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Abstract
Many financial time series are nonstationary and are modeled as ARIMA processes; they are
integrated processes (I(n)) which can be made stationary (I(0)) via differencing n times. I(1)
processes have a unit root in the autoregressive polynomial. Using OLS with unit root processes
often leads to spurious results; a cointegration analysis should be used instead. Unit root tests (URT)
decrease spurious cointegration. The Augmented Dickey Fuller (ADF) URT fails to reject a false
null hypothesis of a unit root under the presence of structural changes in intercept and/or linear
trend. The Zivot and Andrews (ZA) (1992) URT was designed for unknown breaks, but not under
the null hypothesis. Lee and Strazicich (2003) argued the ZA URT was biased towards stationarity
with breaks and proposed a new URT with breaks in the null. When an ARMA(p,q) process with
trend and/or drift that is to be tested for unit roots and has changepoints in trend and/or intercept two
approaches that can be taken: One approach is to use a unit root test that is robust to changepoints.
In this paper we consider two of these URT’s, the Lee-Stratizich URT and the Hybrid Bai-Perron ZA
URT(Herranz, 2016.) The other approach we consider is to to remove the deterministic components
with changepoints using the Bai-Perron breakpoint detection method (1998, 2003), and then use a
standard unit root test such as ADF in each segment. This approach does not assume that the entire
time series being tested is all I(1) or I(0), as is the case with standard unit root tests. Performances
of the tests were compared under various scenarios involving changepoints via simulation studies.
Another type of model for breaks, the Self-Exciting-Threshold-Autoregressive (SETAR) model is
also discussed.
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1. Introduction

1.1 Time Series and ARIMA Models

A time series (TS) is an ordered sequence of values of a variable at equally spaced time
intervals,

{xt } = {x1, x2, ..., xn }. (1)

An ARIMA(p,d,q) model is a model of a time series xt where we first difference the series
d-times, resulting in ∆d (xt ) , and then we build an ARMA(p,q) model from the differenced
series. Here the “I” stands for integrated. An ARMA(p,q) model is defined in terms of its
lagged values xt and its current and past innovations ε t as :

xt =
p∑
i=1

φi xt−i +
q∑
i=1

θiε t−i + ε t . (2)

1.2 Stationary and Nonstationary Time Series

Aweakly stationary time series is defined as having a constant mean, and an autocovariance
function γ(s, t) that depends on s and t only through their difference |s − t |.
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A strictly stationary time series is one where the joint probability distribution does not
change with time. A stationary time series is labeled I(0) if it is integrated order 0. A time
series integrated order p, I(p), needs to be differenced p times to become stationary.

1.3 Unit Roots

The characteristic polynomial of the AR(p) part of Model (2) is defined as:

φ(z) = 1 − φ1z − ... − φp zp . (3)

A unit root process is an ARMA(p,q) process (or AR(p) process) with 1 as a root of the
characteristic polynomial equation. Time serieswith unit roots are non-stationary processes.
In the case of an AR(1) process if |φ1 | = 1 there will be a unit root.

A unit root process is an I(1) process; an example is a Gaussian random walk:

xt = xt−1 + ε t ; xt =
t∑

i=1
ε i ; x0 = 0; ∆(xt ) = ε t ; ε t ∼ N (0, 1). (4)

As detailed in Chan, Ngai Hang(2010) if AR(p) process has all of its characteristic poly-
nomial roots with an absolute value greater than one, then such a process is defined to be
causal, and will also be stationary.

Many financial time series, such as asset prices are modeled as unit root processes. As
was originally proposed in the seminal work by Fama(1965), the logarithm of stock prices is
often modeled as a random walk: log(St ) = log(St−1) + ε t which is equivalent to modeling
log returns as a stationary process: log

(
St

St−1

)
= ε t .

We define a cointegrating relationship between two or more time series each having
unit roots (I(1)) if a linear combination exists that is stationary, i.e. I(0).

Prior to testing for cointegration of two or more series each one must be pretested to
ensure they are all I(1) or this can lead to spurious cointegration.

2. Statistical Tests for Unit Roots Without Changepoints

2.1 Unit Root Test Null and Alternative Hypotheses

Unit root tests of a time series address the null hypothesis that the series is unit root
nonstationary( I(1) ). The alternative hypothesis is that the time series is weakly stationary
( I(0) ). Consider the following AR(1) model with deterministic components of an intercept
and a linear trend:

xt = φ1xt−1 + ε t ; yt = β0 + β1t + xt . (5)

In the AR(1) case the null hypothesis consists of φ1 = 1, and the alternative hypothesis that
we will consider in this paper is φ1 , 1. Most unit root tests in the literature consider the
alternative hypothesis to be |φ1 | < 1.

2.2 Augmented Dickey Fuller Unit Root Test

Said, S. E. and Dickey, D. A.(1984) extended the Dickey Fuller unit root test for ARMA
models and not just AR(p) models; this is known as the Augmented Dickey Fuller(ADF)
unit root test and is one of the most commonly used in the literature Choi, In(2010)p. 33.
The ADF test regression is fitted using OLS:

4yt = α + δt + βyt−1 +

n∑
i=1

γi 4 yt−i + ε t, (6)
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where 4 is the difference operator and ε t represent 0-mean white-noise innovations. Under
the null hypothesis yt is considered to be I(1) which is equivalent to 4yt being I(0) in which
case β would be zero. The test statistic is the standard regression t-statistic tβ =

β̂

s .e.(β̂)
,

where β̂ is the standard coefficient estimate as derived using ordinary least squares and T is
the time series length:

β̂ =

∑T
t=1 yt yt−1∑T
t=1 y

2
t−1

. (7)

The asymptotic quantiles of this test statistic are a functional of Brownian motions as
detailed in Equation (8):

tβ=1 ⇒
D

∫ 1
0 WtdWt(∫ 1

0 (Wt )2 dr
)0.5 . (8)

This expression does not have a closed form solution, but it can be used to derive critical
values via Monte Carlo simulation.

A normalized bias test statistic (δ̂) can be used as well:

δ̂ = T ( β̂ − 1). (9)

The asymptotic quantiles of the normalized bias test statistic are also functionals of
Brownian motions:

δ̂β=1 ⇒
D

∫ 1
0 WtdWt∫ 1

0 (Wt )2 dr
. (10)

.

3. Removing Structural Changes in Intercept and Trend

3.1 Estimating Changepoints

The Bai, J. and Perron, P.(1998) procedure for estimating structural breaks/change points in
a linear model is implemented in the breakpoints() function of the strucchange R package
(Zeileis,Achim and Leisch,Friedrich and Hornik,Kurt and Kleiber,Christian (2002)p. 12).

This methodology assumes an underlying linear model with a dependent one dimen-
sional variable yt , a p× 1 covariates vector xt with corresponding coefficient vector β, and
the innovations ε t :

yt = xtβ + ε t . (11)

If there are m change points in the coefficient this implies m+ 1 regimes. Equation (11)
can be rewritten as:

yt = xtβ j + ε t ( j = Tj−1 + 1, ...,Tj, j = 1, ...,m + 1). (12)

The underlying idea is solving the problem by dividing it into independent optimally
solvable sub-problems, whose solutions can be combined to solve the larger problem. In this
case a triangular residual sum of squares (RSS) matrix is computed and stored in memory
which can be reused over and over again to derive the residual sum of squares for a segment
starting at observation t and ending at t ′ with t < t ′

This approach is considerably faster than the brute force approach of computing the
RSS for all possible sub-segments. The Bai, J. and Perron, P.(1998) algorithm uses only
O(T2) least squares operations for a number m of change points. The brute force approach
would require O(Tm ) least squares operations.
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3.2 Hybrid Bai-Perron ADF I(0)/I(1) Segment Procedure

Herranz, Edward(2016) proposed using the Bai, J. and Perron, P.(1998) methodology of
estimating structural break date/s based on finding the model specification that minimizes
the RSS via a dynamic programming approach, and then to use the ADF URT to test each
section to determine if it is likely I(0) or I(1). The following Regression Model (13) with
the Bai, J. and Perron, P.(1998) procedure which will be used to estimate structural breaks
in the coefficients µ, µt, φ1:

xt = µ + µt t + φ1xt−1 + ε t . (13)

Figure 1: Estimated Changepoints in IBM Prices.

Figure 1 shows in red vertical bars the estimated break-points using this procedure with
Model (13) on historical IBM prices. When the ADF URT was run on each of the three
segments, the null hypothesis of a unit root was never rejected.

Table 1 summarizes the results of various simulations runwith this methodology, as well
as running the ADF test on the entire time series. Each time series has a length l = 1000,
with m = 100 Monte Carlo simulations and a significance level of α = 0.05 of the ADF
tests used in each segment, and for the entire series. The following data generating process
(DGP) was used with a single break time in all coefficients:

yt = φ
A
1 yt−1I{t ≤ TB } + φ

B
1 yt−1I{t > TB }. (14)

We can see that this new Hybrid Bai-Perron-ADF testing procedure is sensitive to the
location of the structural break. When compared to using a single unit root test on the entire
time series, this approach can be significantly more accurate, as can be seen in the case with
φA

1 = 1 and φB1 = 0.9 where we can seem make a greater error if we assume that the entire
series is homogeneous I(1) or I(0).
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Table 1: Proportions of Failures to Reject Null I(1) on a AR(1) Series with a Break in φ1,
intercept and linear trend with l = 1000,m = 100 and α = 0.05

Break

Propn φA
1 φB1 µA µB µAt µBt ΓAADF > CVα ΓBADF > CVα ΓAllADF > CVα

0.50 0.000 0.000 10 -30 5 -2 0.00 0.00 1.00
0.50 1.000 1.000 10 -30 5 -2 0.95 0.97 1.00
0.50 1.000 0.500 10 -30 5 -2 0.96 0.00 1.00
0.50 0.900 1.000 10 -30 5 -2 0.04 0.97 1.00
0.50 1.000 0.900 10 -30 5 -2 0.95 0.00 1.00
0.50 1.000 0.950 10 -30 5 -2 0.95 0.12 1.00
0.50 1.000 0.980 10 -30 5 -2 0.95 0.65 1.00
0.25 0.000 0.000 10 -30 5 -2 0.00 0.00 0.03
0.25 1.000 1.000 10 -30 5 -2 0.98 0.96 0.02
0.25 1.000 0.500 10 -30 5 -2 0.98 0.00 0.10
0.25 0.900 1.000 10 -30 5 -2 0.53 0.96 0.00
0.25 1.000 0.900 10 -30 5 -2 0.98 0.00 0.00
0.25 1.000 0.950 10 -30 5 -2 0.98 0.01 0.01
0.25 1.000 0.980 10 -30 5 -2 0.98 0.60 0.01

4. Statistical Tests for Unit Roots in the Presence of Structural Changes

4.1 Unit Root Tests with Changepoints

A typical changepoints linear model for unit root testing, allowing breaks in β0 and β1
under both alternative and null is as follows:

xt = φ1xt−1 + ε t

yt = µ1 + (µ2 − µ1)1{t > TB } + (t − TB)(β2 − β1)1{t > TB } + β1t + xt .
(15)

A common assumption is that the auto-regressive multiplier φ1 is constant. However,
what if it exhibits one or more structural breaks? Then the series tested can have one or
more changes from I(0) to I(1) or vice versa. We do not consider the case where φ1 is
random.

The ADF URT fails to reject a false null hypothesis of a unit root under the presence of
structural changes in intercept and/or linear trend.

The Zivot and Andrews (ZA) (1992) URT was designed for unknown breaks, but not
under the null hypothesis. Lee, J. and Strazicich, M.C.(2001) argued the Zivot Andrews
URT was biased towards stationarity with breaks and proposed a new URT with breaks in
the null.

The new Hybrid Bai Perron Zivot Andrews unit root test proposed by Herranz, Ed-
ward(2016) also allows breaks under the null.

The one break Lee, J. and Strazicich, M.C.(2001) procedure and the two break Lee, J.
and Strazicich, M.C.(2003) procedure allows for the breaks to be determined endogenously
from the data and breaks are allowed under both the null and the alternative hypothesis.

4.2 Zivot Andrews Unit Root Test

Andrews, Donald and Zivot, Eric(1992) developed a unit root test (ZA) that could deal with
breakpoints in the drift and/or linear trend components. The test statistic of the ZA test is
the Student t ratio. As detailed in Pfaff, B.(2008)p. 110:

tα̂i [λ̂iinf] = inf
λ∈Γ

tα̂i (λ) for i = A, B,C. (16)
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where Γ is a closed subset of (0, 1) and the A model has breaks in intercept,the B model has
breaks in linear trend, and the C model has breaks in both intercept and trend. Depending
on the model, the test statistic is inferred from one of these three regression models:

yt = µ̂
A + θ̂ADUt (λ̂) + β̂At + α̂Atyt−1 +

k∑
i=1

ĉA
i ∆yt−i + ε̂ t, (17)

yt = µ̂
B + γ̂BDT∗t (λ̂) + β̂Bt + α̂Btyt−1 +

k∑
i=1

ĉBi ∆yt−i + ε̂ t, (18)

yt = µ̂
C + θ̂C DUt (λ̂) + β̂C t + α̂C tyt−1 + γ̂

C DT∗t (λ̂) +
k∑
i=1

ĉCi ∆yt−i + ε̂ t . (19)

where DUt (λ) = 1 if t > Tλ and 0 otherwise, and DT∗t (λ) = t−λT for t > Tλ and 0 otherwise.
The null hypothesis of the ZA unit root test does not allow structural breaks. Changepoints
in the deterministic components are allowed only under the alternative hypothesis. Glynn,
J. and Perera, N. and Verma, R.(2007) criticize this since if there are breaks under the null
(φ1 = 1) we can mistakenly conclude that the series is stationary (with breaks.)

inf
λ∈Λ

tα=1 ⇒
D

∫ 1
0 W i (r, λ)dW (r)(∫ 1
0 (W i (λ, r))2dr

)0.5 . (20)

The asymptotic critical values as T ⇒ ∞ for models i = A, B,C are given by Equa-
tion (20) which is a functional of Brownian motions. The actual critical values used in the
ZA test are derived via simulation of this formula. The critical values for the ZA unit root
test for the intercept, trend and intercept and trend (both) models are detailed in Table 2.
Notice the similarity of Equation (20) with the asymptotic critical value formula for the
ADF model in Equation (8). The key difference is that in the ZA unit root test there is a
minimization search for the parameter λ, the location in the series where a break can occur
such that it results in the minimum possible t-statistic; the ZA regressions allow breaks in
the deterministic components and the ADF regression does not.

Table 2: ZA Critical Values
Model 0.01 0.05 0.10
Intercept -5.34 -4.80 -4.58
Trend -4.93 -4.42 -4.11
Both -5.57 -5.08 -4.82

4.3 Lee-Strazicich Unit Root Test

The one-break Lee and Strazicich(2004) procedure and the two-break Lee, J. and Strazicich,
M.C.(2003) unit root tests allow for structural breaks to be determined endogenously from
the data and breaks are allowed under both the null and the alternative hypothesis. Consider
the single break model:

yt = δZt + Xt , Xt = βXt−1 + ε t . (21)

where Zt contains exogenous variables. The null hypothesis is specified by β = 1.
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Table 3: Proportions of Failures to Reject Null I(1) of URTs on AR(1) Processes with one
Structural Break in Intercept(10,-10) and Linear Trend (-10,10) with l = 1000, m = 500,
and α = 0.05 and s = 12345

φ1 ADF ERS-Ptest ERS-DFGLS ZA
1.010 1.00 1.00 0.98 0.92
1.005 0.96 0.97 0.97 0.05
1.000 0.92 0.90 0.90 0.00
0.990 0.92 0.90 0.90 0.00
0.980 0.91 0.90 0.90 0.00
0.970 0.91 0.90 0.90 0.00
0.960 0.91 0.90 0.90 0.00
0.950 0.91 0.90 0.90 0.00
0.900 0.91 0.90 0.90 0.00
0.000 0.91 0.90 0.90 0.00

“Model A” is the crash model that allows for a single change intercept where Zt =

[1, t, Dt ]′ where Dt = 1 for t ≥ TB + 1, and zero otherwise. TB is the time of the structural
break and δ = (δ1, δ2, δ3)

“Model C” allows for a shift in intercept and change in trend slope under the alternative
hypothesiswhere Zt = [1, t, Dt, DTt ]′where DTt = t−TB for t ≥ TB+1, and zero otherwise.
TB is the time of the structural break and δ = (δ1, δ2, δ3).

The unit root test statistics are derived from the regression:

∆yt = δ
′
∆Zt + φ ˜St−1 + ut, (22)

S̃t = yt − Ψx − Zt δ̃ , t=2,...,T. (23)

where δ̃ are the coefficients estimated in the regression of∆yt on∆Zt and Ψ̃x is the restricted
MLE of Ψx = Ψ+X0 given by y1− Z1δ̃. The unit root null hypothesis consists of φ = 0 and
the LM(Lagrange multiplier) t-test statistic τ̃ = t-statistic testing the null hypothesis φ = 0.
As in the case with the ADF test, a correction for auto-correlated innovations is made by
adding lagged terms ∆S̃t− j where j = 1, ..., k. The location of the break TB is determined
by searching across all breakpoints and picking the one with the most negative τ̃.

inf τ̃(λ̃) = inf
λ
τ̃(λ) where λ = TB/T . (24)

If the DGP is that in (21), the ε t satisfy certain regularity conditions, and TB/T → λ as
T → ∞, then under the null hypothesis of β = 1

inf τ̃(λ̃) = inf
λ

(
−

1
2

∫ 1

0
V (r)2dr

)−1/2

, (25)

where V (r) represents a demeaned Brownian bridge.

4.4 Hybrid Bai-Perron Zivot-Andrews Unit Root Test

Herranz, Edward(2016) proposed a new URT that allows structural breaks under the null
hypothesis, which we refer to here as the Hybrid Bai-Perron-Zivot-Andrews (HBPZA) unit
root test. The test is conducted as follows:
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1. Given TS, we first use the Bai-Perron break-point estimation procedure in Bai, J. and
Perron, P.(2003) using Regression Model xt = β0 + β1t + β2xt−1 + ε t , to detect
changes in the coefficients. This divides the TS into k + 1 segments given a total of
k breakpoints.

2. For each segment within the TS we compute the ZA URT statistic (zi).

3. A final test statistic is computed by weighing each sub-test statistic by the segment
length (

∑k+1
i wi zi).

4. If there are more than 3 breakpoints estimated, only the first three breakpoints are
used to determine 4 segments.

Table 4: Simulated Quantiles of Zivot Andrews(ZA) and Hybrid Bai-Perron-Zivot-
Andrews(HBPZA) Unit Root Test Statistics with l = 1000 and m = 5000

URT Model Breaks φ1 0.01 0.05 0.01
ZA Trend 0 1.00 -5.00 -4.44 -4.17
ZA Trend 0 0.95 -6.99 -6.52 -6.30
ZA Both 0 1.00 -5.61 -5.10 -4.86
ZA Both 0 0.95 -7.43 -7.03 -6.81
HBPZA Trend 0 1.00 -4.95 -4.45 -4.21
HBPZA Trend 0 0.95 -6.98 -6.52 -6.30
HBPZA Trend 1 1.00 -5.80 -4.49 -4.21
HBPZA Trend 1 0.95 -6.85 -5.95 -5.60
HBPZA Trend 2 1.00 -5.87 -4.55 -4.24
HBPZA Trend 2 0.95 -6.48 -5.63 -5.30

Table 4 shows the estimated 0.01,0.05 and 0.10 quantiles of the ZA and HBPZA test
statistics for various combinations with simulations using m = 5000 replications with time
series of length l = 1000 with the DGP in Equation (26) for 1 break, and another similar
equation expanded to support two structural breaks. The quantiles in the unit root cases
where φ1 = 1 can be used to derive the critical values.

Table 5 displays the percentage differences of the simulated critical values for ZA and
HBPZA tests relative to the published ZA critical values. We can see that the ZA critical
values derived from simulation are never more than 2% different from the published ZA
critical values. The same is true when the HBPZA technique is used when there are no
breaks; this shows empirically that the Bai-Perron breakpoint estimation procedure does not
introduce any significant distortions when there are no breaks. We can also see that under
1 break and two breaks, the 0.05 and 0.10 critical values of the HBPZA test do not differ
by more than 3% with respect to the corresponding ZA critical values. We see that there is
more significant differences in the 0.01 critical values for HBPZA for 1 and 2 breakpoints
relative to ZA where they are 18% and 19% respectively.

The Lee-Stratizich allowing both breaks in trend and intercept and the Hybrid Bai-
Perron-Zivot-Andrews unit root tests allowing breaks in trend were compared in simulations
using the following DGP:

yt = xt + α1 + (α2 − α1)I{t > tu } + β1t + (β2 − β1)(t − tu )I{t > tu }

xt = φ1xt−1 + ε t ; ε t ∼ N (0, 1) ; cor(ε t, ε t−1) = 0
tu ∼ U(3, l − 2) ; t = 1, ..., l

(26)

The Lee-Stratizich test does not allow only breaks in trend; a more consistent comparison
would have been to derive the Hybrid Bai-Perron-Zivot-Andrews unit root test using the
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Table 5: Simulated Critical Values Percentage Difference Relative to ZA Critical Values
With Trend Model

URT Breaks For 0.01 For 0.05 For 0.10
ZA 0 1 1 2
HBPZA 0 0 1 2
HBPZA 1 18 2 3
HBPZA 2 19 3 3

“both” test statistic (allowing breaks in intercept and trend.) We note this as work to be
done.

Table 6: Proportions of Failures to Reject the Unit Root H0 on AR(1) with 1 break in
intercept and trend with l = 100, m = 1000, and α = 5%, βA

0 = 50, βB0 = 1000, βA
1 = 1,

βB1 = 3 and break=0.5; Lee-Strazicich implementation by Gouvea and Teixeira(2012)
Hybrid Bai-Perron- Lee- Breakpoint

φ1 Zivot-Andrews Strazicich Proportion
1.0100 0.97 0.99 0.25
1.0000 0.97 0.99 0.25
0.9700 0.96 0.99 0.25
0.9500 0.96 0.98 0.25
0.9000 0.96 0.97 0.25
0.7000 0.87 0.65 0.25
0.5000 0.53 0.20 0.25
0.4000 0.28 0.18 0.25
0.2500 0.05 0.21 0.25
0.1000 0.00 0.25 0.25
0.0000 0.00 0.27 0.25
1.0100 0.96 0.99 0.50
1.0000 0.96 0.99 0.50
0.9700 0.96 0.99 0.50
0.9500 0.96 0.99 0.50
0.9000 0.96 0.97 0.50
0.7000 0.83 0.62 0.50
0.5000 0.37 0.22 0.50
0.4000 0.18 0.18 0.50
0.2500 0.04 0.22 0.50
0.1000 0.01 0.26 0.50
0.0000 0.00 0.29 0.50

Simulations were preformed with AR(1) time series with one structural break using
Model (26) with α1 = 50, α2 = 1000, β1 = 1, β2 = 3 under various levels of φ1. The break
times were 25% and 50% of the time series length. Two sets of tests were performed, one
for each break ratio, with a time series of length 100 and are summarized in Table 6. We
can see that the Lee-Strazicich URT has significantly less statistical power than the HBPZA
URT when φ1 < 0.4.

5. Self Exciting Threshold Autoregressive Models

Balke, Nathan S. and Fomby, Thomas B.(1997) proposed a general equilibrium model of zt
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based on a self exciting threshold auto regressive framework (SETAR) such as the following
with a low, middle and high regimes:

zt =




µh + φh zt−1 + ε t, if zt−1 > θH

µm + φm zt−1 + ε t, if θL ≤ zt−1 ≤ θH

µl + φl zt−1 + ε t, if zt−1 < θL

(27)

As Stigler(2010) points out the commonly assumed case where Equation (27) is stable
is when φh < 1 and φl < 1. The middle regime can be nonstationary φm > 1, but
with sufficient time it is likely the low and high regimes will force the process to become
stationary again.

The SETAR model exhibits structural breaks as transitions occur between the regimes.
Seo, B.(2006) developed a test for the linear no cointegration null hypothesis against
threshold cointegration in a threshold vector error correction model with a sup-Wald type
test and derived its null asymptotic distribution.

6. Conclusion

Unit roots are nonstationary ARMA(p,q) processes which have one of more roots of 1 of
the auto-regressive polynomial. If deterministic parameters such as the intercept or linear
breaks have structural breaks standard unit root tests such as ADF will rarely reject the null
of a unit root even when φ1 < 1. Unit root tests that allow breaks under the null hypothesis
such as the Lee-Strazicich unit root test should be used in that case. The Hybrid Bai Perron
Zivot Andrews unit root test is another such test which can have higher statistical power
than the Lee-Strazicich test under certain conditions. These unit root tests such as the
Lee-Strazicich test are robust to structural breaks in the deterministic terms.

Another approach when testing for unit roots under structural breaks is to estimate
the breakpoints and use traditional unit root tests in each segment. One such approach
is the Hybrid Bai-Perron ADF methodology. One strength of this approach is it can also
potentially detect changepoints in the auto-regressive coefficient (such as φ1 in the AR(1)
case) which most unit root tests cannot support.

One more form of auto-regressive models with changepoints that should be considered
are SETARmodels where the previous level of the response variable determines the regime,
and each regime can have different coefficients.
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