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Abstract
The one-factor Merton model in the context of CreditMetrics is specialized by a single factor

common to all counterparties. We extend the structural credit risk model to a model that includes
underlying single risk factor and issuer-specific process have non-Gaussian and serially correlated
asset returns. By using a standard Edgeworth expansion, we arrive at the closed-form analytic
expressions for the default rate distribution. We also provide estimators of the parameters of the
asset value process. Our empirical results illustrate the non-negligible effects of the skewness and
kurtosis of the distributions on the systematic risk of credit portfolio risk evaluations.

Key Words: asset correlation, credit risk, Edgeworth expansion, probability of default, single risk
factor model.

1. Introduction

In recent years, the need for credit risk modeling has become essential for those respon-
sible for granting bank loans or investing in financial products exposed to counterparty
default risk. For regulators and internal risk managers, calculating capital adequacy re-
quirements and allocating capital efficiency are important for understanding and tracking
credit portfolio risk management. Since credit risk refers to the risk of incurring losses due
to unexpected changes in the credit quality of a counterparty or issuer, credit risk modeling
has become an important topic in the field of finance and banking.

In the finance literature and within the banking industry, focus is placed on model-
ing the risk inherent in the entire credit portfolio such as loans, pledges, and guarantees,
namely the pool of defaultable instruments. The losses on the initial portfolio value due
to the default of the underlying issuer depend on the default probability of each issuer and
the losses derived from each default. The quantitative modeling of credit risk is used to
evaluate the credit risk associated with the loan portfolio, which includes CreditMetrics by
JP Morgan, CreditRisk+ by Credit Suisse Financial Products, and CreditPortfolioView by
McKinsey. Moody’s KMV, the most popular credit risk model, is used as the benchmark
portfolio model because it is considered to be a reasonable internal model with which to
assess regulatory capital related to credit risk (see, for details, Crouhy et al.[2]). To es-
timate the default probabilities, the historical default rates are required by CreditMetrics
and CreditRisk+. For a comparison of the models and estimation methods, see Carey and
Hrycay[1]. Koylouglu and Hickman[10] and Gordy[4] show that the evaluation of credit
risk assessment for loans by the above-mentioned models is similar since the models are
based on similar ideas and on the mathematical framework of the Vasicek or one-factor
Merton representation of asset returns. The different databases and different approaches
for parametrizing these credit risk models may often lead to substantial differences in prac-
tice.

In this paper, we focus on the method based on the Vasicek single factor model or the
CreditMetrics framework. Such a one-factor Merton model provides a structural link be-
tween default events and the obligor’s asset returns. By adapting the single asset model of
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Merton[11] to a credit portfolio, Vasicek[14] derives default probabilities conditional on a
single systematic risk, which is caused by the fluctuation of returns in terms of macroe-
conomic factors. According to these models, the most important factor deriving the credit
portfolio risk is the asset correlation of the underlying asset value processes.

Merton’s model assumes a normal distribution for the logarithms of asset returns; how-
ever, this assumption has often proven to be invalid. Many empirical finance studies report
that the returns of financial assets have a large sharper peak with greater density in the tails
of the distribution and serially correlated heteroskedasticity. It is thus important to check
whether the estimation of default probabilities satisfies normal distribution assumptions. If
not, the suggested risk measurements by the model may tend to under- or overestimate the
required risk tolerance level. Several techniques can be used to derive the distribution of
the portfolio loss rate in non-normal situations. Gordy[5] provides a saddle point approxi-
mation to the default rate distribution in CreditRisk+ models. Hull et al.[8] consider a jump
diffusion model to explain the volatility skew in the credit default swap Markets. Kawada
and Shiohama[9] consider the asymptotic expansion of the asset value process with a non-
Gaussian innovation to obtain the default probability in Merton’s structural model. For
the reduced-form approach in credit risk models, Miura et al.[12] consider the asymptotic
expansion of the credit spread process with non-Gaussian and serially correlated errors.

The remainder of the paper is organized as follows. Section 2 provides the theoretical
settings of the models and their assumptions. Section 3 presents the asymptotic credit risk
evaluation. In Section 4, numerical examples are illustrated to highlight the effects of non-
Gaussianity in asset returns. Section 5 contains a real data analysis using U.S. historical
default frequency data to shed light on how non-Gaussian modeling affects the credit risk
evaluation. All proofs are omitted to save space.

2. The Model and its Assumption

In Merton’s model, the asset value of obligori is assumed to follow a geometric Brownian
motion under the Physical measureP,

dVi,t = µVi,tdt+ σVi,tdWi,t,

whereVi,t denotes the asset value at timet of obligor i, µ is the drift, andσ is the volatility
parameters. To capture the dependencies between obligors, the Brownian motionWi,t is
decomposed into two independent Brownian motions such that

dWi,t =
√
ρdX0,t +

√
1− ρdXi,t,

whereX0,t is a common systematic risk factor andXi,t is a obligor-specific risk factor. We
also assume that two standard Brownian motionsX0,t andXi,t are independent of each
other. The parameterρ is the asset correlation and

√
ρ indicatesthe sensitivity of the asset

value. Here, we assume a homogeneous portfolio consisting ofN obligors that possess the
same parametersµ andσ and the same correlation coefficientρ between obligorsi andj
for i = 1, . . . , N .

To implement the non-Gaussian and serially correlated structure in the one-factor Mer-
ton model, we consider the discrete time expression of the model that is known as the Euler
scheme of the stochastic differential equations. The current time is 0 and we assume that
the stochastic process{Vi,j} is discretely sampled with interval∆ such thatVi,j is sampled
at times0,∆, 2∆, . . . , n∆(≡ t) over [0, t]. Then, theith obligor’s asset value at timej∆
is defined as follows:

lnVi,j∆ = lnVi,(j−1)∆ + µ∆+ σ
√
∆Wi,(j−1)∆,

Wi,(j−1)∆ =
√
ρX̃0,(j−1)∆ +

√
1− ρX̃i,(j−1)∆. (1)

JSM 2016 - Business and Economic Statistics Section

2605



In this paper, we consider that the processX̃i,j , i = 0, 1, . . . , N is an independent sta-
tionary process with zero mean and unit variance, namely standardized processX̃i,j =
Xi,j/(var(Xi,j))

1/2. Here, we assume that the process{Xi,j} is the stationary process
satisfying the following conditions.

Assumption 1 The processes{Xi,j} are fourth-order stationary in the sense that for each
i ∈ {0, 1, . . . , N},

1. E[Xi,j ] = 0,

2. cum(Xi,j , Xi,j+u) = cXi(u),

3. cum(Xi,t, Xi,j+u1 , Xi,j+u2) = cXi(u1, u2),

4. cum(Xi,t, Xi,j+u1 , Xi,j+u2 , Xi,j+u3) = cXi(u1, u2, u3).

Assumption 2 Thek-th order cumulantscXi(u1, . . . , uk−1) of {Xt}, for k = 2, 3, 4 and
i ∈ {0, 1, . . . , N} satisfy

∞∑
u1,··· ,uk−1=−∞

|cXi(u1, . . . , uk−1)| < ∞.

Assumptions 1 and 2 are satisfied by a wide class of time series models containing the
usual autoregressive moving average (ARMA) and generalized autoregressive conditional
heteroskedasticity (GARCH) processes. For more details on this modeling, see Honda et
al.[6], Miura et al.[12], and Kawada and Shiohama[9].

From (1), the obligor’s asset value at timet = n∆ is expressed as

lnVi,t = lnVi,0 + µn∆+∆1/2σ

√
ρ

n∑
j=1

X̃0,j +
√

1− ρ

n∑
j=1

X̃i,j

 .

DefineY0,n = 1√
n

∑n
j=1 X̃0,j andYi,n = 1√

n

∑n
j=1 X̃i,j . LetWi,n =

√
ρY0,n+

√
1− ρYi,n,

thenwe observe

Vi,t = Vi,n∆ = Vi,0 exp
{
µt+ σ

√
tWi,n

}
= Vi,0 exp

{
µt+ σ

√
t(
√
ρY0,n +

√
1− ρYi,n)

}
.

Thefollowing lemma states the cumulants for{Yi,n}, i ∈ {0, 1, . . . , N}. Recall that
we have assumed that the random variablesYi,n andYj,n are independent for alli, j =
0, . . . , N with i ̸= j, all the joint cumulants ofYi,n andYj,n equal zero.

Lemma 1 Under Assumptions 1 and 2, the cumulants of{Yi,n} for i ∈ {0, 1, . . . , N} are
evaluated as follows:

1. E[Yi,n] = 0,

2. cum(Yi,n, Yi,n) = 1 + o(n−1),

3. cum(Yi,n, Yi,n, Yi,n) = n−1/2C
(n)
Yi,3

+ o(1),

4. cum(Yi,n, Yi,n, Yi,n, Yi,n) = n−1C
(n)
Yi,4

+ o(1),

whereC(n)
Yi,3

andC(n)
Yi,4

are bounded forn.
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The joint probability distribution function ofWN,n = (W1,n, . . . ,WN,n)
′ can be ob-

tained from the Edgeworth expansion below. To do this, we need to evaluate the joint
cumulants ofWN,n

Lemma 2 Under Assumptions 1 and 2, the cumulants of{WN,n} are evaluated as follows:

1. E[WN,n] = 0N ,

2. Var(WN,n) = ΣN,n + o(1) where the(i, j)th elements ofΣN,n is ρ for i, j = 1, . . . , N
and the diagonal elements are 1,

3. for i, j, k ∈ {1, . . . , N},

cum(Wi,n,Wj,n,Wk,n) = C
(n)
W,ijk + o(1),

where

C
(n)
W,ijk =

{
n−1/2ρ3/2C

(n)
Y0,3

for i ̸= j ̸= k,

n−1/2(ρ3/2C
(n)
Y0,3

+ (1− ρ)3/2C
(n)
Yi,3

) for i = j = k,

4. for i, j, k, ℓ ∈ {1, . . . , N},

cum(Wi,n,Wj,n,Wk,n,Wℓ,n) = C
(n)
W,ijkℓ + o(1),

where

C
(n)
W,ijkℓ =


n−1ρ2C

(n)
Y0,4

for i ̸= j ̸= k ̸= ℓ,

n−1(ρ2C
(n)
Y0,4

+ (1− ρ)2C
(n)
Yi,4

) for i = j = k = ℓ,

n−1(ρ2C
(n)
Y0,4

+ 2(1− ρ)) for i = j, k = ℓ.

To derive the Edgeworth expansion ofYi,n andWn, we need the following assumption.

Assumption 3 The J-th order (J ≥ 5) cumulants of{Yi,n} and {Wn} are of order
O(n−J/2+1).

We then arrive at the following theorem. For more details and proofs, we refer Taniguchi
and Kakizawa[13].

Theorem 1 Under Assumptions 1-3, the third-order Edgeworth expansion of the density
function ofYi for i ∈ {0, 1, . . . , n} is given by

gYi(y) = ϕ(y)

1 +
C

(n)
Yi,3

6
√
n
H3(y) +

C
(n)
Yi,4

24n
H4(y) +

(C
(n)
Yi,3

)2

72n
H6(y)

+ o(n−1), (2)

whereϕ(·) is the standard normal density function, whileHk(·) is thek-th order Hermite
polynomial. The corresponding probability distribution function is of the form

GYi(y) = Φ(y)− ϕ(y)

C
(n)
Yi,3

6
√
n
H2(y) +

C
(n)
Yi,4

24n
H3(y) +

(C
(n)
Yi,3

)2

72n
H5(y)

+ o(n−1).

TheEdgeworth expansion for the distribution function forWn is given by the following
theorem. To do this, it is convenient notationally to adopt Einstein’s summation conven-
tion, that isarZr denotes the linear combinationa1Z1 + · · ·+ aNZN andarsZrs denotes
a11Z

11 + a12Z
12 + · · ·+ aNNZNN , and so on.
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Theorem 2 Under Assumptions 1–3, the third-order Edgeworth expansion of the density
function ofWN,n is given by

gWN
(y) = ϕΣN,n

(y)

{
1 +

1

6
√
n
C

(n)
W,ijkH

ijk
ΣN,n

(y)

+
1

24n
C

(n)
W,ijkℓH

ijkℓ
ΣN,n

(y) +
1

72n
C

(n)
W,ijkC

(n)
W,i′j′k′H

ijki′j′k′

ΣN,n
(y)

}
+ o(n−1),

whereϕΣN.n
(y) is theN -dimensional normal density function with mean0N and covari-

ance matrixΣN,n, that is

ϕΣN,n
(y) =

1

(2π)N/2|ΣN,n|1/2
exp

(
−1

2
y′Σ−1

N,ny

)
,

andH
i1,···ij
ΣN,n

(y) are Hermite polynomials withϕΣN,n
(y) that is

H
i1···ij
ΣN,n

(y) =
(−1)j

ϕΣN,n
(y)

∂j

∂yi1 · · · ∂yij
ϕΣN,n

(y).

To ensure the processVi,t has the expected return on assets asµ, definem = σ2

2 +
σ3

√
t(ρ3/2C

(n)
Y0,3

+(1−ρ)3/2C
(n)
Yi,3

)

6
√
n

+
σ4t(ρ2C

(n)
Y0,4

+(1−ρ)2C
(n)
Yi,4

)

24n . Note that the identity∫ ∞

−∞
eσ

√
tzHk(z)ϕ(z)dz = (σ

√
t)keσ

2t/2,

togetherwith Theorem 2 above withN = 1, we observe that the expected value of the
process̃Vi,t = Vi,0 exp{(µ−m)t+

√
tσnWi,n} becomes

E0[Ṽi,t] = Vi,0E0[e
(µ−m)t+

√
tσWi,n ] = Vi,0e

(µ−m)t

∫ ∞

−∞
eσ

√
tygW1(y)dy

= Vi,0e
µt.

Hereafter, we consider the process̃Vi,t = e(µ−m)t+σ
√
tWi,n .

3. Asymptotic Credit Risk Evaluation

We are interested in the default probabilities at timet of a portfolio within the same asset
and liability structure. A credit portfolio is nothing but a collection ofN transactions with
certain counterparties. Since the portfolio would consist ofN homogeneous obligors, the
probability of default of obligori and the initial asset valueVi,0 = V0 are identical for every
obligor. We drop thei subscript for simplicity. For example,Vi,t andYi,n are denoted asVt

andY1,n, respectively for the sequel. To model the defaults of the loan in a portfolio, we
consider the case with̃Vt < Dt, whereDt is the amount of debt interest at timet. Then,
the default timet can be expressed in terms of the random variableWn:

Ṽn < Dt ⇔ Wn < Kt ⇔ Y1,n < Ct

where

Kt =
lnDt/V0 − (µ−m)

√
t

σ
√
t

and Ct =
Kt −

√
ρY0,n√

1− ρ
. (3)
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Recallthat we have assumed that all loans have the same cumulative probability distribution
for the time to default, which are given in Theorem 2, and we denote this distribution as
GW1 . For notational convenience, we write the representative idiosyncratic random factor
asY1,n.

A representative obligor defaults when its asset valueṼt falls below the default trigger
Kt. Hence, the probability of default is stated in the following theorem.

Theorem 3 Suppose that Assumptions 1–3 hold; then, the unconditional default probabil-
ity is expressed as

PD = P (W1,n < Kt) = GW1(Kt) = p
(1)
t + p

(2)
t + p

(3)
t + p

(4)
t + o(n−1),

where

p
(1)
t = Φ(Kt),

p
(2)
t = − 1

6
√
n

(
ρ3/2C

(n)
Y0,3

+ (1− ρ)3/2C
(n)
Y1,3

)
H2(Kt)ϕ(Kt),

p
(3)
t =

1

24n

(
ρ2C

(n)
Y0,4

+ (1− ρ)2C
(n)
Y1,4

)
H3(Kt)ϕ(Kt),

p
(4)
t =

1

72n

(
ρ3(C

(n)
Y0,3

)2 + 2(ρ(1− ρ))3/2C
(n)
Y0,3

C
(n)
Y1,3

+ (1− ρ)3(C
(n)
Y1,4

)2
)
H5(Kt)ϕ(Kt),

whereKt is defined by (3).

According to this theorem, the probability of default at timet depends on the value of
the factorY0. This variable can be thought of as an index of the macroeconomic conditions.
If Y0 is large, the macroeconomic conditions are good, and hence eachW1,n tends to be
large so that the default probability reduces, and vice versa whenY0 is small. To explore
this effect of the common factorY0, we consider the probability of default conditional on
Y0.

Corollary 1 LetCt(Y0) =
Kt−

√
ρY0,n√

1−ρ
. Then, the default rate that is the conditional default

probability givenY0,n = y0 is expressed as

DR = P (Y1,n < Ct(Y0)|Y0,n = y0) = GY1(Ct(Y0))

= pt(Y0) = p
(1)
t (Y0) + p

(2)
t (Y0) + p

(3)
t (Y0) + p

(4)
t (Y0) + o(n−1),

where

p
(1)
t (Y0) = Φ(Ct(Y0)), p

(2)
t (Y0) = − 1

6
√
n
C

(n)
Y1,3

(Ct(Y0)
2 − 1)ϕ(Ct(Y0)),

p
(3)
t (Y0) =

1

24n
C

(n)
Y1,4

(Ct(Y0)
3 + 3Ct(Y0))ϕ(Ct(Y0)),

p
(4)
i,t (Y0) =

1

72n
(C

(n)
Y1,3

)2(−Ct(Y0)
5 + 10Ct(Y0)

3 − 15Ct(Y0))ϕ(Ct(Y0)).

We refer to this probability as the default rate hereafter. Obviously, the default rate is
a function that depends on the common risk factorY0,n, asset correlationρ, and default
triggerKt.

The default triggerKt can be viewed as the following Cornish–Fisher expansion.
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Corollary 2 SincePD = GW1(Kt), the default triggerKt can be viewed as the following
Cornish–Fisher expansion:

Kt = G−1
W1

(PD)

= Φ−1(PD) +
ρ3/2C

(n)
Y0,3

+ (1− ρ)3/2C
(n)
Y1,3

6
√
n

((Φ−1(PD))2 − 1)

+
ρ2C

(n)
Y0,4

+ (1− ρ)2C
(n)
Y1,4

24n
((Φ−1(PD))3 − 3Φ−1(PD))

−
ρ3(C

(n)
Y0,3

)2 + (1− ρ)3(C
(n)
Y1,3

)2 + 2(ρ(1− ρ))3/2C
(n)
Y0,3

C
(n)
Y1,3

36n
(2(Φ−1(PD))3 − 5Φ−1(PD))

+ o(1).

In a one-factor portfolio model with uniform asset correlationρ and loss statistics
(L1, . . . , LN ), whereLi is a Bernoulli random variable with probabilitypt(Y0), which
is defined by Corollary 1, the joint default probability of two obligors is expressed by using
the bivariate Edgeworth distribution function as

P (Li = 1, Lj = 1) = GW2(Kt) = ΦΣ2,N
((G−1

W1
(PD), G−1

W1
(PD)); ρ)

−
∫
y1<Ct∩y2<Ct

ϕΣ2,N
(y)

C
(n)
W,ijkH

ijk
Σ2,n

(y)

6
√
n

+
C

(n)
W,ijkℓH

ijkℓ
Σ2,n

(y)

24n

+
C

(n)
W,ijkC

(n)
W,i′j′k′H

ijki′j′k′

Σ2,n
(y)

72n

 dy + o(n−1),

whereKt = (G−1
W1

(PD), G−1
W1

(PD)) andΦΣN,2
(·; ρ) denotes the cumulative bivariate

normal distribution function with correlationρ.
Recall that we have assumed that theith conditional default ratepi(Y0) is identical

for all obligors and that the portfolio is large and well diversified. We can see that the
portfolio loss given byY0 converges to the conditional default probability such thatL(N) =∑N

i=1wiLi → pt(Y0) asN → ∞, almost surely, wherewi is the weight of loani satisfying∑N
i=1wi = 1 andwi > 0.
The default rate distribution is the cumulative distribution function of the limit loss vari-

ablep(Y0). Then, the approximate distribution of the default rate in a large homogeneous
portfolio becomes for everyp ∈ (0, 1),

P (pt(Y0) ≤ p) = P

(
GY1

(
G−1

W1
(PD)−√

ρ(Y0)√
1− ρ

)
≤ p )

= P

(
Y0 ≤

√
1− ρG−1

Y1
(p)−G−1

W1
(PD)

√
ρ

)
= GY0

(√
1− ρG−1

Y1
(p)−G−1

W1
(PD)

√
ρ

)
.

Let

C̃t(p) =

√
1− ρG−1

Y1
(p)−G−1

W1
(PD)

√
ρ

.

By using the result of Theorem 1, the above cumulative probability distribution has the
following expression:

P (pt(Y0) ≤ p) = pt(p) = p
(1)
t (p) + p

(2)
t (p) + p

(3)
t (p) + p

(4)
t (p) + o(1),
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where

p
(1)
t (p) = Φ

(√
1− ρG−1

Y1
(p)−G−1

W1
(PD)

√
ρ

)
= Φ(C̃t(p)),

p
(2)
t (p) = −

C
(n)
Y0,3

6
√
n
(C̃t(p)

2 − 1)ϕ(C̃t(p)),

p
(3)
t (p) =

1

24n
C

(n)
Y0,4

(C̃t(p)
3 + 3C̃t(p))ϕ(C̃i(p)),

p
(4)
i,t (p) =

1

72n
(C̃

(n)
Y0,3

)2(−C̃t(p)
5 + 10C̃t(p)

3 − 15C̃t(p))ϕ(C̃t(p)).

From the following expression

dG−1
Y1

dp
=

1

gY1(G
−1
Y1

(p))
≈ ϕ−1(G−1

Y1
(p)) exp

−
C

(n)
Y1,3

6
√
n
H3(G

−1
Y1

(p))−
C

(n)
Y1,4

24n
H4(G

−1
Y1

(p))

 ,

we arrive at the corresponding probability density function by calculating the derivative of
P (pt(Y0) < p) with respect top, which is stated in the following theorem.

Theorem 4 Under Assumptions 1–3, the default rate of a loan portfolio containingN
obligors at timet converges forN → ∞ to the conditional default probabilitypt(Y0),
givenY0 = y0. The probability density function of the default rate frequency is given by

f(p) =
d

dp
P (pt(Y0) < p)

=

√
1− ρ
√
ρ

exp

(
−
G−1

W1
(PD)2 − 2

√
1− ρG−1

Y1
(p)G−1

W1
(PD) + (1− 2ρ)G−1

Y1
(p)2

2ρ

)

×

1 + C
(n)
Y0,3

6
√
n
H3(C̃t(p)) +

C
(n)
Y0,4

24n
H4(C̃t(p)) +

(C
(n)
Y0,3

)2

72n
H6(C̃t(p))


× exp

−
C

(n)
Y1,3

6
√
n
H3(G

−1
Y1

(p))−
C

(n)
Y1,4

24n
H4(G

−1
Y1

(p))

+ o(1).

Thevarious risk measures such as expected loss, standard deviation, value-at-risk, eco-
nomic capital, and expected shortfall for a large credit portfolio can be quantified by using
Theorem 4. For the management of a loan portfolio, the decomposition of such risk mea-
sures to individual entities or segments is crucial. The above result enables us to calculate
the appropriate level of capital requirements to cover any unexpected loss due to the uncer-
tainty of the portfolio credit risks. By definition, the expected and unexpected losses are the
mean and standard deviation of the portfolio loss distribution. Under our non-Gaussian and
serially correlated factor modeling, these values are calculated as shown in the following
lemma.

Theorem 5 Under Assumptions 1–3, the mean and variance of a portfolio lossL are given
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by

E(L) = E(pt(Y0)) = p
(1)
t + p

(2)
t + p

(3)
t + p

(4)
t =: p̄,

Var(L) = Var(pt(Y0)) = ΦΣN,2
(Kt)

−
∫
y1<Ct∩y2<Ct

ϕΣ2,n(y)

C
(n)
W,ijkH

ijk
Σ2,n

(y)

6
√
n

+
C

(n)
W,ijkℓH

ijkℓ
Σ2,n

(y)

24n

+
C

(n)
W,ijkC

(n)
W,i′j′k′H

ijki′j′k′

Σ2,n
(y)

72n

 dy − p̄2,

wherep(m)
t ,m = 1, . . . , 4 are given in Corollary 1 andKt = (G−1

W1
(PD), G−1

W1
(PD))⊤.

From the results of Theorem 2, the higher order moments of the portfolio loss can be
obtained in a similar manner.

4. Numerical Example

For the numerical example, the parameters for the asset correlation and default probability
of the obligors are set atρ = 0.05 andPD = 0.05, respectively. The time step of the asset
returns is fixed atn = 12 or ∆ = 1/12, which indicates that the monthly asset returns
are observable. We consider the four distributional assumptions in asset returns for the
systematic and idiosyncratic risk factors, which includes the normal case (CYi,3 = CYi,4 =
0), left-skewed case (CYi,3 = −0.6 andCYi,4 = 1.5), right-skewed case (CYi,3 = 0.6 and
CYi,4 = 1.5), and symmetric kurtic case (CYi,3 = 0 andCYi,4 = 2.5) for i = 0, 1. To avoid
model complexity, we omit the case with both systematic and idiosyncratic risk factors that
have a non-Gaussian distribution.

Figure 1 shows the default rate distribution for the different distributional assumptions
in the systematic and idiosyncratic factors. As can be seen in this figure, the effects of the
non-Gaussian assumption on the magnitude of the changes in the shape of the distributions
in the idiosyncratic factors are greater than those in the systematic risk factors. This can
be found in the form of the density function of the default rate distribution in Theorem 4.
Hence, we can conclude that the non-Gaussian effects in idiosyncratic factors need special
attention when being treated and evaluating credit risk measurements.

To highlight the differences in measuring various loan portfolio risks, Table 1 com-
pares the statistics of the default rate distributions that incorporate either systematic or
idiosyncratic factors and have a non-Gaussian distribution. As can be seen, the quantifi-
cation of all the risk measures becomes large when the underlying idiosyncratic factor’s
asset returns exhibit a left-skewed distribution compared with the normal case. However,
the non-Gaussian effects on the risk measures are highly complex, as shown in Theorem 4,
and thus it is difficult to interpret how the parameters relate to the risk valuation.

5. Data Analysis

The data source for the default frequencies are obtained from Moody’s for all rated compa-
nies between 1970 and 2010. The same data set was investigated in Chapter 11 of Hull[7].

To model the defaults of the loan portfolio with non-Gaussian assumptions using the
proposed portfolio loan distribution given in Chapter 3, we use the maximum likelihood
method to estimate the model parameters. As in Duellmann et al.[3], both the maximum
likelihood and method-of-moment　 method can be possible for parameter estimation.
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Here we use maximum likelihood estimation because of its tractability. The parameter
estimation is based on observed default rates in periods,1, . . . , T . The probability density
of the default frequencyDFt, t = 1, . . . , T is given by Theorem 4. Then the log-likelihood
function is given by

LL(PD, ρ, C
(n)
Y0,3

, C
(n)
Y0,4

, C
(n)
Y1,3

, C
(n)
Y1,4

)

=

T∑
t=1

ln f(DFt;PD, ρ,C
(n)
Y0,3

, C
(n)
Y0,4

, C
(n)
Y1,3

, C
(n)
Y1,4

)

wheref(DFt) is given in Theorem 4. The maximum likelihood estimates can be deter-
mined by numerical optimization.

Table 2 presents the estimated parameters, and the corresponding default rate distribu-
tions are shown in Figure 2. As for the modeling with the systematic risk factors that have
non-Gaussian returns, the maximum likelihood estimation fails to provide reliable values
for the parameters in̂CY0,3, since it lies on the boundary of the parameter space. Hence,
we only compare the Gaussian modeling with the non-Gaussian modeling for the idiosyn-
cratic factors. While the obtained log-likelihood for the non-Gaussian models is slightly
higher than that of the Gaussian models, the likelihood ratio tests or AIC values suggest
that the Gaussian models should be selected for parsimonious modeling. However, the es-
timated credit risk measurements obtained by using these models are quite different from
each other, as illustrated in Table 2.

Y0:non−Gaussian Y1:non−Gaussian
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Figure 1: Default rate distribution for the different combinations of skewness and kurtosis
in the one factor Merton models: .
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Table 1: Required economic capitals with other credit risk measurements for Gaussian and
non-Gaussian modeling.

ExpectedLoss Unexpected Loss Credit VaR 99% Economic Capital
Non-Gaussianmodeling in idiosyncratic risk factor.
Normal 0.0500 0.0238 0.1243 0.0743
Normal 0.0500 0.0238 0.1243 0.0743
Left-skew 0.0516 0.0221 0.1242 0.0726
Right-skew 0.0527 0.0265 0.1331 0.0804
Symmetric kurtic 0.0503 0.0228 0.1147 0.0644
Non-Gaussianmodeling in systematic risk factor.
Normal 0.0500 0.0238 0.1243 0.0743
left-skew 0.0508 0.0265 0.1290 0.0782
right-skew 0.0501 0.0232 0.1145 0.0645
symmetric kurtic 0.0501 0.0243 0.1256 0.0755

Table 2: Estimated parameters for Gaussian and non-Gaussian modeling.
P̂D ρ̂ ĈY0,3 ĈY0,4 ĈY1,3 ĈY1,4 Log-Likeli.

Gaussian 0.0134 0.1102 137.7313
Y0: non-Gaussian 0.0143 0.1244 -1.9997 0.0030 138.7655
Y1: non-Gaussian 0.0111 0.1273 0.8329 6.3493 138.5032
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Figure 2: Estimated default rate distribution, using historical default data in the United
States from 1970 to 2010.

Table 3: Credit risk valuation for different models.
ExpectedLoss Unexpected Loss Credit VaR 99% Economic Capital

Normal 0.0134 0.0131 0.0633 0.0499
Y0: non-Gaussian 0.0189 0.0344 0.0469 0.0280
Y1: non-Gaussian 0.0143 0.0146 0.0513 0.0370
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