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Abstract 

 The age-period-cohort analysis (APC) has been a popular tool to analyze data in 
demography, economics, marketing research, public health and social studies. However, 
the multiple estimators of the APC multiple classification model result in indetermination 
of the model parameters, leading to the difficult identifiability problem. In this paper, I 
apply the Lasso regularization method to the APC models and demonstrate that it leads to 
a resolution of the identifiability problem and yields sensible trend estimation in two 
studies, a study of US female breast cancer mortality rates, and a study of homicide arrest 
rates. 

 

1. Introduction 

The age-period-cohort (APC) analysis has been a popular tool to analyze data displayed in 
a rectangular table with certain numbers of rows and columns, where each cell of the table 
contains one data point, often a disease rate or a social event rate, such as breast cancer 
mortality rate or homicide arrest rate. The rows of the table are often consecutive age 
groups, and the columns are consecutive periods (calendar years). If the age groups and 
periods are of the same time span, the diagonals of the table represent birth cohorts or 
generations. Data in such a table are often analyzed with the analysis of variance (ANOVA) 
models, such as the two-way ANOVA models with fixed age and period effects. However, 
if the two-way ANOVA model cannot achieve a good fit, the birth cohort effects may also 
be considered in the model. Table 1 displays the US female breast cancer mortality rates 
during 1980 – 2009 in 13 age groups and 6 periods with 5 year span in each age group and 
period. Since the age, period and cohort satisfy a linear relationship Period – Age = 
Cohort, the APC multiple classification model with fixed effects of the age, period and 
cohort (1) suffers from an identifiability problem [Kupper et al 1985], where multiple 
estimators fit the model equally well.    

Y𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖  ,       (1) 

where Y𝑖𝑖𝑖𝑖 is the log-transformed rate in the i-th age group and j-th period with i = 1, …, a, 
and j = 1, …, p. 𝜇𝜇 is the model intercept, and 𝛼𝛼𝑖𝑖 𝛽𝛽𝑗𝑗, and 𝛾𝛾𝑘𝑘  are the effects of the i-th age 
group, j-th period and k-th cohort on the diagonal, respectively. The cohort index 𝑘𝑘 =
1, … ,𝑎𝑎 + 𝑝𝑝 − 1. 𝜀𝜀𝑖𝑖𝑖𝑖 is the random error term with mean 0 and common variance 𝜎𝜎2 . Model 
(1) needs side conditions on the parameters 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗 and 𝛾𝛾𝑘𝑘 as a special fixed effect ANOVA, 
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either by the parameter centralization ∑ 𝛼𝛼𝑖𝑖𝑎𝑎
𝑖𝑖=1 =  ∑ 𝛽𝛽𝑗𝑗

𝑝𝑝
𝑗𝑗=1 =  ∑ 𝛾𝛾𝑘𝑘

𝑎𝑎+𝑝𝑝−1
𝑘𝑘=1 = 0, or by 

specifying reference levels, such as 𝛼𝛼1 = 𝛽𝛽1 =  𝛾𝛾1  = 0.  

2. The Identifiability Problem  

The identifiability problem can be explained with ease by rewriting model (1) in a matrix 
form  

  𝒀𝒀 = 𝑋𝑋𝒃𝒃 + 𝜺𝜺 ,        (2) 

where 𝒀𝒀,𝒃𝒃, 𝜺𝜺 are the vectors of the responses, the model parameters and the random errors, 
respectively. The matrix 𝑋𝑋 is a singular design matrix of the ANOVA model with 1-less 
than its full rank [Kupper et al 1985], even after specifying the above side conditions. 
Hence, the usual least-squares method yields multiple estimators because the matrix 𝑋𝑋𝑇𝑇𝑋𝑋 
has multiple generalized inverse matrices, leading to multiple sets of parameter estimates 
and the indetermination of the parameters. Figure 1 illustrates the identifiability problem 
through multiple sets of parameter estimates of the US female breast cancer mortality data 
in Table 1. The curves in the same color present the parameter estimates by the same 
estimator, and curves in different colors are estimates with different estimators. It is shown 
that it would be difficult to determine which set of estimates provides accurate estimation 
of the parameters and thus the trends in the age, period and cohort.  

 Given the multiple sets of the parameter estimates, interpretation of the varying 
trends in the age, period and cohort is impossible. Hence in practice, an extra constraint on 
the parameters is often specified based on the investigator’s prior knowledge about the 
disease or event under investigation. For example, the first two age effects are often 
assumed to be identical based on the assumption that in the early ages, disease mortality 
does not vary largely and thus it is hoped that such an assumption yields reasonable 
mortality trends. However, as pointed out in [Kupper et al 1985], often seemingly 
reasonable assumptions lead to insensible trend estimation, because the extra constraint 
may not be satisfied by the true parameters, resulting in biased estimation. Another 
practical approach is to identify the estimable functions that do not vary with the extra 
constraint, thus leading to invariant estimation of certain linear combinations of the 
parameters – the estimable functions. However, it was observed that the nonlinear 
components of the trends, such as the curvature or higher order characteristics are invariant, 
but the overall slope varies with the constraint and thus may not be estimable [Kupper et 
al 1985, Holford, 1991]. Hence the identifiability problem was deemed unsolvable during 
the past 40 years. Consequently, many studies with data in the APC format cannot be 
analyzed with accurate estimation of the parameters and the trends in the age, period and 
cohort. 

 In recent years, a number of methods have been studied aiming to address the 
identifiability problem. A smoothing approach was studied by applying smoothing to the 
parameter estimates [Heuer 1997, Fu 2008], leading to full determination of the trends. 
Another promising approach is the intrinsic estimator [Fu 2000], which is often computed 
via the principal component analysis by taking the eigenvectors of all nonzero eigenvalues 
of the singular matrix 𝑋𝑋𝑇𝑇𝑋𝑋 as principal components, estimating the effects of the principal 
components and further transforming back to the original scale of the age, period and 
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cohort. It has been shown that this method yields robust estimation for finite samples and 
consistent estimation for diverging samples with many desirable properties [Fu 2016].  

 The Lasso regularization has been studied extensively [Tibshirani 1996, Knight 
and Fu 2000, Zhao and Yu 2006, Hastie et al 2008], not only because it provides an 
automatic approach to variable selection, which is computationally efficient for models 
with a moderate or large number of covariates [Fu 1998, Efron et al 2004], and also 
possesses the oracle properties for variable selection [Fan and Li 2001, Zou 2006], which 
ensures the correctness of variable selection. Motivated by the desirable properties of the 
Lasso, I apply the Lasso regularization to the APC models.  

 The Lasso regularization takes the following approach to the parameter estimation 
in linear models. It minimizes the penalized residual sum of squares with an 𝐿𝐿1 penalty on 
the 𝐿𝐿 parameters 𝛽𝛽1, … ,𝛽𝛽𝐿𝐿 . 

min
𝛽𝛽1,…,𝛽𝛽𝐿𝐿

� [𝑦𝑦𝑖𝑖 − (𝜇𝜇 + 𝑥𝑥𝑖𝑖1𝛽𝛽1 +⋯+ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝐿𝐿)]2 +  𝜆𝜆� |𝛽𝛽𝑙𝑙|
𝐿𝐿

𝑙𝑙=1

𝑛𝑛

𝑖𝑖=1
,   for 𝜆𝜆 ≥ 0 .  

For large enough 𝜆𝜆 > 0, it yields some parameter estimates 𝛽̂𝛽𝑙𝑙 = 0, thus achieving variable 
selection of the remaining nonzero ones. Often the optimal value of 𝜆𝜆 is selected with the 
Bayesian information criterion (BIC) [Schwarz 1978] below.  

𝐵𝐵𝐵𝐵𝐵𝐵(𝜆𝜆) =� [𝑦𝑦𝑖𝑖 − �𝜇𝜇 + 𝑥𝑥𝑖𝑖1𝛽̂𝛽1 + ⋯+ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽̂𝛽𝐿𝐿�]2 +  𝐿𝐿 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)
𝑛𝑛

𝑖𝑖=1
 . 

3. Lasso regularization approach to the identifiability problem 

Since the aim of the APC models is to determine the relative scale of the parameter 
estimates and to achieve further trend estimation, but not variable selection to determine 
which effects are zero, the naïve approach of direct application of the Lasso regularization 
to the APC models may not serve the purpose. Instead, I apply the Lasso regularization to 
the principal components [Jolliffe 1986] and study which principal components the Lasso 
selects and which ones it deselects. Let 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 be the loading of the 𝑙𝑙-th principal component 
on the observation 𝑦𝑦𝑖𝑖𝑖𝑖, and let 𝜗𝜗𝑙𝑙, 𝑙𝑙 = 1, … , 𝐿𝐿 be the effects of the principal components. 
One may write the residual sum of squares of the PCA model and its Lasso regularization 
as  

 min
𝜗𝜗1,…,𝜗𝜗𝐿𝐿

∑ [𝑦𝑦𝑖𝑖𝑖𝑖 − (𝜇𝜇 + 𝑥𝑥𝑖𝑖𝑖𝑖1𝜗𝜗1 + ⋯+ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝜗𝜗𝐿𝐿)]2 +   𝜆𝜆 𝑎𝑎,𝑝𝑝
𝑖𝑖,𝑗𝑗 ∑ |𝜗𝜗𝑙𝑙|𝐿𝐿

𝑙𝑙=1  .     (3)  

 I demonstrate that this approach of the Lasso regularization to the APC models 
yields accurate estimation using the US female breast cancer mortality data and the 
homicide arrest rate data in [O’Brien 2000] by comparing the trend estimates in the age, 
period and cohort between the Lasso regularization method and the intrinsic estimator 
method. Figures 2 and 3 present the trends in the age, period and cohort for the cancer 
mortality data and the homicide arrest rate data, respectively. It is shown that the Lasso 
regularization yields trend estimates within the 95% confidence interval of the intrinsic 
estimator, indicating the two methods yield very close estimates. It is shown in Figure 2 
that the breast cancer mortality sharply increases in the early ages from 20 to 40, then 
gradually slows down and plateaus around age 80-84, but never decreases with age. The 
mortality also increases in period, at a much faster pace from 1980 to mid 1990s than later 
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from 1995 to the mid 2000s. The cohort presents a constant decreasing trend from 1900 to 
the 1980, followed by a flat trend afterwards. Notice that although the period presents an 
increasing trend, its scale is much smaller than the cohort trend and the age trend, indicating 
that one needs to emphasize the age effect and the cohort effect in order to more efficiently 
lower breast cancer mortality. The increasing age trend can be well explained by cancer 
epidemiology, while the decreasing cohort trend may be explained by the improved 
education about breast cancer risk. The slightly increasing period trend from 1995 to 2000 
indicates more effort is needed in fighting breast cancer mortality. In Figure 3, it is shown 
that the homicide arrest rate increased sharply from late teens to early twenties, then goes 
down sharply till age 45, which reflects that seniors are less aggressive in committing 
violent crime, such as homicide. The slowly decreasing cohort trend from 1910 to 1955 
and the sharply increasing trend from 1960 to 1980 indicates younger generations born 
after 1960 are more aggressive than the older generations. The period trend seems to show 
an inverse relationship between the homicide arrest rate and the economy. The increasing 
trend of homicide arrest rate between 1960 to 1970 and the relative high level between 
1970 to 1985 seem to be associated with poor economy during those periods of time, while 
the recent downtrend of homicide arrest rate from 1990 to 2010 may be explained by the 
improved economy.   

 Overall, the Lasso regularization method yields accurate estimation of the trends 
in the age, period and cohort, leading to sensible interpretation for the above two studies. 

4. Conclusion 

The age-period-cohort models have broad applications in demography, economics, 
marketing research, public health studies and social sciences. The difficult identifiability 
problem has been studied in the literature during the past 40 years. Novel approaches are 
needed to resolve the identifiability problem. In this paper, I apply the powerful Lasso 
regularization method to the principal components of the singular design matrix of the APC 
models. It yields accurate estimation of the age, period and cohort effects, and leads to 
sensible trend estimation. The parameter estimates are shown to be within the 95% 
confidence interval of the intrinsic estimator – a proven approach for APC analysis. It is 
hoped that the Lasso regularization method provides another alternative method to address 
the identifiability problem. 
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Table 1. Breast Cancer Mortality Rate (10-5 person-year) among US Females 
 

Age 1980-84 1985-89 1990-94 1995-99 2000-04 2005-09 

20-24 0.1 0.1 0.1 0.1 0.1 0.1 
25-29 1.3 1.2 1.1 1.0 0.8 0.7 
30-34 5.5 5.0 4.3 3.9 3.5 2.9 
35-39 12.8 13.0 11.1 9.6 8.4 7.2 
40-44 23.3 23.5 21.8 18.0 15.6 13.8 
45-49 37.1 37.8 35.7 30.2 25.1 22.1 
50-54 56.8 55.1 51.8 44.8 38.1 32.4 
55-59 75.1 73.0 66.2 58.1 51.4 44.6 
60-64 87.4 90.9 82.8 70.8 63.8 58.7 
65-69 99.7 102.3 100.6 85.4 76.0 70.0 
70-74 110.2 118.4 116.5 105.6 93.1 83.2 
75-79 122.8 130.4 135.6 122.3 113.5 103.9 
80-84 141.1 150.9 156.2 148.0 139.3 131.7 

  

 

 

 

Figure 1. Illustration of the identifiability problem using US female breast cancer mortality 
data. The curves in the same color are estimates of age, period and cohort effects in the 
same set by one estimator. Curves in different colors present estimates with different 
estimators.  
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Figure 2. Trend comparison by the Lasso estimator on the principal components 
(LassoPCA) and the intrinsic estimator in analyzing the US female breast cancer mortality 
rate data. The Lasso estimates lie in the 95% confidence interval of the intrinsic estimator.  

 

 

Figure 3. Trend comparison by the Lasso estimator on the principal components 
(LassoPCA) and the intrinsic estimator in analyzing the homicide arrest rate data. The 
Lasso estimates lie in the 95% confidence interval of the intrinsic estimator. 
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