 = 1,2 as: 
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Model 𝑀1   ∶    𝑅1(𝑍)   =    𝑔(𝜃1𝑇

 
𝑧) ;         𝜃1 = (𝜃0, 𝜃1, … , 𝜃𝑘+𝑚),    𝑘 + 𝑚 ≤ 𝑝 

Model 𝑀2   ∶    𝑅2(𝑍)   =     𝑔(𝜃2𝑇
 
𝑧) ;         𝜃2 = (𝜃0, 𝜃1, … , 𝜃𝑘),         𝑘 ≥ 1 

while under the true prediction model the risk is 𝑅(𝑧). Let 𝑖 = 1,… , 𝑛, 𝑗 = 1,2 and  

 
                𝑔𝑗𝑖 ∶= 𝑔(𝜃𝑗

𝑇 𝑧𝑖)  𝑓𝑜𝑟 𝑗 = 1,2 𝑎𝑛𝑑 𝑖 = 1,2, … , 𝑛                                                        (14) 

Then, using (9) and (13), and a notation analogous to (14), we write 

 
        𝑔𝑗�̂� ∶= 𝑔 (𝜃 ̂𝑗

𝑇
𝑧𝑖) 𝑓𝑜𝑟𝑗 = 1,2 𝑎𝑛𝑑 𝑖 = 1,2, …𝑛.   1,2, … , 𝑛.                                         (15) 

where 𝜃�̂�, 𝑗 = 1,2, are the maximum likelihood estimators of the parameters of models 𝑀1 and 𝑀2. 
Natural estimators of 𝐼𝐷𝐼2/1 and 𝐵𝑅𝐼2/1 are then respectively 

 
                    𝐼𝐷𝐼2/1̂ =

1

�̅�(1−�̅�)
(
1

𝑛
∑ (𝑔2�̂� − 𝑔1�̂�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1 )                                                            (16) 

 
         𝐵𝑅𝐼2/1̂ =

2

𝑛
∑ [(𝑔1�̂� − 𝑔2�̂�)(

(𝑔1�̂�+𝑔2�̂�)

2
− 𝑦𝑖)]

𝑛
𝑖=1                                                              (17) 

 

Under usual regularity conditions on models 𝑀1 and  𝑀2, the maximum likelihood estimators 𝜃�̂�, 𝑗 =
1,2 of their respective parameters 𝜃𝑗  converge to the values 𝜃𝑗∗of 𝜃𝑗  that minimize the Kullback-
Leibler distance of 𝑀𝑗  to the true model 𝑀 . We shall refer to these limits as the ’least false’ 
parameters, rather than the usual ‘true’ parameters. Moreover, 𝜃�̂�, 𝑗 = 1,2 , are asymptotically 
normal, with an information matrix 𝐼𝑗 that is defined below in (18). Let 𝐿𝑗 be the log-likelihood, 𝐿′𝑗  
the vector of first derivatives with respect to 𝜃𝑗 and 𝐿′′𝑗  the matrix of second derivatives. Then, the 
matrices 𝐽𝑗 = −𝐸(𝐿′′𝑗)  and   𝐾𝑗 = 𝐸[(𝐿′𝑗)𝑡(𝐿′𝑗)], which are two representations of the information 
matrix when the assumed model is the true model, are not equal, due to the fact that the expectation 
is taken with respect to the true model 𝑀, and the information matrix 𝐼𝑗 (see Hjort (1992)) is then : 

 
                        𝐼𝑗 = 𝐽𝑗𝐾𝑗−1𝐽𝑗                                                                                                            (18) 

We now drop the index 𝑗 for simplicity. In our case, the likelihood, and 1/𝑛 the log-likelihood are 
respectively 

𝐿(𝜃|𝑦, 𝑧)   ∶=    ∏ (𝑔(𝜃 
𝑇 𝑧𝑖)

𝑦𝑖(1 − 𝑔(𝜃 
𝑇 𝑧𝑖))  

1−𝑦𝑖)
𝑛

𝑖=1
 

ln 𝐿(𝜃|𝑦, 𝑧)  ∶=     
1

𝑛
∑ [𝑦𝑖 log(𝑔(𝜃 

𝑇 𝑧𝑖))
 + (1 − 𝑦𝑖) log(1 − 𝑔( 𝜃 

𝑇 𝑧𝑖))]
𝑛

𝑖=1
 

and, since the logistic function 𝑔 defined in (4) has the following properties: 

𝑔′(𝑢)      =    𝑔(1 − 𝑔)𝑢′    ;     𝑔(−𝑢)     =    1 − 𝑔(𝑢)     

              𝑔−1(𝑢)   =   log (
𝑢

1 − 𝑢
)         ;     (log(1 − 𝑔(𝑢)))

′
= −𝑔(𝑢)𝑢′ 
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The gradient 𝐿′ (the score vector of first derivatives), and the Hessian 𝐿′′ (the second derivatives) of 
𝐿 with respect to 𝜃 are respectively equal to 

               𝐿′  =  
1

𝑛
∑ (𝑦𝑖 − 𝑔𝑖)𝑧𝑖

𝑛

𝑖=1
 

               𝐿′′ = −
1

𝑛
∑ 𝑔𝑖(1 − 𝑔𝑖)𝑧𝑖(

𝑡𝑧𝑖)
𝑛

𝑖=1
 

Lemma 3.1 (Asymptotic behavior of  �̂�) 

Under the assumption that 𝑍 has a moment of order two, if we denote 𝐼 = 𝐽𝐾−1𝐽 the information 

matrix, we have 

√𝑛(𝜃�̂� − 𝜃
∗)
𝜑,𝑛→∞
→     𝑁(0, 𝐽−1𝐾𝐽−1) ∶=  𝑁(0, 𝐼−1)                                                 (19) 

and 

𝐽  ∶=    𝐸(−𝐿′′)  =  𝐸[−𝑔(1 − 𝑔)𝑍(𝑡𝑍)]   =    lim 𝐽𝑛    ∶=   −𝑙𝑖𝑚
1

𝑛
∑ 𝑔�̂�

𝑛

𝑖=1
(1 − 𝑔�̂�)𝑧𝑖(

𝑡𝑧𝑖) 

K  ∶=    𝐸((𝐿′)(𝑡(𝐿′))) =  𝐸[(𝑦 − 𝑔)2𝑍(𝑡𝑍)]     =    lim 𝐾𝑛   ∶=   𝑙𝑖𝑚
1

𝑛
∑ (𝑦𝑖 − 𝑔�̂�)

2𝑧𝑖(
𝑡𝑧𝑖)

𝑛
𝑖=1  

This lemma is a direct consequence of Hjort result (1992, page 358) as the logistic model meets the 
usual regularity conditions that imply the consistency of �̂� for the "least false" parameter 𝜃∗ and 
also the consistency of 𝐽𝑛  and 𝐾𝑛  as respective estimators of 𝐽  and 𝐾 . Result (19) is a direct 
consequence of  

 
               √𝑛(𝜃�̂� − 𝜃

∗) = √𝑛(( 𝐽(𝜃∗)−1)𝐿′(𝜃∗) + 𝑂𝑃(1)                                                   (20) 

We now apply these results to the two models 𝑀𝑗 , 𝑗 = 1,2. 

4   Asymptotic properties of 𝐼𝐷𝐼𝟐/𝟏̂  𝒂𝒏𝒅 𝐵𝑅𝐼𝟐/𝟏̂  

In order to use 𝐼𝐷�̂� and 𝐵𝑅𝐼̂  in tests of significance and confidence intervals, we need to establish 
the consistency and asymptotic normality of these estimates of the IDI and BRI respectively. The 
following four theorems accomplish the task. Most proofs will appear elsewhere. In the sequel 𝐼𝑗 is 
the information matrix of model 𝑗, 𝑗 = 1,2 as defined in (18). 

Theorem 4.1 (Consistency of 𝐼𝐷�̂�) 𝐴𝑠 𝑛 → ∞, 𝐼𝐷�̂�
𝑎.𝑠.  𝑛→∞
→      𝐼𝐷𝐼. 

Proof of consistency of 𝐼𝐷�̂� 

We now drop, for simplicity, the index 2/1. Define 𝐼𝐷�̂�, which would be the estimator of IDI if the 
two models were perfectly known to be 

𝐼𝐷�̃� =  
1

�̅�(1−�̅�)
[
1

𝑛
∑ (𝑔2𝑖 − 𝑔1𝑖)(𝑦𝑖 − �̅�)
𝑛
𝑖=1 ]                                                                        (21) 

Using (16), we can write 

𝐼𝐷�̂� − 𝐼𝐷𝐼  =    (𝐼𝐷�̂� − 𝐼𝐷�̃�) +   (𝐼𝐷�̃� − 𝐼𝐷𝐼)  :=    𝑇1𝑛         +          𝑇2𝑛 

Consider    𝑇1𝑛   first: 

𝑇1𝑛 =    
1

�̅�(1−�̅�)
     ×      

1

𝑛
∑ [(𝑔2�̂� − 𝑔2𝑖) − (𝑔1�̂� − 𝑔1𝑖)][𝑦𝑖 − �̅�]
𝑛
𝑖=1                                        (22) 
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       ∶=     𝐴𝑛  ×   𝐵𝑛                                                                                                             (23)  

By the delta method applied to the function 1

𝜌(1−𝜌)
 where 𝑢 = �̅�, we get that 

𝐴𝑛 =
1

𝜌(1−𝜌)
[1 +

2𝜌−1

√𝜌(1−𝜌)

𝜀

√𝑛
] + 𝑂𝑃(

1

√𝑛
)                                                                            (24) 

where 휀 is a standard normal variable, 휀 ~ 𝑁(0,1), so that 𝐴𝑛 = 𝐴 + 𝑂𝑃(
1

√𝑛
) with 𝐴 = 1

𝜌(1−𝜌)
. To 

take care now of 𝐵𝑛 we use (20) and get 

 
 

𝜃�̂� − 𝜃𝑗
∗ = 𝐽−1(𝜃�̃�)𝐿

′(𝜃�̃�)(𝜃�̃� − 𝜃𝑗
∗) ;  𝑗 = 1,2                                                                   (25) 

where 𝜃�̃� lies between 𝜃�̂� and 𝜃𝑗∗ 

Dropping the index 𝑗 in 𝑔𝑗𝑖 in 𝐵𝑛, we look at the behavior of 1
𝑛
∑ [(𝑔�̂� − 𝑔𝑖)(𝑦𝑖 − �̅�)]
𝑛
𝑖=1 . The delta 

method applied to function 𝑔 of (4) yields 𝑔�̂� − 𝑔𝑖 = 𝑔𝑖(1 − 𝑔𝑖)𝑧𝑖(�̂� − 𝜃∗) + 𝑂𝑃(
1

√𝑛
) so that 𝐵𝑛 

may be written as: 

𝐵𝑛 =      
1

𝑛
∑ [(𝑔2�̂� − 𝑔2𝑖) − (𝑔1�̂� − 𝑔1𝑖)][𝑦𝑖 − �̅�]
𝑛
𝑖=1                                                          (26)  

     =       
1

𝑛
∑ [(𝑔2𝑖(1 − 𝑔2𝑖)𝑧2𝑖(𝜃2̃ − 𝜃2

∗)) − (𝑔1𝑖(1 − 𝑔1𝑖)𝑧1𝑖(𝜃1̃ − 𝜃1
∗))][𝑦𝑖 − �̅�]

𝑛
𝑖=1     (27) 

As |𝑔𝑗𝑖|, |(1 − 𝑔𝑗𝑖)| and |𝑦𝑖 − �̅�| are bounded by 1 and |𝑍| is integrable, and using (19), we find 
that 𝐵𝑛 = 𝑂𝑃(

1

√𝑛
) and   𝑇1𝑛 = 𝑂𝑃(

1

√𝑛
). 

Finally,  𝑇2𝑛 ∶=  𝐼𝐷�̂� − 𝐼𝐷𝐼 

𝑇2𝑛 = 
1

�̅�(1−�̅�)
× [

1

𝑛
∑ (𝑔2𝑖 − 𝑔1𝑖)(𝑦𝑖 − �̅�)
𝑛
𝑖=1 ] −  

1

𝜌(1−𝜌)
 × 𝐸[(𝑔2 − 𝑔1)(𝑌 − 𝜌)]           (28)  

= 𝐴𝑛      ×                      𝐶𝑛                          −      𝐴     ×      𝐶                                                     (29) 

               =  𝐴𝑛      ×                   (𝐶𝑛1 − 𝐶𝑛2)             −      𝐴     ×      C                                              (30) 

                𝑤ℎ𝑒𝑟𝑒    𝐴 × 𝐶 = 𝐼𝐷𝐼 
 
              𝐶𝑛1 ∶=           

1

𝑛
∑ (𝑔2𝑖 − 𝑔1𝑖)(𝑦𝑖 − 𝜋)
𝑛
𝑖=1                                                                            (31) 

𝐶𝑛2 ∶=           (�̅� − 𝜌)
1

𝑛
∑ (𝑔2𝑖 − 𝑔1𝑖)
𝑛
𝑖=1                                                                            (32) 

Since we have seen that 𝐴𝑛 = 𝐴 + 𝑂𝑃(
1

√𝑛
), 𝐶𝑛1 = 𝐶 + 𝑂𝑃(

1

√𝑛
) and 𝐶𝑛2 is 𝑂𝑃(

1

√𝑛
), we obtain that 

𝑇2𝑛 = 𝑂𝑃(
1

√𝑛
).    This terminates the proof of the consistency of 𝐼𝐷�̂�. 

Theorem 4.2 (CLT of 𝐼𝐷�̂�) as 𝑛 → ∞. 

 

              √𝑛(𝐼𝐷�̂� − 𝐼𝐷𝐼)
𝐿,   𝑛→∞
→     𝑁(0, 𝜎2).                                                                                    (33) 

provided 𝜎2 ≠ 0,𝑤ℎ𝑒𝑟𝑒 𝜎2 = (
1

(1−𝜌)𝜌
)
2

 𝑣𝑎𝑟(𝑉) 𝑤ℎ𝑒𝑟𝑒 𝑉 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 
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𝑉 = (𝑔(𝜃2
∗𝑇𝑍2) − 𝑔(𝜃1

∗𝑇 𝑍1) − 𝐸∆)(𝑌 − 𝜌) 

+  (𝑌 − 𝑔(𝜃2
∗𝑇𝑍2))𝑍2

𝑇
 
(𝐼2
−1(𝜃2

∗))𝐸2 

−  (𝑌 − 𝑔(𝜃1
∗𝑇𝑍1))𝑍1

𝑇(𝐼1
−1(𝜃1

∗))𝐸1 

      +  𝐼𝐷𝐼 (2𝜌 − 1)(𝑌 − 𝜌) − 𝐼𝐷𝐼𝜌(1 − 𝜌) 

 

𝑤ℎ𝑒𝑟𝑒 𝐼1 𝑎𝑛𝑑 𝐼2 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 𝑙𝑒𝑚𝑚𝑎 (3.1) 𝑓𝑜𝑟 𝑚𝑜𝑑𝑒𝑙𝑠 𝑀1 𝑎𝑛𝑑 𝑀2 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑎𝑛𝑑
  

𝐸∆ =  𝐸(𝑔2 − 𝑔1)                                                                                                            (34) 

𝐸𝑗  =  𝐸[𝑔𝑗(1 − 𝑔𝑗)(𝑌 − 𝜌)𝑍𝑗] , 𝑗 = 1,2                                                                       (35) 

𝑤ℎ𝑒𝑟𝑒 𝑤𝑒 𝑟𝑒𝑐𝑎𝑙𝑙 𝑡ℎ𝑎𝑡 𝑔𝑗 ∶= 𝑔(𝜃𝑗
∗𝑇𝑍𝑗), 𝑓𝑜𝑟  𝑗 = 1,2.   𝐴 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑜𝑓 𝜎

2 =

(
1

(1−𝜌)𝜌
)2 𝑣𝑎𝑟(𝑉) 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦

  

𝜎 2̂ = [
1

�̅�(1 − �̅�)
]2

1

𝑛 − 1
∑(𝑉�̂� − �̂̅�)

2

𝑛

𝑖=1

. 

Proofs of theorems 4.2 - 4.4 will appear elsewhere. 

Theorem 4.3 (Consistency of the estimated 𝐵𝑅𝐼2/1) 

              𝐵𝑅𝐼2/1̂
𝑎.𝑠.  𝑛→∞
→      𝐵𝑅𝐼2/1                                                              (36) 

Theorem 4.4 (CLT for 𝐵𝑅𝐼2/1̂ ) 𝐴𝑠 𝑛 → ∞,    √𝑛(𝐵𝑅𝐼 2/1̂ −𝐵𝑅𝐼 2/1)
𝐿  𝑛→∞
→    𝑁(0, 𝜎𝐵

2)                 (37) 

provided      𝜎𝐵
2 = 𝑣𝑎𝑟(𝑊) ≠ 0,𝑤ℎ𝑒𝑟𝑒 𝜎𝐵

2 = 𝑣𝑎𝑟(𝑊) 𝑤𝑖𝑡ℎ 𝑊 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 

𝑊𝑖  =    2 [(𝑔( 𝜃1
∗𝑇𝑍1𝑖  ) − 𝑔(𝜃2

∗𝑇𝑍2𝑖)) (
( 𝑔( 𝜃2

∗𝑇𝑍2𝑖 ) + 𝑔( 𝜃1
∗𝑇𝑍1𝑖  ))

2
− 𝑌𝑖)] 

−    (𝑌𝑖 − 𝑔(𝜃2
∗𝑇𝑍2𝑖))

 
𝑍2𝑖
𝑇
 
𝐼2
−1(𝜃2

∗)(2𝐸2 − 𝐸4) 

+    (𝑌𝑖 − 𝑔(𝜃1
∗𝑇𝑍1𝑖))

 
𝑍1𝑖𝐼1

−1(𝜃1
∗)(2𝐸1 − 𝐸3) 

𝑎𝑛𝑑 

 𝐸1    =     𝐸 [𝑔( 𝜃1
∗𝑇𝑍1𝑖  )(1 − 𝑔( 𝜃1

∗𝑇𝑍1𝑖  ))𝑍1 (
𝑔( 𝜃2

∗𝑇𝑍2𝑖 ) + 𝑔( 𝜃1
∗𝑇𝑍1𝑖  )

2
− 𝑌)] 

𝐸2    =     𝐸 [𝑔( 𝜃2
∗𝑇𝑍2𝑖  )(1 − 𝑔( 𝜃2

∗𝑇𝑍2𝑖  ))𝑍2 (
𝑔( 𝜃2

∗𝑇𝑍2𝑖 ) + 𝑔( 𝜃1
∗𝑇𝑍1𝑖  )

2
− 𝑌)] 

𝐸3    =     𝐸[ 𝑔( 𝜃1
∗𝑇𝑍1𝑖 )(1 − 𝑔( 𝜃1

∗𝑇𝑍1𝑖 ))𝑍1(𝑔( 𝜃2
∗𝑇𝑍2𝑖  ) −  𝑔( 𝜃1

∗𝑇𝑍1𝑖 ))] 

𝐸4    =     𝐸[ 𝑔( 𝜃2
∗𝑇𝑍2𝑖 )(1 − 𝑔( 𝜃2

∗𝑇𝑍2𝑖 ))𝑍2(𝑔( 𝜃2
∗𝑇𝑍2𝑖 ) −  𝑔( 𝜃1

∗𝑇𝑍1𝑖  ))] 
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𝐴 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑜𝑓 𝜎𝑩
2 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦

 
𝜎𝐵
2̂ = 

1

𝑛−1
 ∑ (𝑊�̂� − �̅�)

2𝑛
𝑖=1 .  

Remark: For a pair of nested logistic models it is easy to verify that when𝑍𝑘+1, … , 𝑍𝑘+𝑚 , the 
covariates in model 𝑀1 that are not in model 𝑀2, are all independent of the response Y and of the 
covariates 𝑍1, … , 𝑍𝑘  common to the two models, 𝐼𝐷𝐼2/1 = 0 and 𝑣𝑎𝑟(𝑉) = 0 as well. Similarly, 
under these conditions, 𝐵𝑅𝐼2/1 = 0  and 𝑣𝑎𝑟(𝑊) = 0. Therefore in these cases of independent 
additional covariates root-n normal convergence does not hold for either the sample IDI or BRI. Our 
simulations in section 5 that address the case of null IDI suggest a constant multiple of a Chisquare 
asymptotic distribution at rate n, rather than root-n. A theoretical treatment of the null IDI or null 
BRI case will require Taylor expansions of second order and will be undertaken elsewhere. 

5 Simulation studies 

We ran several simulation studies based on 𝑝 = 4 covariates: 

 𝑍1 is trinomial ∈   { −1, 0, 1} with respective probabilities ( .2, .4, .4). 
 𝑍2 is Bernoulli with respective probabilities ( .2, .8). 
 𝑍3 ~ 𝛿(1), exponential with parameter 1. 
 𝑍4 ~ 𝑁(0.5, 1), normal, independent of Y and of all 𝑍𝑗 , 𝑗 = 1,2,3. 

Based on some of these covariates, two logistic models were used to generate the 
data, with 𝜃 = (𝜃0, … , 𝜃4) defined by 

 𝑀1: 𝜃 = (0,2,1,0,0), 
 𝑀2: 𝜃 = (0,2,0,1,0), 

 
so that 𝑀2 is a mixed model featuring both categorical and continuous covariates, 
while 𝑀1 is based on categorical covariates only. With data generated by these 
two models, several alternative models, 𝑀3 to𝑀6, defined below, are evaluated 
relative to 𝑀1  and 𝑀2 , via IDI and BRI. Some of them, 𝑀3, 𝑀4 𝑎𝑛𝑑 𝑀6 , are 
embedded in 𝑀1 or 𝑀2, and one, 𝑀5, contains 𝑀2. 
Models 

 𝑀3: 𝜃 = (𝜃0
∗, 𝜃1

∗, 0,0,0) was compared to 𝑀1and 𝑀2. 
 𝑀4: 𝜃 = (𝜃0

∗, 0, 𝜃2
∗, 0,0) was compared to  𝑀1. 

 𝑀5: 𝜃 = (𝜃0
∗, 𝜃1

∗, 0, 𝜃3
∗, 𝜃4

∗) Was compared to  𝑀2. 
 𝑀6: 𝜃 = (𝜃0

∗, 0,0, 𝜃3
∗, 0) Was compared to 𝑀2. 

 
Remarks 

1. The value of 𝜃∗ for model 𝑀3 depends on the true underlying model so that its value of 
𝜃∗ = 𝜃3,1

∗  when model 𝑀1 is true is different from its value 𝜃∗ = 𝜃3,2∗  when model 𝑀2 is 
the true underlying model. 

2. The true values of 𝜃∗of an alternative model 𝑀𝑚  with respect to the true generating model 
𝑀1 that contains only categorical covariates, were computed by minimizing the Kullback-
Leibler distance of model 𝑀𝑚  with respect to model 𝑀1, as well as by simulating a large 
sample of size 1,000,000 and computing 𝜃∗  in that sample. The difference between the 
𝜃∗ and the corresponding IDI and BRI of the two methods is very small as shown in Table 
1. For the model 𝑀2 only simulation was used because the direct computation would imply 
numerical integration.   

3. The IDI of 𝑀5 with respect to the true model 𝑀2 is equal to 0, so that the estimator 𝐼𝐷�̂� is 
estimating 0. 

4. In table 2 we compare the standard error of  𝐼𝐷�̂� 𝑎𝑛𝑑 𝐵𝑅𝐼̂  as computed using our formulae 
on samples of size 200 and 1000 when 5000 samples were simulated from the generating 
models M1 or M2, to the standard deviation of these statistics computed from 5000 samples 
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of size 200 or 1000. The results lend support to our estimated standard errors for 
 𝐼𝐷�̂� 𝑎𝑛𝑑 𝐵𝑅𝐼̂ . 

5. In Tables 3 we consider two different confidence intervals (CI) for IDI and BRI. Both are 
based on 𝑛𝑠𝑖𝑚 = 5000 samples, each of size 𝑛 = 1000 (or n=200) of data generated from 
model 𝑀1 or model 𝑀2. The first confidence interval, based on theorem (4.2) is computed, 
for each sample, from the variance of 𝑉𝑖, as defined in theorem (4.2) as a normal 95% CI. 
The coverage reported is the % of these normal CI’s that contain the true parameter, IDI, 
or BRI. The second confidence interval is the usual percentile confidence interval with 
5000 replication obtained for each of 500 independent samples of size 1000 (or 200) from 
the generating model. The coverage probability reported for the Bootstrap is then the 
average coverage of the 500 samples.   

6. We have also compared (table not included) our variance estimate to that of Pencina et al 
(2008) and found, as expected that their estimate is appropriate only when IDI=0. 

 

Table 1 True values of 𝜃𝑀3/𝑀1
∗ , 𝜃𝑀4/𝑀1

∗ , IDI and BRI of 𝑀3 and 𝑀4 with respect to 𝑀1 evaluated 
from minimum Kullback-Leibler and a sample of size 1 million. 

𝜃𝑀3/𝑀1
∗  𝜃0

∗ = 0.7781; 𝜃1
∗ = 1.9386          𝜃0

∗ = 0.7781; 𝜃1
∗ = 1.9386 

𝜃𝑀4/𝑀1
∗  𝜃0

∗ = 0.3070; 𝜃2
∗ = 0.6736          𝜃0

∗ = 0.3107; 𝜃2
∗ = 0.6697 

𝐼𝐷𝐼𝑀3/𝑀1  -0.0211                                         -0.0215 
𝐼𝐷𝐼𝑀4/𝑀1  -0.3130                                         -0.3133 
𝐵𝑅𝐼𝑀3/𝑀1 -0.0044                                         -0.0044 
𝐵𝑅𝐼𝑀4/𝑀1 -0.0661                                         -0.0663 

 

Table 2 Standard Errors of 𝐼𝐷�̂�  𝑎𝑛𝑑 𝐵𝑅𝐼̂  as estimated from nsim=5000 samples of size n=1000  
using our formulae, and via simulations of nsim=5000 samples of size n=1000, and samples of size 
n=200. 

True 

Model 

Model 

Pair 

Estimated 

S.E. of 

 𝑰𝑫�̂� 

Simulation 

S.E. of  𝑰𝑫�̂� 
nsim=5000 

Estimated 

S.E. of 

 𝑩𝑹�̂� 

Simulation S.E. 

of 

 𝑩𝑹�̂� nsim=5000 

n=1000   nsim=5000 
M1 M4:M1 0.028 0.028 0.0650 0.0620 
M1 M3:M1 0.008 0.009 0.0200 0.0190 
M2 M3:M2 0.014 0.015 0.0032 0.0032 
M2 M5:M2 0.0013 0.0013 0.0003 0.0003 
M2 M6:M2 0.026 0.027 0.0061 0.0063 
n=200   nsim=5000 
M1 M4:M1 0.061 0.064 0.0147 0.0150 
M1 M3:M1 0.018 0.021 0.0047 0.0048 
M2 M3:M2 0.032 0.034 0.0074 0.0075 
M2 M5:M2 0.0069 0.0067 0.0015 0.0016 
M2 M6:M2 0.057 0.061 0.0137 0.0139 

 

Table 3 Actual coverage for nominal 95% Confidence Intervals: Asymptotic normal CI’s and 
average  of 500 percentile bootstrap confidence intervals’ coverages for IDI and BRI for sample 
sizes n=1000 and n=200.  For each of 500 samples, 5000 Bootstrap replications were taken. 
 

n=200 nsim=5000 B=5000   
oModels 

compared  

Data 

Mode

l 

True IDI IDI 

Estimat

ed var 

normal 

CI 

IDI 

Bootstrap 

CI: 

Average 

Coverage 

True BRI BRI 

Estima -

ted var 

normal CI 

Coverage 

BRI Bootstrap CI: 

Average Coverage 

M4:M1 M1 0.3133070 0.930 0.962 0.0662868 0.935  0.964 
M3:M1 M1 0.0205001 0.869 0.978 0.0044574 0.843  0.974 
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   M3:M2 M2 0.0740809 0.917 0.938 0.0155497 .926  0.938 
M5:M2 M2 -0.0001419 0.998 0.958 0.0000013  0.999  0.962 
M6:M2 M2 0.2958171 0.933 0.954 0.0608998  0.942  0.940 

 

n=1000 nsim=5000 B=5000   
Models  

compared 
Data 

Mode

l 

True IDI IDI 

Estimate

d var 

normal 

CI 

IDI 

Bootstrap 

CI: 

Average 

Coverage 

True BRI BRI 

Estimated 

var normal 

CI 

BRI Bootstrap CI: 

Average Coverage 
 
 
 

M4:M1 M1 0.3133070 0.941 0.960 0.0662868 0.950 0.956 
M3:M1 M1 0.0205001 0.914 0.954 0.0044574 0.928 0.954 
M3:M2 M2 0.0740809 0.935 0.944 0.0155497 0.945 0.942 
M5:M2 M2 -0.000142 0.979 0.982 0.0000013 1.000 0.968 
M6:M2 M2 0.2958171 0.936 0.954 0.0608998 0.951 0.962 

 

7. In Tables 1 and 3, we have the true IDI and true BRI for the five model pairs in our study. 
Note that 𝐼𝐷𝐼𝑀3/𝑀1  is particularly small and 𝐼𝐷𝐼𝑀5/𝑀2 = 0. Despite the lack of normality 
of the estimated IDI, clearly portrayed in our QQ plots (not shown here) for samples even 
as large as 1000, our 95% confidence intervals (CLT with var(V) in Table 3) display % 
coverage, of 5000 samples, that are rather close to the nominal 95%. The only intervals 
with unexplained coverage are those for 𝐼𝐷𝐼M3/𝑀1  and   for 𝐼𝐷𝐼𝑀6/𝑀2 both of which have 
rather low  values. The Bootstrap percentile confidence intervals, based on a nonparametric 
bootstrap with 5000 repetitions on 500 samples, are in general somewhat closer to the 
nominal value of 95% but are mostly on the high side. Table 3 also displays the 
corresponding results of the BRI. Here the coverage of the normal confidence intervals 
based on our estimate of the standard error of 𝐵𝑅𝐼̂  have mostly a coverage probability that 
is closer to the nominal value of 9. The most extreme is the interval for 𝐵𝑅𝐼𝑀5/𝑀2 with true 
BRI equal to 0.  

  
A final word about the nonparametric Bootstrap we used to obtain our alternative confidence 
intervals and their coverage. Babu et al (1989) report that under appropriate smoothness conditions 
on the population distribution F, the sup distance between the sampling distribution of a statistic T 
and its Bootstrap distribution is  𝑜 ( 1

√𝑛
). Thus, in case IDI or BRI are very small, it is safer to report 

the nonparametric percentile Bootstrap confidence intervals that do not rely on symmetry. 
 

6    Concluding remarks. 

We have presented results that enable researchers do inference on two important indices for 
measuring the relative effectiveness of two models in predicting the probabilities of future events. 
Most importantly, we allowed for model estimation prior to index computation on the same data by 
providing new standard errors for both the IDI and the Brier score when the indices are computed 
on the same data that provided model parameter estimates. One referee inquired whether our 
contribution is meant to replace cross-validation that is often proposed for model validation after 
model selection. Our contribution is in fact not meant to replace cross validation, but simply to 
provide correct inferential tools for model selection when prediction rather than fit is the desired 
criterion. We point out that the AIC (Akaike 1973), which is often employed for model selection 
for fit, does indeed take into account the maximum likelihood estimation prior to fit evaluation by 
Kullback Leibler distance between the data and the model under consideration. For a recent 
illuminating discussion of the AIC, see Shuhua Hu (http://www4.ncsu.edu/ 
shu3/Presentation/AIC2012.pdf)  
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There are additional indices for comparison of models’ calibration and discrimination. We mention 
in particular the difference in the area under the ROC curve of two models and Pencina et al’s (2008) 
Net Reclassification Improvement NRI. The recent paper by Zheng et al (2013) and the work of 
Uno et al (2010) and the work of Muhlenbruch (2015) are relevant in this context. The first tackles 
the problem of within the sample estimation for the NRI as we have done for the IDI. Uno’s C-
statistic applied to uncensored duration data that is converted to a binary outcome by replacing the 
time to event by one if event occurred before some predetermined time t∗, and zero otherwise, 
reduces exactly to the area under the ROC curve resulting from a model for binary outcomes. 
However, Uno’s methods must be modified to apply to binary outcomes following logistic or probit 
models. In addition they do not present explicit normal convergence results. Muhlenbruch et al (op. 
cit.) adopt a very elementary approach to the asymptotic distribution of the NRI based on the 
multinomial distribution, and appears to cover the within the sample setting of Zheng et al. (Op. 
Cit.) 

One of the referees has pointed out the paper by Kerr et al (2011) which was published after we first 
submitted our paper for publication. They point out the popularity of the IDI which warrants further 
investigation of its behavior. They treat testing the hypothesis of null IDI whereas we estimate the 
IDI and its standard error and provide confidence intervals, precisely when IDI is not zero. Their 
theory for the assumed linear model M for the risk, 𝑃[𝑌 = 1|𝑍,𝑀], is a short cut for studying the 
behavior of the 𝐼𝐷�̂�  when IDI = 0. They suggest however that when IDI = 0, the asymptotic 
distribution is not normal at rate√𝑛, but rather a multiple of Chi-square at rate n. A significant 
contribution is their simulation of 𝐼𝐷�̂� and the Pencina et al proposed estimate of its standard error 
for very large samples of sizes 1,000 to 10,000, particularly for the zero-IDI case. To test their null 
hypothesis of zero-IDI, the authors use a parametric bootstrap in which model parameters are 
replaced by their samples estimates, instead of using hypotheses testing bootstrap that, in their case, 
would assume a zero-IDI within their logistic model. In their simulations, the only possible value of 
𝛾 that would yield a zero-IDI is 𝛾 = 0. Since sample estimates of zero coefficients will always yield 
non-zero results their bootstrap yields a biased estimate of the 𝐼𝐷�̂� distribution. We in contrast used 
a non-parametric Bootstrap which is the one recommended by Hjort (1992) as the only 
asymptotically correct Bootstrap when the model being estimated is a false model. As Hjort (Op. 
Cit.) proves, parametric bootstraps under a false model are, even asymptotically, biased. 

In this connection we mention a more recent important paper by Pepe, Kerr et al (2013). In this 
paper they prove the very plausible claim that the null hypothesis of equal risk RM1(Z) = RM2(Z) for 
two nested models M1 and M2 is equivalent to a whole slew of null hypotheses of equality of the 
two ROC curves as well as IDI2/1=0 and NRI2/1 = 0. They conclude that testing risk equality is more 
powerful and should precede any presentation of indices such as IDI. Upon rejection of the null 
hypothesis one can use our results to produce confidence intervals for the non-null IDI or BRI. 

In this paper we assume nested logistic models and treat non-zero IDI and BRI model-pair 
estimation: both their asymptotic distribution and estimation of their standard error. In addition, we 
find, via simulations, that the zero IDI/BRI cases are a special case in which the normal convergence 
we prove in the non-null case does not appear to hold. We intend to treat the null case in a future 
paper. 

In this paper we have tested our asymptotic results and standard error formulae in simulation studies 
and found them to hold even in medium size samples. Elsewhere we applied these results to 
Dementia data from the French Three Cities study. The analysis included a Bootstrap confidence 
interval for IDI between the models with and without genetic marker. The IDI analysis did not 
provide any evidence to suggest the effectiveness of the genetic marker APOE4 in predicting 
Dementia beyond that achieved by standard non-genetic predictor variables such as age, education, 
and additional health variables. This in spite of the fact that the model including the genetic marker 
turned out to have a lower AIC than the model without it, and the marker coefficient was 
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significantly different from zero when included in the model. This suggests that IDI may be very 
close to zero even when the two nested models considered are significantly different from each 
other. This suggests that a covariate that contributes to model fit may not contribute significantly to 
prediction in finite samples. In infinite samples Pepe Kerr et al (2013) have proved that this cannot 
happen. 
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