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Abstract 

Poisson distribution plays an important role in modeling rare events data. In this paper, a 
new estimator of the Poisson parameter has been proposed by using moment generating 
function. Some important characteristics of the estimator are studied. The performance of 
the new estimator has been compared with the one using the maximum likelihood method, 
theoretically and empirically. An empirical study and a real-life application suggest that 
the proposed new estimator is more efficient than usual estimator. 
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1. Introduction 

Poisson distribution is well known for modeling rare events data. The estimation of Poisson 
parameter using maximum likelihood method appears in any standard book of statistics, 
e.g., see Walpole, R. E. et al. (2012), Hogg, R.V., McKean, J.W. and Craig, A.T. (2013), 
Casella, G. and Berger, R.L. (2002), etc. We say that a discrete random variable 𝑋 follows 
a Poisson distribution with parameter 𝜇 if the probability mass function is given by 

𝑝(𝑥) = 𝑃(𝑋 = 𝑥) =
𝑒−𝜇𝜇𝑥

𝑥!
; 𝑥 = 0, 1, 2, ⋯ ;  and 𝜇 > 0 

In general, 𝜇 is unknown and is estimated using sample data. Let 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 be a random 
sample of size 𝑛. Then, the maximum likelihood function of 𝑝(𝑥) is given by 

𝐿(𝜇) =
𝑒−𝑛𝜇𝜇∑ 𝑥𝑖

𝑛
𝑖=1

∏ 𝑥𝑖!𝑛
𝑖=1

 

Taking logarithm on both sides  

𝑙(𝜇) = 𝑙𝑜𝑔𝐿(𝜇) = −𝑛𝜇 + ∑ 𝑥𝑖

𝑛

𝑖=1

𝑙𝑜𝑔(𝜇) − ∑ 𝑙𝑜𝑔(𝑥𝑖!)

𝑛

𝑖=1
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Taking derivative of 𝑙 with respect to 𝜇, and setting equal to zero, a maximum likelihood 
estimate (MLE) of 𝜇, 𝜇̂ is given by 

𝜇̂ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
= 𝑥̅ 

It is easy to see that 𝜇̂ is an unbiased estimate of 𝜇, i.e.,  

𝐸(𝜇̂) = 𝜇 

with variance of 𝜇̂ given by 

𝑉(𝜇̂) =
 𝜇

𝑛
 

In the next section, we propose a new estimator of the Poisson parameter 𝜇 and study some 
statistical properties of the proposed estimator. 

2. Proposed Estimator 

The moment generating function of 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇) is  

𝑀𝑋(𝑡) = 𝐸(𝑒𝑋𝑡) = 𝑒𝜇(𝑒𝑡−1) 

Given a random sample 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 of size 𝑛, the moment generating function of 𝑌 =
∑ 𝑋𝑖

𝑛
𝑖=1  is given by 

𝑀𝑌(𝑡) = 𝐸(𝑒𝑌𝑡) = 𝐸(𝑒∑ 𝑋𝑖
𝑛
𝑖=1 𝑡) = ∏ 𝑒𝜇(𝑒𝑡−1) = 𝑒𝑛𝜇(𝑒𝑡−1)𝑛

𝑖=1 … (1)  

Then, by the method of moments, a new estimator of 𝜇, 𝜇̃ follows from the equation (1) 
and is given by  

𝑒∑ 𝑋𝑖
𝑛
𝑖=1 𝑡 = 𝑒𝑛𝜇̃(𝑒𝑡−1) 

After an algebraic manipulation, we have the following new estimator of 𝜇 

𝜇̃ =
𝑡𝑥̅

𝑒𝑡 − 1
; 𝑡 ≠ 0 

3. Properties of New Estimator 

In this section we study some properties of the proposed estimator, which we state in terms 
of the following theorems: 

Theorem 3.1 The expected value of 𝜇̃ =
𝑡𝑥̅

𝑒𝑡−1
 is 𝐸(𝜇̃) =

𝜇𝑡

𝑒𝑡−1
 and if 𝑡 → 0, then 𝜇̃ is an 

unbiased estimate of 𝜇. 

Proof: The expected value of 𝜇̃ =
𝑡𝑥̅

𝑒𝑡−1
 is  

𝐸(𝜇̃) =
𝑡𝐸(𝑥̅)

𝑒𝑡 − 1
=

𝜇𝑡

𝑒𝑡 − 1
; 𝑡 ≠ 0 

Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  
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lim
𝑡→0

𝐸(𝜇̃) = lim
𝑡→0

𝐸(𝑥̅)

𝑒𝑡
= 𝜇 

Theorem 3.2 The bias of 𝜇̃ =
𝑡𝑥̅

𝑒𝑡−1
 is 𝐵(𝜇̃) =

𝜇(𝑡−𝑒𝑡+1)

𝑒𝑡−1
 and if 𝑡 → 0, then bias of 𝜇̃ is 0. 

Proof: The bias of 𝜇̃ =
𝑡𝑥̅

𝑒𝑡−1
 is  

𝐵(𝜇̃) = 𝐸(𝜇̃) − 𝜇 =
𝑡𝐸(𝑥̅)

𝑒𝑡 − 1
− 𝜇 =

𝜇𝑡

𝑒𝑡 − 1
− 𝜇 =

𝜇(𝑡 − 𝑒𝑡 + 1)

𝑒𝑡 − 1
; 𝑡 ≠ 0 

Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  

lim
𝑡→0

𝐵(𝜇̃) = lim
𝑡→0

𝜇(1 − 𝑒𝑡)

𝑒𝑡
= 0 

Theorem 3.3 The variance of 𝜇̃ =
𝑡𝑥̅

𝑒𝑡−1
 is 𝑉(𝜇̃) =

𝜇𝑡2

𝑛(𝑒𝑡−1)2 and if 𝑡 → 0, then variance of 
𝜇̃ is same as the variance of 𝜇̂. 

Proof: The variance of 𝜇̃ =
𝑡𝑥̅

𝑒𝑡−1
 is  

𝑉(𝜇̃) =
𝑡2𝑉(𝑥̅)

(𝑒𝑡 − 1)2
=

𝑡2𝜇

𝑛(𝑒𝑡 − 1)2
; 𝑡 ≠ 0 

Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  

lim
𝑡→0

𝑉(𝜇̃) = lim
𝑡→0

2𝑡𝜇

2𝑛 (𝑒𝑡−1)(𝑒𝑡)
  

                  = lim
𝑡→0

2𝜇

2𝑛{(𝑒𝑡−1)(𝑒𝑡)+(𝑒𝑡)(𝑒𝑡)}
  

                = 2𝜇

2𝑛{(1−1)(1)+(1)(1)}
  

                      = 𝜇

𝑛
 

                 = 𝑉(𝜇̂)  

Theorem 3.4 The mean square error (MSE) of 𝜇̃ =
𝑡𝑥̅

𝑒𝑡−1
 is 𝑀𝑆𝐸(𝜇̃) =

𝜇𝑡2+𝑛𝜇2(𝑡−𝑒𝑡+1)
2

𝑛(𝑒𝑡−1)2  
and if 𝑡 → 0, then MSE of 𝜇̃ is the same as the variance of 𝜇̂. 

Proof: The MSE of 𝜇̃ =
𝑡𝑥̅

𝑒𝑡−1
 is  

𝑀𝑆𝐸(𝜇̃) = 𝑉( 𝜇̃) + [𝐵( 𝜇̃)]2  

=
𝑡2𝜇

𝑛(𝑒𝑡 − 1)2
+

𝜇2(𝑡 − 𝑒𝑡 + 1)2

(𝑒𝑡 − 1)2
 

                                                    = 𝑡2𝜇+𝑛𝜇2(𝑡−𝑒𝑡+1)
2

𝑛(𝑒𝑡−1)2   
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Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  

lim
𝑡→0

𝑀𝑆𝐸(𝜇̃) = lim
𝑡→0

2𝑡𝜇+2𝑛𝜇2 (𝑡−𝑒𝑡+1)(1−𝑒𝑡)

2𝑛 (𝑒𝑡−1)(𝑒𝑡)
  

                  = lim
𝑡→0

2𝜇+2𝑛𝜇2 {(𝑡−𝑒𝑡+1)(−𝑒𝑡)+(1−𝑒𝑡)(1−𝑒𝑡)}

2𝑛{(𝑒𝑡−1)(𝑒𝑡)+(𝑒𝑡)(𝑒𝑡)}
  

                = 2𝜇+2𝑛𝜇2 {(0−1+1)(−1)+(1−1)(1−1)}

2𝑛{(1−1)(1)+(1)(1)}
  

                      = 𝜇

𝑛
 

                 = 𝑉(𝜇̂)  

Theorem 3.5 The relative efficiency (RE) of 𝜇̃ =
𝑡𝑥̅

𝑒𝑡−1
 with respect to 𝜇̂ is  

𝑅𝐸 =
(𝑒𝑡 − 1)2

𝑡2 + 𝑛𝜇(𝑡 − 𝑒𝑡 + 1)2
× 100% 

Proof: The relative efficiency of 𝜇̃ =
𝑡𝑥̅

𝑒𝑡−1
 with respect to 𝜇̂ is given by 

          𝑅𝐸 =
𝑉(𝜇̂)

𝑀𝑆𝐸(𝜇̃)
× 100%  

=

 𝜇
𝑛

𝑡2𝜇 + 𝑛𝜇2(𝑡 − 𝑒𝑡 + 1)2

𝑛(𝑒𝑡 − 1)2

× 100 

                                                        = (𝑒𝑡−1)
2

𝑡2+𝑛𝜇(𝑡−𝑒𝑡+1)2 × 100  

It is easy to see that as 𝑡 → 0, 𝜇̃ and 𝜇̂ are the same. If  𝑡 ≠ 0, then there may exist a non-
zero 𝑡 such that  

𝑀𝑆𝐸(𝜇̃) < 𝑉(𝜇̂)  

or, 𝑡2 + 𝑛𝜇(𝑡 − 𝑒𝑡 + 1)2 < (𝑒𝑡 − 1)2 … (2) 

In section 4 below, we search for some values of 𝑡 for which the relation (2) holds true and 
hence find the percent relative efficiency of the proposed estimator 𝜇̃ with respect to 𝜇̂ 
using R code. 

4. Application: Fitting a Poisson Distribution 

Poisson distribution is useful for describing rare, random events such as severe storms. 
Below in Table 1 are the number of land-falling hurricane in the USA in 98-year period 
from 1900 to 1997, appeared in Glover, T and Mitchell, K. (2002). We intend to fit model 
to the dataset using MLE of 𝜇 (𝜇̂) and the proposed estimator 𝜇̃, and compare the model 
fitting performance. 
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Table 1: Number of land-falling hurricane in the USA in 98-year period from 1900 to 
1997 

Hurricane per year 𝑥𝑖  0 1 2 3 4 5 6 
Frequency 𝑓𝑖  18 34 24 16 3 1 2 

We want to test 𝐻0: Annual number of the USA land-falling hurricane follows a Poisson 
distribution with an unknown parameter 𝜇. 

4.1 Fitting a Poisson Model Using MLE 𝜇̂ 

In order to fit above data by a Poisson distribution with parameter 𝜇, we first need to 
estimate 𝜇. The MLE of 𝜇 is given by 

𝜇̂ = 𝑥̅ =
∑ 𝑓𝑖

𝑘
𝑖=1 𝑥𝑖

∑ 𝑓𝑖
𝑘
𝑖=1

=
159

98
= 1.622 ℎ𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒𝑠/𝑦𝑒𝑎𝑟 

Given above estimate, we assume that the number of the USA land-falling hurricane 
follows a Poisson distribution with parameter 𝜇̂ = 1.622, i.e. we have 

𝑃(𝑥) =
𝑒−𝜇̂𝜇̂𝑥

𝑥!
=

𝑒−1.622 1.622 𝑥

𝑥!
; 𝑥 = 0, 1, 2 … 

Then, we have the following probabilities: 

𝑃(0) =
𝑒−1.622 1.622 0

0!
= 0.198 

𝑃(1) =
𝑒−1.622 1.622 1

1!
= 0.320 

𝑃(2) =
𝑒−1.622 1.622 2

2!
= 0.260 

𝑃(3) =
𝑒−1.622 1.622 3

3!
= 0.140 

𝑃(4) =
𝑒−1.622 1.622 4

4!
= 0.057 

𝑃(5) =
𝑒−1.622 1.622 5

5!
= 0.018 

𝑃(≥ 6) = 1 − 𝑃(≤ 5) = 1 − 0.994 = 0.006 

We summarize the observed and expected frequencies in Table 2 below. 
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Table 2: Observed and expected frequencies of the USA land-falling hurricane based on 
the MLE estimate 

Hurricane per year 𝑥𝑖  0 1 2 3 4 5 6 

Frequency 𝑓𝑖  18 34 24 16 3 1 2 

Expected frequency 𝑒𝑖 19.404 31.36 25.48 13.72 5.586 1.764 0.588 

where 𝑒𝑖 = 𝑛 × 𝑝𝑖 = 98 × 𝑝𝑖 

𝜒2 = ∑
(𝑓𝑖 − 𝑒𝑖)2

𝑒𝑖
= 1.262

𝑘

𝑖=1
 

We computed the chi-square value by amalgamating expected frequencies for four or more 
hurricanes (5.586+1.764+.588=7.938), since their expected frequencies are less than 5. 
With this modification, we have a chi-square 𝑑𝑓 = 5 − 1 − 1(𝑒𝑠𝑡 𝑜𝑓 𝑚𝑢) = 3, and 
𝑐ℎ𝑖(𝑑𝑓 = 3, 𝑎𝑙𝑝ℎ𝑎 = 0.05) = 7.81. Then, by comparing the observed value of chi-square 
(1.262, 𝑝-value = 0.7382) with 7.81, we may accept the null hypothesis that the US land-
falling hurricane follows a Poisson (1.622) distribution. 

4.2 Fitting a Poisson Model Using the Proposed Estimate  𝜇̃ 

Now, let us assess the goodness of fit using the new estimate 𝜇̃. By trial and error method, 
it is easy to find a value of 𝑡 for which we can estimate 𝜇 by 𝜇̃ =

𝑡𝑥̅

𝑒𝑡−1
.  In order to achieve 

this, we execute a search of 𝑡 using the following code in R, where the statements after the 
symbol # are R comment lines.  

n=98;     # Sample size of the given example 

m=1.622;    # MLE estimate, the sample mean for given example 

t=seq(0.0001,0.0251,0.0001);     # Values of 𝑡 for the search, in an arbitrary neighborhood 

of zero 

re=c();    # Empty storage for relative efficiency   

k=length(t);   # Length of vector in the search of t 

for (j in 1:k){   # Beginning of the loop of the search 

a<-t[j]^2+n*m*(t[j]-exp(t[j])+1)^2;      # Left quantity in equation (2) 

b<-(exp(t[j])-1)^2;   # Right quantity in equation (2) 

ifelse (a<b,{t[j]=t[j];re[j]=b/a*100},{t[j]=0;re[j]=0})  

# Computing relative efficiency satisfying (2) 

}     # End of the loop of the search for a given t 

re    # View relative efficiency for all possible values of t 

t    # View possible values of t in the search 
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plot(t,re)   # Plotting relative efficiency versus value of t 

Given the search above, let us consider a value of 𝑡 = 0.0125. Then, we have  

𝜇̃ =
𝑡𝑥̅

𝑒𝑡 − 1
=

0.0125 ∗ 1.622

𝑒0.0125 − 1
= 1.612 

𝑃(0) =
𝑒−1.612 1.612 0

0!
= 0.199 

𝑃(1) =
𝑒−1.612 1.612 1

1!
= 0.322 

𝑃(2) =
𝑒−1.612 1.612 2

2!
= 0.259 

𝑃(3) =
𝑒−1.612 1.612 3

3!
= 0.139 

𝑃(4) =
𝑒−1.612 1.612 4

4!
= 0.056 

𝑃(5) =
𝑒−1.612 1.612 5

5!
= 0.018 

𝑃(≥ 6) = 1 − 𝑃(≤ 5) = 1 − 0.994 = 0.006 

 

Table 3: Observed and expected frequencies of the USA land-falling hurricane based on 
the proposed estimate 

Frequency 𝑓𝑖  18 34 24 16 3 1 2 

Expected frequency 𝑒𝑖 19.502 31.556 25.382 13.622 5.488 1.764 0.588 

𝜒2 = ∑
(𝑓𝑖 − 𝑒𝑖)2

𝑒𝑖
= 1.227

𝑘

𝑖=1
 

As before, we computed the chi-square value by amalgamating expected frequencies for 
four or more hurricanes (5.488+1.764+.588=7.84), since their expected frequencies are less 
than 5. With this modification, we have a chi-square 𝑑𝑓 = 5 − 1 − 1(𝑒𝑠𝑡 𝑜𝑓 𝑚𝑢) = 3, 
and 𝑐ℎ𝑖(𝑑𝑓 = 3, 𝑎𝑙𝑝ℎ𝑎 = 0.05) = 7.81. Then, by comparing the observed value of chi-
square (1.227, 𝑝-value = 0.7465) with 7.81, we may accept the null hypothesis that the 
US land-falling hurricane follows a Poisson (1.612) distribution. 

Note that with the new estimate, we accept the null hypothesis that the US land-falling 
hurricane follows a Poisson (1.612) distribution with a little stronger evidence (𝑝-value =
0.7465). Therefore, the new proposed estimator provides a better fit of Poisson distribution 
to the given example case. 
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5. A simulation Study Investigating the Effect of Sample Size and 𝒕 on 

Relative Efficiency 

In this section, we consider a simulation study to understand the effect of the sample 
size and the value of 𝑡 on the relative efficiency of the proposed estimate as 
compared to the MLE. We consider two fixed values of parameter 𝜇 at  0.25 
and 0.5, arbitrarily and sample size ranging between 5 and 30 in an increment of 5, 
denoted as 𝑛 ∈ [5, 30, @ 5]. For each combination of 𝜇  and 𝑛, we consider values 
of 𝑡 between 𝑎 and 𝑏 with an increment of 0.01, denoted as 𝑡 ∈ [𝑎, 𝑏, @ 0.01], 
where 𝑎 = 0.01 and values of b are evaluated using the search so as to satisfy (2) 
and are reported along with the relative efficiency for a given combination of 𝜇  
and 𝑛 in the Table 4 below: 

Table 4: Relative efficiency of proposed estimate as compared to the maximum 
likelihood estimate for varying sample size and 𝑡 

𝜇 𝑛 𝑡 ∈ [0.01, 𝑏, @0.01] 𝑟𝑒 
 
 

0.25 

5 
10 
15 
20 
25 
30 

𝑡 ∈ [0.01, 3.47, @0.01] 
𝑡 ∈ [0.01, 1.50, @0.01] 
𝑡 ∈ [0.01, 1.00, @0.01] 
𝑡 ∈ [0.01, 0.75, @0.01] 
𝑡 ∈ [0.01, 0.61 @0.01] 
𝑡 ∈ [0.01, 0.50 @0.01] 

100.07 ≤ 𝑟𝑒 ≤ 180.00 
100.45 ≤ 𝑟𝑒 ≤ 140.00 
100.61 ≤ 𝑟𝑒 ≤ 126.66 
100.95 ≤ 𝑟𝑒 ≤ 119.98 
100.36 ≤ 𝑟𝑒 ≤ 116.00 
100.99 ≤ 𝑟𝑒 ≤ 113.33 

 
 

0.50 

5 
10 
15 
20 
25 
30 

𝑡 ∈ [0.01,1.50, @0.01] 
𝑡 ∈ [0.01, 0.76, @0.01] 
𝑡 ∈ [0.01, 0.51, @0.01] 
𝑡 ∈ [0.01, 0.38, @0.01] 
𝑡 ∈ [0.01, 0.31 @0.01] 
𝑡 ∈ [0.01, 0.26 @0.01] 

100.45 ≤ 𝑟𝑒 ≤ 140.00 
100.20 ≤ 𝑟𝑒 ≤ 120.00 
100.37 ≤ 𝑟𝑒 ≤ 113.33 
100.75 ≤ 𝑟𝑒 ≤ 110.00 
100.23 ≤ 𝑟𝑒 ≤ 108.00 
100.12 ≤ 𝑟𝑒 ≤ 106.66 

 

We also provide graphs in Figures 1(a) - 1(f) and 2(a) - 2(f), of estimated efficiency 
resulting from the simulation so as to understand the effect of sample size (𝑛) and 𝑡 on the 
efficiency of the proposed estimate compared to the ML estimate. From these graphs, it is 
evident that there is a unique value of 𝑡 for a given interval of 𝑡 for which the relative 
efficiency is maximum given the sample size 𝑛 and the fixed parameter 𝜇. 
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Figure 1(a): n=5, mu=0.25
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Figure 1(b): n=10, mu=0.25
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Figure 1(c): n=15, mu=0.25
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Figure 1(d): n=20, mu=0.25
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Figure 1(e): n=25, mu=0.25
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Figure 1(f): n=30, mu=0.25

t

R
e
la

ti
v
e
 e

ff
ic

ie
n
c
y

0.0 0.5 1.0 1.5

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

Figure 2(a): n=5, mu=0.5
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Figure 2(b): n=10, mu=0.5
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6. Results and Discussion 

We write program in R to search for values of 𝑡 and the relative efficiency of the proposed 
estimator of Poisson parameter as compared to the MLE estimator. It appears that the 
values of t for the example data model remain positive for relative efficiency to be more 
than 100% for the proposed estimator compared to the MLE estimator. In simulation study, 
we only need to search positive values of 𝑡 nearing to 0 for relative efficiency more than 
100% for the proposed estimator. Theoretically, since the proposed estimate is unbiased as 
𝑡 → 0, we wish to achieve efficiency as well as nearing unbiased estimate by choosing 
values of 𝑡 nearing 0. For example, when 𝜇 =  0.25 and the sample size 𝑛 = 5, the relative 
efficiency of the proposed estimate ranges from 100.07 to 180 when 𝑡 ranges from 0.01 to 
1.50 with an increment of 0.01. However, when 𝜇 =  0.25 and the sample size 𝑛 = 10, 
the relative efficiency ranges from 100.45 to 140 when 𝑡 ranges from 0.01 to 0.76 with an 
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Figure 2(c): n=15, mu=0.5
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Figure 2(d): n=20, mu=0.5
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Figure 2(e): n=25, mu=0.5
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Figure 2(f): n=30, mu=0.5
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increment of 0.01. From the reported results, it appears that for a fixed parameter, lower 
sample size provides better efficiency for the proposed estimate, which makes sense 
because as sample size gets larger, the values of 𝑀𝑆𝐸(𝜇̃) and 𝑉(𝜇̂) both get smaller so as 
to lead to the equally efficient estimates 𝜇̃ and 𝜇̂. It also follows that relative efficiency of 
the proposed estimate is better when the value of 𝜇 is fixed at a lower value 0.25 than 0.50. 
Therefore, the proposed estimate is efficiently applicable to the rare events.  
 

7. Concluding Remarks 

We proposed a new estimate, 𝜇̃ =
𝑡𝑥̅

𝑒𝑡−1
, 𝑡 ≠ 0, for estimating the unknown Poisson 

parameter 𝜇 using mgf. It appears that the new estimator is a constant multiple of the MLE 
of 𝜇 . Some properties of the new estimator such as Expected value, Bias, MSE, Variance 
and RE have been studied. As 𝑡 → 0, the new estimator is unbiased, and MSE and Variance 
are identical to the variance of the MLE. By searching values of 𝑡 nearing 0, we can have 
the higher relative efficiency of the proposed estimate as compared to the ML estimate, 
𝜇̂ = 𝑥̅ . The new estimator has been justified using an example, where the new estimate 
provides a better fit to the data compared to the MLE estimate. In simulation study, it 
appears that the proposed estimator has much higher relative efficiency as compared to the 
MLE for smaller sample size. We write program in R to search for the range of 𝑡 and range 
of relative efficiency (RE) of the proposed estimate as compared to MLE, which will 
provide a guide to implement the new method. Given the facts of empirical simulation 
study and a real-life application to the land-falling hurricane in the USA, we could conclude 
that the proposed new estimate is more efficient than usual ML estimate for values of 𝑡 
nearing 0, and therefore, we recommend the new method of estimation for fitting Poisson 
model to rare events data and the estimation of Poisson parameter. 
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