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Abstract

For assessing in real time the short-term trend of major economic indicators, official statistical

agencies generally rely on asymmetric filters that were developed by Musgrave in 1964. However,

the use of the latter introduces revisions as new observations are added to the series and, from a

policymaking viewpoint, they are too slow in detecting true turning points. In this paper, we use

a reproducing kernel methodology to derive asymmetric filters that converge quickly and mono-

tonically to the corresponding symmetric one. We show theoretically that proposed criteria for

time-varying bandwidth selection produce real-time trend-cycle filters to be preferred to the Mus-

grave filters from the viewpoint of revisions and time delay to detect true turning points. We use a

set of leading, coincident and lagging indicators of the US economy to illustrate the potential gains

statistical agencies could have by also using our methods in their practice.

Key Words: Recession and recovery analysis, reproducing kernels, seasonally adjusted data, Mus-

grave filters, time-varying bandwidth selection, US economy.

1. Introduction

The basic approach to the analysis of current economic conditions, known as recession and

recovery analysis, is that of assessing the real time trend-cycle of major socio-economic

indicators (leading, coincident and lagging) using percentage changes, based on seasonally

adjusted units, calculated for months and quarters in chronological sequence. The main

goal is to evaluate the behaviour of the economic indicators during incomplete phases by

comparing current contractions or expansions with corresponding phases in the past. This

is done by measuring changes of single time series (mostly seasonally adjusted) from their

standing at cyclical turning points with past changes over a series of increasing spans. This

differs from business-cycle studies where cyclical fluctuations are measured around a long

term trend to estimate complete business-cycles. The real time trend corresponds to an

incomplete business-cycle and is strongly related to what is currently happening on the

business-cycle stage.

In recent years, statistical agencies have shown an interest in providing trend-cycle or

smoothed seasonally adjusted graphs to facilitate recession and recovery analysis. Among

other reasons, this interest originated from the recent crisis and major economic and fi-

nancial changes of global nature which have introduced more variability in the data. The

United States entered in recession in December 2007 till June 2009, and this has produced

a chain reaction all over the world, particularly, in Europe. There are no evidence of a fast

recovery as in previous recessionS: the economic growth is sluggish and with high levels

of unemployment. It has become difficult to determine the direction of the short term trend

(or trend-cycle) as traditionally done by looking at month to month (quarter to quarter)

changes of seasonally adjusted values, particularly to assess the upcoming of a true turning

point. Failure in providing reliable real time trend-cycle estimates could give rise to dan-

gerous drift of the adopted policies. Therefore, a consistent prediction is of fundamental

importance. It can be done by means of either univariate parametric models or nonpara-

metric techniques. The majority of the statistical agencies use nonparametric seasonally
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adjusted software, such as the Census X11 method and its variants X11/X12ARIMA and

X13, and hence this PAPER deals with the real time trend-cycle estimation produced by

the Musgrave filters (Musgrave, 1964) available in these software.

As widely discussed the linear filter developed by Henderson (1916) is the most fre-

quently applied and has the property that fitted to exact cubic functions will reproduce their

values, and fitted to stochastic cubic polynomials it will give smoother results than those

estimated by ordinary least squares. Its Reproducing Kernel Hilbert Space (RKHS) rep-

resentation consists OF a kernel function obtained as the product of the biweight density

function and the sum of its orthonormal polynomials that is particularly suitable when the

length of the filter is rather short, say between 5 to 23 terms, which are those often applied

by statistical agencies (see also for details Dagum and Bianconcini, 2008).

At the beginning and end of the sample period, the Henderson filter of length, say

2m+ 1 cannot be applied to the m data points, hence only asymmetric filters can be used.

The estimates of the real time trend are then subject to revisions produced by the inno-

vations brought by the new data entering in the estimation and the time-varying nature of

the asymmetric filters, in the sense of being different for each of the m data points. The

asymmetric filters applied to the first and last m observations associated with the Hender-

son filter were developed by Musgrave (1964) on the basis of minimising the mean squared

revision between the final estimates, obtained with the symmetric Henderson weights, and

preliminary estimates from the asymmetric weights, subject to the constraint that the sum

of these weights is equal to one. The assumption made is that at the end of the series,

the seasonally adjusted values do not follow a cubic polynomial, but a linear trend-cycle

plus a purely random irregular. Dagum and Bianconcini (2008 and 2013) were the first to

introduce a RKHS representation of them.

The RKHS approach presented here is strictly nonparametric and based on a funda-

mental result due to Berlinet (1993), according to which a kernel estimator of order p can

be always decomposed into the product of a reproducing kernel Rp−1, belonging to the

space of polynomials of degree at most p − 1, and a density function f0 with finite mo-

ments up to order 2p. Given the density function, once the length of the symmetric filter is

chosen, let us say, 2m + 1, the statistical properties of the asymmetric filters are strongly

affected by the bandwidth parameter of the kernel function from which the weights are

derived. We present time-varying bandwidth parameters because the asymmetric filters are

time-varying. Three specific criteria of bandwidth selection are chosen based on the min-

imisation of (1) the distance between the transfer functions of asymmetric and symmetric

filters, (2) the distance between the gain functions of asymmetric and symmetric filters, and

(3) the phase shift function over the domain of the signal.

We deal only with the reduction of revisions due to filter changes that depends on how

close the asymmetric filters are respect to the symmetric one (Dagum and Laniel, 1987;

Dagum, 1996) and do not consider those introduced by the innovations in the new data.

Another important aspect dealt with is the capability of the asymmetric filters to signal the

upcoming of a true turning point which depends on the time delay for its identification. This

is obtained by calculating the number of months (quarters) it takes for the last trend-cycle

estimate to signal a true turning point in the same position of the final trend-cycle data. An

optimal asymmetric filter should have a time path that converges fast and monotonically to

the final estimate as new observations are added to the series.

2. Asymmetric filters and RKHS

Let {yt, t = 1, 2, ..., N} denote the input series, supposed to be seasonally adjusted where

trading day variations. Moving holidays and extreme values, if present, have been removed.
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It is assumed that it can be decomposed into the sum of a systematic component (signal)

gt, representing the trend-cycle (usually estimated jointly) plus an erratic component ut (

noise), such that

yt = gt + ut. (1)

The noise ut is assumed to be white noise, WN(0, σ2
u), or, more generally, a stationary and

invertible AutoRegressive Moving Average (ARMA) process. The signal gt, t = 1, · · · , T,
is assumed to be a smooth function of time, such that it can be represented locally by a

polynomial of degree p in a variable j, which measures the distance between yt and its

neighboring observations yt+j, j = −m, ...,m. This is equivalent to estimate the trend-

cycle ĝt as a weighted moving average as follows

ĝt =
m
∑

j=−m

wjyt+j = w′y t = m+ 1, · · · , N −m, (2)

where w′ =
[

w−m · · · w0 · · · wm

]

contains the weights to be applied to the input

data y′ =
[

yt−m · · · yt · · · yt+m

]

to get the estimate ĝt for each point in time.

The derivation of the symmetric Henderson filter with the RKHS methodology assumes

the availability of 2m + 1 input values centered at t. However, at the end of the sample

period, that is t = N − (m + 1), · · · , N , only 2m, · · · ,m+ 1 observations are available,

and asymmetric filters of the same length have to be considered. Hence, at the boundary,

the effective domain of the kernel function , say K4 is [−1, q∗], with q∗ << 1, instead of

[−1, 1] as for any interior point. This implies that the symmetry of the kernel is lost, and it

does not integrate to unity on the asymmetric support (
∫ q∗

−1
K4(t)dt 6= 1). Furthermore, the

moment conditions are not longer satisfied, that is
∫ q∗
−1

tiK4(t)dt 6= 0 for i = 1, 2, 3. To

overcome these limitations, several boundary kernels have been proposed in the literature.

In the context of real time trend-cycle estimation, the condition that the kernel function

integrates to unity is essential, whereas the unbiasedness property can only be satisfied

with a great increase in the variance of the estimates. This is a consequence of the well-

known trade-off between bias and variance. This latter becomes very large because most of

the contribution to the real time trend-cycle estimates comes from the current observation

which gets the largest weight. Based on these considerations, Dagum and Bianconcini

(2008, 2013 and 2015) followed the so called “cut and normalize” method (Gasser and

Muller, 1979; Kyung-Joon and Schucany, 1998), according to which the boundary kernels

Kq∗

4 are obtained by cutting the symmetric kernel K4 to omit that part of the function lying

between q∗ and 1, and by normalizing it on [-1,q∗]. That is,

Kq∗

4 (t) =
K4(t)

∫ q∗

−1
K4(t)dt

=
det(H0

4[1, t])f0B(t)

det(H0
4[1,µ

q∗])
t ∈ [−1, q∗], (3)

where µ
q∗ =

[

µq∗
0 µq∗

1 µq∗
2 µq∗

3

]

with µq∗
r =

∫ q∗
−1

trf0B(t)dt being proportional to

the moments of the truncated biweight density f0B on the support [−1, q∗], which from

now on we simply refer to as truncated moments.

Applied to real data, the “cut and normalize” method gives the following formula for the

asymmetric weights

wq,j =
Kq∗

4 (j/bq)
∑q

j=−mKq∗

4 (j/bq)
=

det(H0
4[1, j/bq])(1/bq)f0B(j/bq)

det(Ha)
(4)

j = −m, · · · , q; q = 0, · · · ,m− 1
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where H0
4[1, j/bq] is the Hankel matrix whose elements are the moments of f0B , and where

the first column has been substituted by the vector

j/bq

′ =
[

1 (j/bq) (j/bq)
2 (j/bq)

3
]

. On the other hand, Ha = H0
4 [1,S

q] with

Sq =
[

Sq
0 Sq

1 Sq
2 Sq

3

]′
, being Sq

r =
∑q

j=−m
1
bq

(

j
bq

)r
f0B

(

j
bq

)

the discrete approx-

imation of µq∗
r . Finally, bq, q = 0, · · · ,m − 1, is the local bandwidth, specific for each

asymmetric filter. It allows to relate the discrete domain of the filter, that is {−m, · · · , q},

for each q = 0, · · · ,m−1, to the continuous domain of the kernel function, that is [−1, q∗].
It can be shown (see Dagum and Bianconcini, 2015 and 2016) that the generic element of

wq is

wq,j =







µ4 − µ2

(

j
bq

)2

Sq
0µ4 − Sq

2µ2







1

bq
f0B

(

j

bq

)

(5)

j = −m, · · · , q; q = 0, · · · ,m− 1.

2.1 Properties of the asymmetric filters

Since the trend-cycle estimates for the last m data points do not use 2m + 1 observations

as for any interior point, but 2m, 2m− 1, · · · ,m+1 data, they are subject to revisions due

to new observations entering in the estimation and filters change. In the specific case of the

RKHS filters the asymmetric filter weights are related to the symmetric ones and their con-

vergence depends on the relationship between the two discretized biweight density func-

tions, truncated and non-truncated, jointly with the relationship between their respective

truncated Sq
r and untruncated Sr discrete moments. The latter provide an approximation of

the continuous moments µr, which improves as the asymmetric filter length increases. Sim-

ilarly, the convergence of Sq
r , q = 0, · · · ,m, to the corresponding non-truncated moment

Sr depends on the length of the asymmetric filter given by q, and on the local bandwidth

bq. It should be noticed that bq plays a very important role in the convergence property. For

the last trend-cycle point weight, q = 0, eq. (5) reduces to

w0,0 =
µ4

S0
0µ4 − S0

2µ2

15

16b0
.

It is apparent that the largest b0 the smaller is the weight given to the last trend-cycle

point. Since the sum of all the weights of the last point asymmetric filter, w0,−m, · · · , w0,0,

must be equal to one, this implies that the weights for the remaining points must be small

and close to one another.

3. Optimal bandwidth selection

The main effects introduced by a linear filter on a given input can be fully described in the

frequency domain by its transfer function

Γ(ω) =
m
∑

j=−m

wj exp(−i2πωj) ω ∈ [−1/2, 1/2],

where, for better interpretation, the frequencies ω are given in cycles for unit of time in-

stead of radians. Γ(ω) represents the Fourier transform of the filter weights, wj , j =
−m, · · · ,m, and it relates the spectral density hy(ω) and hg(ω) of the input and of the

output, respectively, by

hg(ω) = Γ(ω)hy(ω).
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Thus, the transfer function Γ(ω) measures the effect of the filter on the total variance of the

input at different frequencies. It is generally expressed in polar coordinates

Γ(ω) = G(ω) exp(−i2πφ(ω)) (6)

such that the impact of the filter on a particular (complex-valued) series yt = exp(i2πωt), ω ∈
[−1/2, 1/2], is given by

ĝt = G(ω) exp[i2π(ωt − φ(ω))].

G(ω) = |Γ(ω)| is called the gain of the filter and measures the amplitude of the output for

a sinusoidal input of unit amplitude, whereas φ(ω) is called the phase function and shows

the shift in phase of the output compared with the input. Hence, the transfer function plays

a fundamental role to measure that part of the total revisions due to filters change.

The quantity |Γq(ω)−Γ(ω)|2 is a measure of the revisions due to filters change (Dagum,

1982) and it can be decomposed using the law of cosines as follows:

|Γq(ω)− Γ(ω)|2 = |Gq(ω)−G(ω)|2 + 4Gq(ω)G(ω) sin
(

φq

(ω

2

))2

(7)

where the phase shift for the symmetric filter is equal to 0 or ±π, and where 1−cos(φq(ω)) =

2 sin
(

φq

(

ω
2

))2
. Based on eq. (7), the mean square filter revision error can be expressed as

follows

2

∫

1/2

0

|Γq(ω)− Γ(ω)|2dω = 2

∫

1/2

0

|Gq(ω)−G(ω)|2dω + 8

∫

1/2

0

Gq(ω)G(ω) sin
(

φ
(ω

2

))2

dω (8)

The first component reflects the part of the total mean square filter error which is attributed

to the amplitude function of the asymmetric filter. On the other hand, the second term

measures the distinctive contribution of the phase shift. The term Gq(ω)G(ω) is a scaling

factor which accounts for the fact that the phase function is dimensionless, i.e. it does not

convey level information (Wildi, 2008).

Once the length of the filter is fixed, the properties of the asymmetric filters derived

in RKHS are strongly affected by the choice of the time-varying local bandwidths bq, q =
0, · · · ,m − 1. A filter is said to be optimal if it minimises both revisions and time delay

to detect a true turning point. The LHS of eq. (8) is a measure of total filter revision

that provides the best compromise between the amplitude function of the asymmetric filter

(gain) and its phase function (time displacement) (Dagum, 1982; Dagum and Laniel, 1987)

. Optimal asymmetric filters in this sense can be derived using local bandwidth parameters

selected according to the following criterion

bq,Γ = min
bq

√

2

∫ 1/2

0

|Γq(ω)− Γ(ω)|2dω. (9)

Based on the decomposition of the total filter revision error provided in eq. (8), further

bandwidth selection criteria can be defined by emphasising more the gain or phase shift

effects, and/or by attaching varying importance to the different frequency components,

depending on whether they appear in the spectrum of the input time series or not. In the

context of smoothing a monthly input, the frequency domain Ω = {0 ≤ ω ≤ 0.50}
can be partitioned in two main intervals: (1) ΩS = {0 ≤ ω ≤ 0.06} associated with

cycles of 16 months or longer attributed to the signal (trend-cycle) of the series, and (2)

Ω̄S = {0.06 < ω ≤ 0.50} corresponding to short cyclical fluctuations attributed to the

noise.
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A class of optimal asymmetric filters based on bandwidth parameters bq, q = 0, · · · ,m−
1 is selected as follows

bq,G = min
bq

√

2

∫

1/2

0

|Gq(ω)−G(ω)|2dω. (10)

and

bq,φ = min
bq

√

2

∫

ΩS

Gq(ω)G(ω) [1− cos(φq(ω))]. (11)

It has to be noticed that the minimisation of the phase error in eq. (11) is very close to

minimising the average phase shift in month for the signal, that is

bq,φ = min
bq

[

1

0.06

∫

ΩS

φ(ω)

2πω
dω

]

. (12)

Dagum and Bianconcini (2015) showed that, as q approaches m, the bandwidth parame-

ters selected to optimise the criteria (9) and (10) get closer to m + 1, which is the global

bandwidth considered for the symmetric Henderson filter. Hence, based on the relation-

ships between truncated and untruncated discrete biweight density functions and respec-

tive discrete moments previously discussed, the asymmetric filters based on bq,Γ and bq,G,

q = 0, · · · ,m − 1, should be characterised by a fast convergence to the symmetric fil-

ter. This is confirmed by Figure 1 that illustrates, as an example, the time path of these

filters corresponding to the 13-term symmetric one. Similar conclusions can be drawn for

different filter lengths.

The asymmetric filters based on bq,Γ and bq,G, q = 0, · · · ,m − 1, converge very fast

to the symmetric filter, particularly after the previous to the last point, with the main differ-

ences observed for the last point filters. For these latter, the different behavior is analyzed

in the frequency domain in Figure 3, that shows the corresponding gain and phase shift

functions. It can be noticed that, as expected, the filter whose bandwidth b0,G is derived

as minimizer of eq. (10) shows a gain function closer to that of the symmetric Henderson

filter than the one based on b0,Γ, suppressing more noise at the highest frequencies, and it

reproduces very well the signal in the lower frequency band.

Figure 1: Time path of the asymmetric filters based on bq,Γ (left), bq,G (right) correspond-

ing to the 13-term symmetric filter.
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In terms of phase shift or time delay, the filters that behave better are the ones based on

the bandwidth parameters selected to minimise the average phase shift in months over the

signal domain. However, as shown in Figure 2, their time path is only very close to that of

the filters derived by Musgrave (1964) up to q = 2 but there is no monotonic convergence of

these asymmetric filters to their final oneS. As already said, the Musgrave filters are based

on the minimisation of the mean squared revision between the final estimates, obtained
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Figure 2: Time path of the asymmetric filters based on bq,φ (left) and of the Musgrave

asymmetric filters (right) corresponding to the 13-term symmetric filter.
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by the application of the symmetric filter, and the preliminary estimates, obtained by the

application of an asymmetric filter, subject to the constraint that the sum of the weights is

equal to one (Laniel, 1985; Doherty, 2001). These filters have the good property of fast

detection of turning points. This property is reflected in their phase shift function that, for

Figure 3: Gain (left) and phase shift (right) functions for the last point asymmetric filters

based on b0,Γ, b0,G, and b0,φ compared with the last point Musgrave filter.
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the last point filter, is illustrated in Figure 3. As can be seen, both the last point Musgrave

filter and the one based on b0,φ produce almost one half of the phase shift introduced by

the filter based on b0,Γ and a quarter of the one introduced by the filter based on b0,G at the

signal frequency band. However, the reduced phase shift produced by these two filters is

compensated by larger revisions introduced in the final estimates.

4. Empirical application

The asymmetric filters previously derived can be applied in many fields, such as, macroe-

conomic, finance, health, hydrology, meteorology, criminology, physics, labor markets,

utilities, and so on. In fact, in any time series where the impact of the trend-cycle is of rel-

evance. A set of leading, coincident, and lagging indicators of the U.S. economy is chosen

to corroborate the theoretical conclusions discussed before. The leading indicators are time

series that have a turning point before the economy as a whole changes, whereas the coin-

cident indicators change direction approximately at the same time as the whole economy,

thereby providing information about the current state of the economy. On the other hand,

the lagging indicators are those that usually change direction after the economy as a whole

does. The composite indexes are typically reported in the financial and trade press, and

the data analysed in this study are from the St. Louis Federal Reserve Bank database, the

Bureau of Labor Statistics and the National Bureau of Economic Research (NBER). The
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asymmetric filters derived following the RKHS methodology versus the Musgrave filters,

applied in conjunction with the symmetric Henderson filter, are evaluated as follows.

4.1 Reduction of revision size in real time trend-cycle estimates

The reduction of revisions in real time trend-cycle estimates is very important because the

estimates are preliminary and used to assess the current stage of the economy. Statistical

agencies and major users of these indicators are reluctant to large revisions because these

can lead to erroneous statement concerning the current economic situation. The series

considered are all seasonally adjusted, where also trading day variations, moving holidays

and extreme values have been removed, if present. The socio-economic indicators are series

of different length but the periods selected sufficiently cover the various lengths published

for these series.

Here, we study how the filters derived in RKHS and the classical Musgrave estimators

respond to the variability of the data. For each series, the length of the filters is selected

according to the I/C (noise to signal) ratio, as classically done in the X11/X12ARIMA

procedure (Ladiray and Quenneville, 2001). In the sample, the ratio ranges from 0.20 to

1.98, hence filters of length 9 and 13 terms are applied.

The comparisons are based on the relative filter revisions between the final symmetric filter

S and the last point asymmetric filter A, that is,

Rt =
St −At

St
, t = 1, 2, ..., N (13)

For each series and for each estimator, we calculate the ratio between the Mean Square

Percentage Error (MSPE) of the revisions corresponding to the filters derived following

the RKHS methodology and those corresponding to the last point Musgrave filter. For all

the estimators, the results illustrated in Table 1 indicate that the ratio is always smaller

than one, indicating that the kernel last point predictors, based on time-varying bandwidth

parameters, introduce smaller revisions than the Musgrave filter. This implies that the

estimates obtained by the former will be more accurate than those derived by the application

of the latter. In particular, as expected, the best performance is shown by the filter based

on the optimal bandwidth b0,G obtained by minimizing the criterion (10). In almost all

the series its ratio with the last point Musgrave filter is less than one half and, on average,

around 0.480. This implies that when applied to real data, the filter based on b0,G produces

a reduction of fifty percent of the revisions introduced in the real time trend-cycle estimates

given by the Musgrave filter.

4.2 Turning point detection

It is important that the reduction of revisions in real time trend-cycle estimates is not

achieved at the expense of increasing the time lag to detect the upcoming of a true turning

point. A turning point is generally defined to occur at time t if (downturn):

yt−k ≤ . . . ≤ yt−1 > yt ≥ yt+1 ≥ . . . ≥ yt+m

or (upturn)

yt−k ≥ . . . ≥ yt−1 < yt ≤ yt+1 ≤ . . . ≤ yt+m.

Following Zellner et al. (1991), it is selected k = 3 and m = 1 given the smoothness

of the trend cycle data. For each estimator, the time lag to detect the true turning point is

affected by the convergence path of its asymmetric filters wq, q = 0, · · · ,m − 1, to the

symmetric one w.
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Table 1: Ratio of the mean square percentage revision errors of the last point asymmetric

filters based on b0,G, b0,Γ and b0,φ, and the last point Musgrave filter.

Macro-area Series
b0,G

Mus

b0,Γ

Mus

b0,φ
Mus

Leading Average weekly overtime hours: manufacturing 0.492 0.630 0.922

New orders for durable goods 0.493 0.633 0.931

New orders for nondefense capital goods 0.493 0.633 0.931

New private housing units authorized by building permits 0.475 0.651 0.927

S&P 500 stock price index 0.454 0.591 0.856

M2 money stock 0.508 0.655 0.932

10-year treasury constant maturity rate 0.446 0.582 0.849

University of Michigan: consumer sentiment 0.480 0.621 0.912

Coincident All employees: total nonfarm 0.517 0.666 0.951

Real personal income excluding current transfer receipts 0.484 0.627 0.903

Industrial production index 0.477 0.616 0.884

Manufacturing and trade sales 0.471 0.606 0.869

Lagging Average (mean) duration of unemployment 0.509 0.649 0.937

Inventory to sales ratio 0.483 0.618 0.894

Index of total labor cost per unit of output 0.515 0.663 0.983

Commercial and industrial loans at all commercial banks 0.473 0.610 0.871

To determine the time lag needed by an indicator to detect a true turning point it is

calculated the number of months it takes for the real time trend-cycle estimate to signal a

turning point in the same position as in the final trend-cycle series. For the series analysed

in this chapter, the time delays for each estimator are shown in Table 2. It can be noticed

that the filters based on the bandwidth bq,φ take almost two months (on average) similar

to the Musgrave filters to detect the turning point. This is due to the fact that, even if bq,φ
filters are designed to be optimal in timeliness, their convergence path to the symmetric

filter is slower and moreover not monotonic.

On the other hand, the filters based on bq,Γ, q = 0, · · · ,m−1, and bq,G, q = 0, · · · ,m−
1, perform strongly better. In particular, whereas the former detect the turning point with

an average time delay of 1.67 months, the latter takes 1.27 months.

The fastest the upcoming of a turning point is detected the fastest new policies can

be applied to counteract the impact of the business-cycle stage. Failure to recognize the

downturn in the cycle or taking a long time delay to detect it may lead to the adoption of

policies to curb expansion when in fact, a recession is already underway.

The filters based on local bandwidth parameters selected to minimize criterion (10) are

the best, since they drastically reduce the total revisions by one half with respect to the

Musgrave filters and, similarly, almost by one half the number of months needed to detect

a true turning point.

5. Concluding remarks

This paper deals with the problem of real time trend-cycle estimation where the linear

asymmetric filters are developed using the RKHS methodology. Given the length of the

RKHS asymmetric filter, its properties strongly depend on the bandwidth parameter of

the asymmetric kernel function from which the filter weights are derived. Since the m
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Table 2: Time lag in detecting true turning points for the asymmetric filters based on bq,G,

bq,Γ, and bq,φ, and the Musgrave filters.

Macro-area Series bq,G bq,Γ bq,φ Musgrave

Leading Average weekly overtime hours: manufacturing 1 1 1 1

New orders for durable goods 1 2 3 2

New orders for nondefense capital goods 1 2 2 3

New private housing units authorized by building permits 2 2 3 3

S&P 500 stock price index 1 2 2 2

10-year treasury constant maturity rate 1 1 1 2

University of Michigan: consumer sentiment 1 1 1 1

Coincident All employees: total nonfarm 1 1 1 2

Real personal income excluding current transfer receipts 1 1 1 1

Industrial production index 1 1 1 1

Manufacturing and trade sales 1 2 3 3

Lagging Average (mean) duration of unemployment 3 3 4 3

Inventory to sales ratio 1 1 1 2

Index of total labor cost per unit of output 2 2 3 2

Commercial and industrial loans at all commercial banks 1 1 1 1

Average time lag in months 1.27 1.67 1.93 2.00

asymmetric filters corresponding to a 2m+1 symmetric filter are time-varying, one for each

specific point, local time-varying bandwidth parameters are introduced. The three main

criteria of bandwidth parameter selection are minimisation of: (1) the distance between the

gain functions of asymmetric and symmetric filters, (2) the distance between the transfer

functions of asymmetric and symmetric filters, and (3) the phase shift function over the

domain of the signal.

From a theoretical viewpoint, any of the three criteria produces real time trend-cycle fil-

ters to be preferred with respect to the currently being used developed by Musgrave (1964)

concerning both size of revisions and time delay to detect true turning points. The RKHS

asymmetric filters have been applied to a set of leading, coincident, and lagging indicators

of the U.S. economy to corroborate the theoretical conclusions. The real time trend-cycle

filter calculated with the bandwidth parameter that minimises the distance between the

asymmetric and symmetric filters gain functions is to be preferred. This last point trend-

cycle filter reduces around one half the size of the total revisions as well as the time delay

to detect a true turning point with respect to the Musgrave filter. For illustrative purposes,

Table 3 and Table 4 give the weight systems of these filters for 9- and 13-term symmetric

filters.
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Table 3: Weights corresponding to the 9-term symmetric filter.

0.31218 0.28804 0.22278 0.13330 0.044036 0.00000 0.00000 0.00000 0.00000

0.27101 0.31845 0.27101 0.15289 0.02630 -0.03965 0.00000 0.00000 0.00000

0.10931 0.25652 0.32009 0.25652 0.10931 -0.01705 -0.03470 0.00000 0.00000

-0.01544 0.11250 0.25957 0.32281 0.25957 0.11250 -0.01544 -0.03605 0.00000

-0.03907 -0.01074 0.12023 0.26574 0.32767 0.26574 0.12023 -0.01074 -0.03907

0.00000 -0.03605 -0.01544 0.11250 0.25957 0.32281 0.25957 0.11250 -0.01544

0.00000 0.00000 -0.03470 -0.01705 0.10931 0.25652 0.32009 0.25652 0.10931

0.00000 0.00000 0.00000 -0.03965 0.02630 0.15289 0.27101 0.31845 0.27101

0.00000 0.00000 0.00000 0.00000 0.04404 0.13330 0.22278 0.28804 0.31184

Table 4: Weights corresponding to the 13-term symmetric filter.

0.22362 0.21564 0.19266 0.157478 0.11444 0.06902 0.02714 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.21065 0.22352 0.21065 0.174523 0.12230 0.06460 0.01357 -0.01982 0.00000 0.00000 0.00000 0.00000 0.00000

0.15391 0.21013 0.23100 0.21013 0.15391 0.08000 0.01250 -0.02600 -0.025570 0.00000 0.00000 0.00000 0.00000

0.06338 0.14212 0.20452 0.22808 0.20452 0.14212 0.06338 -0.00217 -0.02978 -0.01617 0.00000 0.00000 0.00000

-0.00258 0.06319 0.14245 0.20533 0.22909 0.20533 0.14245 0.06319 -0.00258 -0.02996 -0.01593 0.00000 0.00000

-0.02983 0.00060 0.06762 0.14651 0.20848 0.23179 0.20848 0.14651 0.06762 0.00060 -0.02983 -0.01855 0.00000

-0.01986 -0.02982 0.00217 0.07010 0.14921 0.21106 0.23429 0.21106 0.149208 0.07010 0.00217 -0.02982 -0.01986

0.00000 -0.01855 -0.02983 0.00066 0.06762 0.14651 0.20848 0.23179 0.20848 0.14651 0.06762 0.00060 -0.02983

0.00000 0.00000 -0.01593 -0.02996 -0.00258 0.06319 0.14245 0.20533 0.22909 0.20533 0.14245 0.06319 -0.00258

0.00000 0.00000 0.00000 -0.01617 -0.02978 -0.00217 0.06338 0.14212 0.20452 0.22808 0.20452 0.14212 0.06338

0.00000 0.00000 0.00000 0.00000 -0.02557 -0.02600 0.01250 0.08000 0.15391 0.21013 0.23100 0.21013 0.15391

0.00000 0.00000 0.00000 0.00000 0.00000 -0.01982 0.01357 0.06460 0.12230 0.17452 0.21065 0.22352 0.21065

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.02714 0.06902 0.11444 0.15748 0.19267 0.21564 0.22362
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