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Abstract

In recent years, studies of heavy tailed distributions have rapidly developed. For multivari-

ate heavy tailed distributions, estimation of conditional quantiles at very high or low tailes is

of interest in numerous applications. Quantile regression uses an L1- loss function, and the

optimal solution of linear program for estimating coefficients of regression. This paper proposes

a weighted quantile regression method for certain extreme value sets. The Monte Carlo sim-

ulations show good results for the proposed weighted method. Comparisons of the proposed

method and existing methods are given. The paper also investigates a CO2 Emission real-world

example by using the proposed weighted method.

Keywords: CO2 Emission, conditional quantile, extreme value distribution, generalized Pareto

distribution, linear programming, weighted loss function.
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1. Introduction

Extreme value events are highly unusual and rare events that can cause severe harm to people

and in particular, costly damages to the environment. The distribution of the response variable,

, of an extreme event or its damage is usually heavy-tailed distributed. In the cases of these

extreme events, we often want to take preventative measures to reduce the risk and damage. On

the other hand, the response  may be related to other variables. It is important to estimate

high conditional quantiles of a random variable  given a variable vector x = (1 2  )
 .

The traditional mean linear regression estimates the conditional expectation (|x), where
x = (1 1 2  )

  x ∈   =  + 1 The linear mean regression model assumes

|x =  (|1 2  ) = xβ = 0 + 11 + 22 + + 
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We estimate β = (0 1  )
  where β ∈  from a random sample {(x)  = 1  },

where x is the -dimensional design vector and  is the univariate response variable from a

continuous distribution with a c.d.f.  (). The least square (LS) estimator bβ is a solution to
the following equation bβ = arg min

∈

X
=1

( − x β)2 (1.2 )

where bβ is obtained by minimizing the 2-distance.
The traditional mean linear regression estimates the relationship between a mean response

variable and explanatory variables. When analyzing extreme value events, where the response

variable  is heavy-tailed distributed, the traditional mean linear regression methods are inade-

quate and cannot be extended and applied to non-central locations.

Quantile regression (Koenker, 2005) offers an advanced model that estimates high conditional

quantiles of response variable.

Figure 1. Global CO2 Emissions (million metric tonnes) from 1950 to 2010

An Example: CO2 Emission. Natural processes and human activities can cause climate

change. However, the recent global warming can be largely attributed to the carbon dioxide

(CO2) and other greenhouse gases emissions. It was found that in 2009, CO2 accounted for

82% of all European greenhouse gas emissions and about 94% of the CO2 released to the at-

mosphere were from combusting fossil fuels. Although carbon dioxide is naturally present in the

atmosphere, human activities have significantly altered the carbon cycle by adding more CO2
to the atmosphere and influencing the ability of natural sinks. Figure 1 shows CO2 emissions

increases between 1950 and 2010. These increases are related with the increased energy use by

an expanding economy, population and overall growth in emissions from electricity generation.

It is important to estimate high conditional quantiles of the distribution of CO2 emission in or-

der to prevent acceleration of climate change. The data was obtained from the Carbon Dioxide

Information Analysis Center at http://cdiac.ornl.gov. In 2010, the CO2 emission per capita was

recorded in metric tonnes. There are  = 123 countries remaining after the threshold of 1 tonne

was applied. Table 1 lists the top 10 countries with the largest CO2 emissions and their gross

domestic product (GDP) and electricity consumption (E.C.) per capita.
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Table 1. The top 10 countries with the largest CO2 emissions and their GDP and E.C. in 2010

Country CO2 Emission GDP E. C.

per Capita per Capita per Capita

(tonnes) (US $) (kilowatts)

Qatar 40.31 71,510.16 86.01

Trinidad and Tobago 38.16 15,630.05 1,657.02

Kuwait 31.32 38,584.48 913.04

Brunei 22.87 30,880.34 239.40

Aruba 22.85 24,289.14 3,262.30

Luxembourg 21.36 102,856.97 2,751.26

Oman 20.41 20,922.66 1,562.59

United Arab Emitrates 19.85 33,885.93 9,007.35

Bahrain 19.34 20,545.97 10,142.73

United States 17.56 48,377.39 7,588.42

We assume a linear mean regression model is

|x = (| 1 2) = 0 + 11 + 22 (1.3 )

where  represents the CO2 emission per capita (tonnes), 1 represents the ln(GDP) per capita

(US $), and 2 represents the ln(E.C.) per capita (kilowatts). The green plane in Figure 2

represents the least square mean regression b|x obtained by using (1.2 ) and the model (1.3 )
b|x = −225009 + 207081 + 129982

Figure 2. Scatter plot and LS mean regression b|x of the CO2 emission (≥ 1 tonnes,  = 123)
related to ln(GDP) per capita 1 and ln(E.C.) per capita 2.

Since the traditional mean linear regression will only provide information about the mean

relationship between CO2 emission and GDP or E.C. per capita, it cannot provide estimation
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for high conditional quantile of CO2 emission. But quantile regression method (Yu, et al., 2003;

Wang, et al., 2012; Huang, et al., 2015) can estimate high CO2 emission quantile curves related

to GDP and E.C. We will discuss this example further in Section 5.

In Section 2, we review some notations. We proposed an optimal weighted quantile regression

method and gives asymptotic distribution of weighted quantile estimator in Section 3. In Section

4, Monte Carlo simulations were performed by generating random samples from the bivariate

Pareto distribution. We estimate conditional quantiles by the proposed weighted quantile re-

gression and compare with classical methods. In Section 5, the three regression methods: mean

regression, regular and weighted quantile regression, are applied to the CO2 emission Example.

Goodness-of-fit tests were used to assess the fit to the data. The proposed weighted quantile

regression model performs better than the classical quantile regression method.

2. Notation

Pickands (1975) first introduced the Generalized Pareto Distribution (GPD).

Definition 1. The cumulative distribution function (c.d.f.) of two-parameter GPD( ) with

shape parameter  and scale parameter  of a random variable  is given by

 () = 1−
³
1 +





´1
    0   0 (2.1 )

and the probability density function

() = −1
³
1 +





´ 1

−1

    0   0 (2.2 )

Definition 2. The th quantile of a random variable  with c.d.f.  () is defined as

() = −1() = inf{ :  () ≥ }, 0    1 (2.3 )

where  () is right continuous distribution function of variable 

Definition 3. The th conditional linear quantile regression of  for given x = (1 1 2  )


is defined as

( |x) =  (|1 2  ) = −1( |x) = xβ() = 0()+1()1+ · · ·+() (2.4 )

where 0    1 β() = (0() 1()  ())
 

Koenker and Bassett (1978) proposed a 1−loss function  to obtain estimator bβ() by
solving bβ() = arg min

()∈

X
=1

 ( − x β()) 0    1 (2.5 )

where  is a loss function

 () = ( − (  0)) =

½
( − 1)   0;

  ≥ 0 (2.6 )
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3. Proposed Weighted Quantile Regression

3.1. Proposed Weighted Quantile Regression

Huang, et al. (2015) proposed a weighted quantile regression (WQR) method

bβ()= arg min
()∈

X
=1

(x ) ( − x β()) 0    1 (3.1 )

where (x ) is any uniformly bounded positive weight function independent of   = 1  

for x = (1 1 2  )



Koenker (2005) suggested that when the conditional densities of the response are heteroge-

neous, quantile regression weights should be proportional to the local density evaluated at the

quantile of interest. In this paper, we propose a weight as the local conditional density (|x)
of  for given x at the th quantile () which is

(x ) = (())  = 1 2   0    1 (3.2 )

where (()) is uniformly bounded at the quantile points ()

We will use weight (3.2) in Section 4 for Monte Carlo simulation. In Section 5, we use weight

(3.3) proposed by Huang, et al. (2014) for the CO2 emission example, for  regressors

 (x ) =
| |x| |−1
X
=1

| |x| |−1
 0    1 (3.3 )

where (x ) ∈ [0 1] and
X
=1

(x ) = 1  = 1   ||x|| =
p
21 + 22 + · · ·+ 2

3.2. Comparison of Quantile Regression Models

In order to compare the regular and weighted quantile regression models in (2.5) and (3.1). We

extend the idea of measure goodness of fit by Koenker and Machado (1999), and suggest to use

a Relative () which is defined as

 () = 1− ()

()
 −1 ≤ () ≤ 1 where (3.4 )

() =
X

≥x ()




¯̄̄
 − x bβ()¯̄̄+ X

x


()

(1− )



¯̄̄
 − x bβ()¯̄̄  (3.5 )

() =
X

≥x ()


¯̄̄
 − x bβ()¯̄̄+ X

x


()

(1− )
¯̄̄
 − x bβ()¯̄̄  (3.6 )

where  = (x ) is given in (3.1), bβ() and bβ() are obtained by (2.5) and (3.1) respec-
tively.
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4. Simulations

In this Section, Monte Carlo simulations are performed. We generate  random samples with

size  each from the bivariate Pareto distribution (Mardia, 1962) with c.d.f.

 ( ) = 1− − − − − (+  + 1)−   1   1   0 (4.1 )

and the conditional quantile function of (4.1) is

() = ( |) = 1− 

µ
1− 1

(1− )−1(+1)

¶
   1   0 0    1 (4.2 )

The conditional density of  for given  is

(|) = 4(+1)

(+  − 1)(+2)    1   1   0

and the th conditional density of  for given  at the th quantile is

(()) =
4(1− )(+2)(+1)


   1   0 0    1 (4.3 )

Assume that the true conditional quantile is ( |) = 0()+1(). We use two quantile

regression methods:

1. The regular quantile regression (QR)  estimator based on (2.5),

( |) = b0() + b1() (4.4 )

2. The weighted quantile regression (WQR)  estimator based on (3.1)

 ( |) = b0() + b1() (4.5 )

with weight  = (()) in (3.2).

Figure 3. Simulation for  = 095 where  is the red solid line,  is the green solid line and

the true conditional quantile function  is the blue dashed line.
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For each method, we generate size  = 200  = 1 000 samples, which can be estimated for

each simulated sample. For th sample, we have ( |) and ( |)  = 1 

We use  = 3 in (4.3), then the weights for  are

(x ) =
4(1− )(54)


   1  = 1 2   (4.6 )

The two estimates ( |) in (4.4 ) and  ( |) in (4.5 ) were compared with the true
quantile function ( |) in (4.2 ). In Figure 3, it illustrates that  ( |) is closer to the
true conditional quantile function ( |) than ( |) for  = 095, which suggests that 

behaves more efficiently than .

The simulation mean squared errors (SMSE) of the estimators (4.4 ) and (4.5 ) are:

(()) =
1



X
=1

Z 

1

(( |)−( |))2; (4.7)

( ()) =
1



X
=1

Z 

1

(( |)−( |))2 (4.8)

where the true th conditional quantile of the bivariate Pareto distribution ( |) is defined
in (4.2 ).  is a finite  value such that the c.d.f. in (4.1 )  () ≈ 1 In this paper, we take
 = 1000 and the simulation efficiencies (SEFF) of  ( |) relative to ( |) are given by

 ( ()) =
(())

( ())
 (4.9 )

where (()) and ( ()) are defined in (4.7 ) and (4.8 ) respectively. Table

2 displays the simulation efficiencies  ( ()) for varying  values by using the weight

in (4.6 ). It shows that most of the  ( ()) are larger than 1, which signifies that the

 () is more efficient than () when  = 090 095 and up to 0.98.

Table 2. Simulation Efficiencies (SEFF) of Estimating ( |) = 1000  = 200  = 1000

 0.90 0.95 0.96 0.97 0.98

 ( ()) 1.5451 1.3744 1.1365 1.5598 1.2071

5. Applications

In this Section, we applied three regression models to the CO2 emission example in Section 1:

1. The traditional mean linear regression (LS) bβ in (1.2 );
2. The regular quantile regression  estimator bβ() in (2.5 );
3. The proposed weight quantile regression  estimator bβ () in (3.1 ) with weight (3.3 ).

5.1. Goodness-of-fit test for GPD

The CO2 emission data was transformed using  =
−

, where  = 1 tonne, in order to fit the

data to GPD model in (2.1 ). The maximum likelihood estimators (MLE) are b = 53011
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and b = 01234 The fit of the GPD model with the CO2 emission data can be demonstrated

in Figure 4(a),(b).

Table 3 shows three goodness-of-fit tests: the Kolmogorov-Smirnov test (−) (Kolmogorov,
1933), Anderson-Darling test (−) and Cramer-von-Mises test ( −  −) (Anderson and

Darling, 1952). The  −  test shows that the GPD model fits the data with a probability of

83.97%. The − and −− tests show that the GPD model fits the data with probability

of 88.55% and 86.62% respectively.

Table 3. The Goodness of Fit Tests for CO2 Emission Example

 −  −  −  −

Test statistic -value Test statistic -value Test statistic -value

0.0443 0.8397 0.3619 0.8855 0.0517 0.8662

(a) (b)

Figure 4. (a) Log-log plot of CO2 emission example. The dots are the data and the red solid line

is the GPD model. (b) Histogram of CO2 emission per capita of 123 countries in 2010 (tonnes)

greater than the threshold of 1 tonne with GPD model in (2.1 ).

5.2. Quantile Regression

Next, we assume a linear quantile regression model as

( |) = 0() + 1()1 + 2()2 0    1

where  is the CO2 emission per capita (tonnes), 1 is the country’s ln(GDP) per capita and 2

is the country’s ln(E.C.) per capita. The weight in (3.3 ) will be used. Table 4 lists b0() b1()
and b2() for  = 095 096 097 098 099 for () and  ()

Figure 5 shows the 3D scatter plot with  (red) and  (green) of CO2 emission per

capita given the country’s GDP per capita and electricity consumption per capita at  = 0935

and 096 respectively. It is important to note that the  and  quantile regression planes

appear to fit the data. In general, the  plane produces a higher estimated CO2 emissions

per capita than  curve at high quantiles.
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Table 4. b0() b1() and b2() Values for Regular and Weighted Quantile Regression and
least squares mean regression for CO2 emission example.

 Weight b0() b1() b2()
LS − -22.5009 2.0708 1.2998

0.95  -41.6856 5.8924 0.5527

 -29.3795 3.9296 1.3779

0.96  -44.8147 5.4258 1.9505

 -38.9137 4.7370 2.0928

0.97  -46.7095 5.6513 2.4429

 -37.4893 5.1502 1.4934

0.98  -47.4004 5.7323 2.4739

 -47.4004 5.7323 2.4739

0.99  -51.2657 6.1856 2.6475

 -47.4004 5.7323 2.4739

Figure 5. 3D scatter plot with  (red) and  (green) planes for  = 0935 and 096.

5.3. Comparison of  and 

Next, we compare  and   Table 5 shows the values for Relative () in (3.4) For  ≥ 095,
all values of Relative () are larger than 0, which signifies that ()  () and

as well, it suggests that the weighted quantile regression model  is a better fit to the CO2
emission per capita data than the regular quantile regression model .

Table 5. Relative () values for CO2 emission example

 = 095  = 096  = 097  = 098  = 099

Relative () 0.05846 0.04901 0.05020 0.04385 0.03782

From study results, we can conclude that countries with higher gross domestic product per

capita or are consuming high amounts of electricity per capita will produce higher CO2 emissions
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per capita. Since carbon dioxide is not destroyed over time, but moves among different parts

of the ocean-atmosphere-land system, it can remain in the atmosphere for thousands of years

due to the very slow process by which carbon is transferred to ocean sediments. As a result,

countries should monitor their CO2 emissions per capita in order to prevent further damages to

the environment. Countries can consider producing more energy from renewable sources, such

as wind, solar, hydro and using fuels with lower carbon content to reduce carbon emissions.

6. Conclusions

1. The traditional mean regression estimates conditional mean of response variables. The

quantile regression estimates conditional quantiles of response variable, and it is very useful.

2. The Monte Carlo simulations and the example of applications confirmed that the proposed

weighted quantile regression established better results than the regular quantile regression.
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