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Abstract
Model selection is a central agenda of autoregressive moving average (ARMA) modeling

in time series data analysis. Recent advances in sparse estimation methods provide a fresh
look at the time series model selection different from information criterion approaches. The
adaptive LASSO method is paid attention in time series model selection due to its oracle
property: the consistency of a set of non-zero parameters and its asymptotic normality. In
spite of the solid theoretical property of adaptive LASSO method, this type is not a full-
fledged method in time series analysis. This presentation will introduce a novel adaptive
sparse method, the elastic net method, for time series model selection and investigate how
the selection of initial estimates and tuning parameters in these adaptive sparse methods
affects the performance of the time series model selection in various types of finite sample
time series data. The performance will be assessed by examining the oracle property and
the prediction accuracy. Comparison with other existing information criterion methods will
be presented for both simulation studies and real data applications.
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1. Introduction

Time series modeling requires a consideration of multiple aspects such as continuity,
linearity, stationarity, seasonality, structural change, white noise error, and so on.
Due to the complexity, classical time series modeling focuses on discrete-time, linear,
stationary, no-change points, white noise error via autoregressive moving average
(ARMA) model.
One of the most important modeling features in the ARMA model is a lag (model
or variable) selection. Let consider an ARMA (p,q) model with seasonality, which
can be modeled by an ARMA(p, q)×SARMA(P,Q)[s] model given:

(1− φ1L− · · · − φpLp)(1− Φ1L
s − · · · − ΦPL

sP )Yt
= (1 + θ1L+ · · ·+ θqL

q)(1 + Θ1L
s + · · ·+ ΘQL

sQ)εt (1)

where p is the order of autoregressive terms, q is the order of moving average terms,
P is the order of seasonal autoregressive terms, and Q is the order of seasonal moving
average terms, s denotes the seasonal periodicity, e.g., s = 12, is used for monthly
data, and εt ∼ (0, σ2). In this ARMA model, the dimension of the parameter space
is determined by (1, φ1, · · · , φp)× (1,Φ1, · · · ,ΦP )+(1, θ1, · · · , θq)× (1,Θ1, · · · ,ΘQ).
Classical model selection chooses a model of which information criterion value at-
tains the minimum among all possible subsets. As well known, there are numerous
information criterion methods such as AIC (Akaike, 1973), BIC (Schwarz, 1978)
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and their variants. If we exhaustively consider all possible subsets for a parameter
space of p elements, there are 2p subsets. Needless to say, the fairly large number
of elements computationally costly for the subset selection approach.
Since Tibshirani’s seminal method, least absolute shrinkage and selection operator
(LASSO), in 1996, many sparse (shrinkage or regularized) estimation methods have
been proposed to address the variable selection issue in a regression model. As we
encounter the situation of ‘large p, small n (p >> n) in the era of big data, this
sparse estimation method is significantly useful to estimate nonzero parameters.
The LASSO solution takes an advantage of a convex optimization in which a local
optimum is not a problem. LASSO has two drawbacks: (1) the LASSO estimator
does not achieve the oracle property under a certain condition; and (2) this estimator
is suffered from multicollinearity among explanatory variables.
In order to address the oracle property issue of LASSO, Adaptive LASSO (ALASSO)
was proposed by Zou (2006). ALASSO introduced the weight for each parameter
in addition to the global tuning parameter, λT in LASSO. In time series analysis,
LASSO and ALASSO have been applied for model selection in ARMA model. Nardi
and Rinaldo (2011) applied LASSO to AR(p) model, and Chan, Yau, and Zhang
(2015) applied LASSO to a threshold autoregressive model. Chen and Chan (2011)
applied ALASSO to ARMA (p, q) model. Park and Sakaori (2013) applied ALASSO
to autoregressive distributed lag (ADL) model. Kock(2016) extended the applica-
tion of ALASSO to AR(p) with a unit root. Chan, Yau, and Zhang (2014) applied
group LASSO to identify structural changes in time series. Although these articles
successfully applied LASSO-type sparse estimation method, a lot of work is de-
manded to establish consensus of choosing the global tuning parameter, the penalty
of individual parameters, the degree of weight, etc. The Elastic Net (ENET) and
Adaptive ENET (AENET) methods were proposed for multicollinearity by Zou and
Hastie (2005) and Zou and Zhang (2009), respectively. ENET and AENET have
been applied to time series ARMA models yet.
The purpose of this article is to investigate the variable selection in the ARMA model
via sparse regression methods. The sparse estimation methods including LASSO,
ALASSO, ENET, and AENET, will be compared to traditional information crite-
rion methods under various simulation settings such as different types of parameter
spaces, choice of the global tuning parameter, choice of the penalty of individual
parameters, degree of penalty weight, and signal to noise ratio.
In section 2, an AR model and its ALASSO estimator will be introduced. In section
3, the finite sample properties will be examined via Monte Carlo simulation studies.
In section 4, simulation result will be presented for three time series models. In
section 5, simulation results will discussed along with theoretical properties. Lastly,
in section 6, conclusion and future studies will be provided.

2. Sparse Estimation Methods in Time Series

Consider the model selection problem in a stationary AR(p) model, which allows
seasonal autoregressive terms:

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt (2)

Through this paper, we discuss the model selection of an AR model which is intro-
duced for a model simplicity. The same points can be easily extended to the ARMA
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model as in Chen and Chan (2011). In this section, we first discuss the properties
of parameter space in the ARMA model, which bears more restrictions compared
to the parameter space of a regular linear regression model. Consequently, we in-
troduce selected sparse estimation methods for the lag selection in (2), and discuss
their statistical properties.

2.1 Properties of Parameter Space in Time Series

In a regular linear regression, the parameter space related issues may include the
space length such as p < n, p > n, the sparsity determined the number of zero
coefficients, and the multicollinearity among independent variables. In a time series
regression, serial correlation and stationarity pose some critical restriction on the
parameter space. In this section, we discuss the properties of parameter space in
time series model.
In order to specify the parameter space of an AR mode, let consider a stationary
AR(2)× SAR(1)[12] model with φ1 = 0.6, φ2 = 0.3, and Φ1 = 0.7. Using the
representation in (1) yields

(1− 0.6L− 0.3L2)(1− 0.7L12)Yt = εt (3)

Rearranging equation (3) in terms of a linear regression model yields

Yt = 0.6Yt−1 + 0.3Yt−2 + 0.7Yt−12 − 0.42Yt−13 − 0.21Yt−14 + εt. (4)

The first noticeable property is a sparse parameter space. For this example, the
nonzero parameter space of the AR process can be defined as φ = (φ1, φ2, φ12, φ13, φ14).
However, the estimation process of this parameter space in time series analysis in-
trinsically requires the consideration of all lagged variables between Yt−1 and Yt−14
of which parameter space is φ = {0.6, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.7,−0.42,−0.21}.
Another important issue to this parameter space naturally arises when one stops at
the lag of 14. If all lagged values after Yt−14 have no effect on Yt, then the length
of the parameter space is obviously 14. In a regular regression model, the number
of independent variables which are included in the model are predetermined. The
maximal length of the parameter space, p∗, however, is usually unknown so that
we appropriately determine this value in a time series regression model. The value
of p∗ should be fairly large in order not miss any important lagged effects. On the
other hand, the maximal value of p cannot be greater than the sample size T .Hence,
there are two different choices for the maximal value of p, p∗. The first choice
is the fixed value, and the second choice is the function of sample size such that
p∗ = T ν , o < ν < 1. In general, the growth rate of p∗ is much slower than the
growth rate of T .
The serial correlation in time series data is an underlying feature, which is closely
related to multicollinearity. Therefore, it is natural to consider ENET and AENET
to achieve a good selection performance without losing valuable information.
The last issue of the time series parameter space we can come up with is stationarity.
Stationarity is one of the most salient properties in the time series parameter space
(Dickey and Fuller, 1979). In the regular linear regression model, we can select
fairly large coefficient values which result in the better variable selection. However,
the stationarity condition does not allow arbitrarily large coefficient values in the

JSM 2016 - Business and Economic Statistics Section

2469



ARMA model. This property costs the performance of sparse regression methods
as pointed out in Tibshirani (1996).

2.2 Selected Sparse Estimation Methods

In this article, four significant sparse estimation methods are selected for the lag
selection of the AR model. The LASSO is the breakthrough sparse estimation
method with L1 penalty. The other three sparse methods were proposed to overcome
the limitations of LASSO.
The LASSO estimator is the minimizer of the following objective function

φ̂LASSO = argmin
φ

{
||Y −Xφ||22 + λT

p∗∑
j=1
|φj |

}
(5)

where Y = (Yp, · · · , YT ) is a (T − p)× 1 vector, X = (Y−1, · · · , Y−p) is a (T − p)× p
matrix with Y−j = (Yp−j+1, Yp−j+2, · · · , YT−j) for j = 1, 2, · · · , p, λT is the global
tuning parameter controlling the degree of sparsity of parameters.
Zou (2006) pointed out that the LASSO estimator does not achieve the consistency
to the true parameter space if λT = O(T 1/2). Consequently, the LASSO estimator
does not hold the oracle property that an estimator attains the consistency and
asymptotic normality. Zou proposed the adaptive LASSO (ALASSO) estimator to
overcome the inconsistency of the LASSO estimator. The adaptive LASSO esti-
mator, φ̂ALASSO, is obtained by minimizing the following objective function with
constraint:

φ̂ALASSO = argmin
φ

{
||Y −Xφ||22 + λT

p∗∑
j=1

λj |φj |
}

(6)

where λ = (λ1, · · · , λp) is a p×1 vector of known data-driven weights. In the weights
λ = |φ̂|−η, φ̂ can be the least squares estimator (Zou, 2006 and Chen and Chan,
2011), the ridge estimator (Chen and Chan, 2011), or the lasso estimator (Chen and
Chan, 2011), and η > 0. If λj = 1 for all j, then the solution in (6) is the LASSO
estimator for φ.
The LASSO estimator incorporates an L11penalty, which achieves a sparsity of pa-
rameter estimation, but does not deal with multicollinearity well (Chun and Keles
(2009), Zou and Zhang (2009)). In order to address both the sparsity of the param-
eter space and the multicollinearity of explanatory variable, Zou and Hastie (2005)
proposed the elastic net estimator (ENET):

φ̂ENET = argmin
φ

{1
2 ||Y −Xφ||22 + λT

[1
2(1− α)

p∗∑
j=1

φ2
j + α

p∗∑
j=1
|φj |

]}
(7)

in which α ∈ [0, 1], and the penalty term is a convex combination of L1 and L2
penalties. When α = 1, the ENET problem becomes the LASSO penalty estimation,
and α = 0 makes it the ridge estimation problem. Since ENET did not achieve the
oracle property, Zou and Zhang (2009) proposed the adaptive elastic net (AENET)
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method to simultaneously address the oracle property and the multicollinearity. The
AENET estimator is the solution to the following objective function

φ̂AENET =
(

1 + λ2
T

)
× argmin

φ

{
||Y −Xφ||22 + λ2T

p∗∑
j=1

φ2
j + λ1T

∑
j∈ÂENET

λj |φj |
}
(8)

where ÂENET = {j : φ̂ENET , 0}, which is the set of non-zero ENET estimators.

2.3 Asymptotic Properties of Adaptive LASSO Estimator

In the stationary ARMA model, the oracle property of ALASSO has been proven
by Chen and Chan (2011). Let A be the set of nonzero parameters such as A = {j :
φj , 0} = supp(φ) ⊂ I = {1, 2, · · · , p}, and let Â be the set of nonzero parameter
estimators such as Â = {j : φ̂j , 0}.
Statistical assumptions are as follows:

A1. For AR(p) model in (2), the lag polynomial, φ(z) has the roots outside the
unit circle where φ(L) = 1− φ1L− φ2L

2 − · · · − φpLp.

A2. Innovations satisfies that for all t E(εt) = 0, E(ε2
t ) = σ2, and E(ε2+δ

t ) < ∞
for some δ > 0.

A3. The maximal lag order, p∗, increases to infinity at a rate c log T ≤ p∗ ≤ (log T )b
for some 1 < b <∞ and for some positive constant c.

A4. For η > 0, the global tuning parameter increases to infinity with

λTT
(η−1)/2 →∞ and λTT

−1/2 → 0. (9)

A5. As T → ∞, 1
TX

TX → C where C is a positive definite nonrandom matrix.
Similary, for A, as T →∞, 1

TX
T
AXA → CA.

A6. As T →∞, εT X√
T
−→
d
N(0, σ2C).

Assumptions A1 and A2 allows to consider only a stationary AR(p) process with
a constant autocovariance. Assumption A3 imposes the growth rate of the au-
toregression order to be bounded by the sample size (T ). The rate should not be
neither too fast nor too slow compared to T . Assumption 4 is critical to attain
the asymptotic consistency of the adaptive LASSO estimator. Zou (2006) showed
that if λTT−1/2 → λ0 < ∞, the LASSO estimator is not consistent as T → ∞. In
variable selection, a proposed method is theoretically evaluated by the oracle prop-
erty which consists of two parts: the consistency and asymptotic normality of the
estimator obtained by the proposed estimator (Fan and Li, 2001).

Theorem 2.1. When Assumption A1-A6 hold for model in (2), the oracle property
of the adaptive LASSO estimator is attained as follows:
1. Asymptotic normality

√
T (φ̂ALASSO − φ) −→

d
N(0, σ2C−1

A ) as T →∞ (10)
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2. Consistency

limT→∞P (Â = A) = 1. (11)

Theorem 2.1 for AR(p) model can be proved by following Chen and Chan (2011)
and Zou (2006).

3. Simulation Studies

In the previous section, we introduced sparse estimation methods which can be
applied to time series data, and reviewed the oracle property of the adaptive LASSO
estimator. Time series modeling is usually implemented with finite sample sizes,
few hundred to few thousand observations. Our objective is to compare the selected
sparse estimation methods to the traditional variable selection methods such as AIC
and BIC.
The finite sample properties of these estimation methods are especially affected
by various simulation settings such as the sample size, T , the maximal number of
parameters included in the ARMA model, p∗, the global tuning parameter, λT , λ1T
or λ2T , weights of individual parameters, λj , degree of weights, η, signal to noise
ratio by innovation variance.
The global tuning parameter λT (or λ1T and λ2T in AENET) can be chosen by two
different approaches: (1) λT is determined as a function of p and T ; and (2) as a
minimizer of BIC, AIC or time series cross-validation. Nardi and Rinaldo (2011)
chose the value of λT as a function of the sample size and the maximal number of
coefficients such as λT =

√
log T log p

T , which is used for the L1 penalty in LASSO and
ENET. BIC is used to determine the data-driven value of the tuning parameters as
many other suggested: LASSO in Zou et al. (2007), SCAD in Wang et al. (2007),
and AENET in Zou and Zhang (2009).
The weights of individual parameters, λj , chose root-n consistent estimators such
as least squares estimator (LS), ridge regression estimator (Ridge), and LASSO
estimator. In the adaptive methods, ALASSO and AENET, these three types of
estimators are considered.
The degree of weights, η, must be greater than zero, but we chose η = 1 or 2
followed by others’ convention (Chen and Chan, 2011, Zou, 2006, and Zou and
Zhang 2009). Of course, one can choose the data-drive value of η but it may cause
another uncertainty.
To investigate the finite sample property, we chose two different sample sizes, T =
200 and 1000. The innovation error, εt was generated from the standard normal
distribution, ε ∼ iidN(0, 1).
The LASSO-type estimation is known to have a strength to identify a sparse param-
eter space. We considered three different AR(p) models with sparse space with weak
coefficients, moderately sparse space with strong coefficients, and dense parameter
spaces with mild coefficients:

1. Yt = 0.2Yt−1 + 0.1Yt−3 + 0.2Yt−5 + 0.3Yt−10 + 0.1Yt−15 + εt

2. Yt = 0.8Yt−1 + 0.7Yt−5 − 0.56Yt−6 + εt

3. Yt = 0.3Yt−1 + 0.25Yt−2 + 0.2Yt−3 + 0.15Yt−4

JSM 2016 - Business and Economic Statistics Section

2472



The first model is designed for a sparse and weak parameter space, φ =
(0.2, 0, 0.1, 0, 0.2, 0, 0, 0, 0, 0.3, 0, 0, 0, 0, 0.1) as in Nardi and Rinaldo (2011). The sec-
ond model is designed for a moderately sparse parameter space, φ = (0.8, 0, 0, 0, 0,
0.7,−0.56) (Chen and Chan 2011). The third model is designed for a dense param-
eter space, φ = (0.3, 0.25, 0.2, 0.15). In the actual estimation process, additional
sparsity will be included depending on the maximal length of p.
Under various situations mentioned above, the sparse estimation methods were com-
pared to the AR models selected by BIC and AIC. All simulation work was per-
formed using R packages, glmnet, gcdnet, and FitAR. Computing resource is Dell
workstation equipped with dual core Intel Xeon CPU E5-2697 vs 2.60 GHz CPU
and 128GB ram.

4. Finite Sample Properties via Simulation Studies

In this conference proceedings, simulation results for the three AR models with the
sample size 200 are shown as a comparison pivot. Other cases are compared to these
pivot results. For all tables presented in this article, the first column represents each
of the selected methods: LASSO, ALASSO, ENET, AENET, BIC, and AIC. The
second and third columns (L1 and L2) is for the selection methods for L1 and L2

penalty: Fix or BIC where FIX means λT =
√

log T log p
T . The fourth and fifth

columns (P1 and P2) is for the selection methods for the initial weight of individual
parameters: OLS, Ridge, LASSO, and ENET. Our main interest in the presented
tables is to see how correctly the non-zero coefficients are captured by the selected
estimation methods. Hence, the presentation focuses on the true positive (TN), the
true negative (TN), the false positive (FP), and the false negative (FN), as well as,
the sensitivity and the specificity.

Table 1: Simulation Results for φ = (0.2, 0, 0.1, 0, 0.2, 0, 0, 0, 0, 0.3, 0, 0, 0, 0,
0.1), T = 200, p∗ = 15

Method L1 L2 P1 P2 TP TN FP FN Sensitivity Specificity
LASSO FIX 2.59(1.17) 9.7(0.68) 0.3(0.68) 2.41(1.17) 0.52(0.23) 0.97(0.07)

LASSO BIC 4.86(0.36) 1.40(1.12) 8.6(1.12) 0.14(0.36) 0.97(0.07) 0.14(0.11)

ALASSO BIC OLS 2.05(0.81) 9.95(0.22) 0.05(0.22) 2.95(0.81) 0.41(0.16) 1.00(0.02)

ALASSO BIC RIDGE 2.53(0.93) 9.85(0.42) 0.16(0.42) 2.47(0.93) 0.51(0.19) 0.98(0.04)

ALASSO BIC LASSO 1.89(0.81) 9.96(0.19) 0.04(0.19) 3.11(0.81) 0.38(0.16) 1.00(0.02)

ENET FIX BIC 2.60(1.18) 9.70(0.69) 0.30(0.69) 2.40(1.18) 0.52(0.24) 0.97(0.07)

ENET BIC BIC 4.87(0.36) 1.40(1.10) 8.60(1.10) 0.13(0.36) 0.97(0.07) 0.14(0.11)

AENET BIC BIC OLS ENET 2.10(0.82) 9.95(0.22) 0.05(0.22) 2.90(0.82) 0.42(0.16) 0.99(0.02)

AENET BIC BIC RIDGE ENET 2.60(0.95) 9.83(0.43) 0.17(0.43) 2.41(0.95) 0.52(0.19) 0.98(0.04)

AENET BIC BIC LASSO ENET 1.96(0.83) 9.96(0.19) 0.04(0.19) 3.04(0.83) 0.39(0.17) 1.00(0.02)

BIC 2.75(1.12) 9.65(0.66) 0.36(0.66) 2.25(1.12) 0.55(0.22) 0.96(0.07)

AIC 3.84(0.81) 8.01(1.46) 1.99(1.46) 1.16(0.81) 0.77(0.16) 0.80(0.15)

NOTE: TP=True Positive, TN = True Negative, FP=False Positive, FN=False Negative, Sensitivity=TP/(TP+FN),
Specificity=TN/(TN+FP); Mean(SD) represents the mean and the standard deviation obtained from 1000 iterations.

In Table 1, the number of true non-zero parameter is 5. As the mean values of
TP is closer to 5, the selected model is considered as a better model. At the same
time, as the mean value of FP is closer to 0, the selected model is considered as
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Table 2: Simulation Results for φ = (0.8, 0, 0, 0, 0, 0.7,−0.56), T = 200, p∗ = 15

Method L1 L2 P1 P2 TP TN FP FN Sensitivity Specificity
LASSO FIX 2.00(0.05) 11.02(0.81) 0.98(0.81) 1.00(0.05) 0.67(0.02) 0.92(0.07)

LASSO BIC 3.00(0) 3.86(1.6) 8.14(1.6) 0(0) 1.00(0) 0.32(0.13)

ALASSO BIC OLS 2.99(0.08) 11.98(0.16) 0.02(0.16) 0.01(0.08) 1.00(0.03) 1.00(0.01)

ALASSO BIC RIDGE 3.00(0) 11.02(1.01) 0.98(1.01) 0(0) 1.00(0) 0.92(0.08)

ALASSO BIC LASSO 2.99(0.1) 11.99(0.08) 0.01(0.08) 0.01(0.1) 1.00(0.03) 1.00(0.01)

ENET FIX BIC 2.00(0.03) 10.87(0.84) 1.13(0.84) 1.00(0.03) 0.67(0.01) 0.91(0.07)

ENET BIC BIC 3.00(0) 3.34(1.45) 8.66(1.45) 0(0) 1.00(0) 0.28(0.12)

AENET BIC BIC OLS ENET 2.99(0.1) 11.95(0.24) 0.05(0.24) 0.01(0.1) 1.00(0.03) 1.00(0.02)

AENET BIC BIC RIDGE ENET 3.00(0) 10.48(1.4) 1.52(1.4) 0(0) 1.00(0) 0.87(0.12)

AENET BIC BIC LASSO ENET 2.98(0.13) 11.99(0.12) 0.01(0.12) 0.02(0.13) 0.99(0.04) 1.00(0.01)

BIC 3.00(0) 11.42(1.08) 0.59(1.08) 0(0) 1.00(0) 0.95(0.09)

AIC 3.00(0) 9.33(1.88) 2.67(1.88) 0(0) 1.00(0) 0.78(0.16)

NOTE: TP=True Positive, TN = True Negative, FP=False Positive, FN=False Negative, Sensitivity=TP/(TP+FN),
Specificity=TN/(TN+FP); Mean(SD) represents the mean and the standard deviation obtained from 1000 iterations.

a better model. The higher the sensitivity and specificity, the better the selected
model. AIC achieved the relatively high true positive rate, but it was suffered from
a high false positive rate. LASSO and ENET with the fixed tuning parameter
and AENET with the weight of the ridge estimator achieved similar TP and FP
to BIC. They achieved a high specificity (0.52) and a low sensitivity (0.97). The
sensitivities of AENET with OLS and LASSO LASSO are worse than those for
ALASSO. and ENET estimators with the selection of λT by BIC are suffered from
high false positive rates.
In Table 2, the number of true non-zero parameter is 3. As the mean values of TP
is closer to 3, the selected model is considered as a better model. At the same time,
as the mean value of FP is closer to 0, the selected model is considered as a better
model. Unlike the result in Table 1, the overall performance of the selected methods
is pretty impressive. The result in 2 shows that sparse estimation methods such as
ALASSO and AENET outperform the information criterion methods. AIC achieved
the relatively high true positive rate, but it was suffered from a high false positive
rate. ALASSO and AENET with the weight of the OLS and LASSO estimators
achieved the best performance as their sensitivity and specificity are close to one.
BIC achieved the highest sensitivity but the slightly low specificity. Again, LASSO
and ENET estimators with the selection of λ)T by BIC are suffered from high false
positive rates.

In Table 3, all four true parameters are non-zero parameter. As the mean values of
TP is closer to 4, the selected model is considered as a better model. At the same
time, as the mean value of FP is closer to 0, the selected model is considered as a
better model. LASSO and ENET with the fixed tuning parameter achieved the best
performance as their sensitivity and specificity are over 90%. LASSO and ENET
with the BIC tuning parameter were suffered from the low specificity below 20%.
ALASSO and AENET with the weight of the Ridge estimator and BIC achieved a
similar performance as their specificity was almost perfect but their sensitivity was
below 80% are close to one.
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Table 3: Simulation Results for φ = (0.3, 0.25, 0.2, 0.15), T = 200, p∗ = 15

Method L1 L2 P1 P2 TP TN FP FN Sensitivity Specificity
LASSO FIX 3.69(0.53) 10.46(0.88) 0.54(0.88) 0.31(0.53) 0.92(0.13) 0.95(0.08)

LASSO BIC 3.96(0.20) 2.12(1.36) 8.88(1.36) 0.04(0.20) 0.99(0.05) 0.19(0.12)

ALASSO BIC OLS 2.38(0.65) 10.95(0.23) 0.06(0.23) 1.62(0.65) 0.59(0.16) 1.00(0.02)

ALASSO BIC RIDGE 2.95(0.70) 10.69(0.54) 0.31(0.54) 1.05(0.70) 0.74(0.17) 0.97(0.05)

ALASSO BIC LASSO 2.33(0.63) 10.97(0.17) 0.03(0.17) 1.67(0.63) 0.58(0.16) 1.00(0.02)

ENET FIX BIC 3.71(0.52) 10.43(0.92) 0.57(0.92) 0.29(0.52) 0.93(0.13) 0.95(0.08)

ENET BIC BIC 3.96(0.20) 2.13(1.36) 8.88(1.36) 0.04(0.20) 0.99(0.05) 0.19(0.12)

AENET BIC BIC OLS ENET 2.56(0.70) 10.92(0.27) 0.08(0.27) 1.44(0.70) 0.64(0.18) 0.99(0.02)

AENET BIC BIC RIDGE ENET 3.14(0.71) 10.59(0.63) 0.41(0.63) 0.86(0.71) 0.78(0.18) 0.96(0.06)

AENET BIC BIC LASSO ENET 2.48(0.70) 10.95(0.21) 0.05(0.21) 1.52(0.70) 0.62(0.17) 1.00(0.02)

BIC 3.17(0.67) 10.63(0.67) 0.37(0.67) 0.83(0.67) 0.79(0.17) 0.97(0.06)

AIC 3.60(0.52) 9.22(1.40) 1.78(1.40) 0.41(0.52) 0.90(0.13) 0.84(0.13)

NOTE: TP=True Positive, TN = True Negative, FP=False Positive, FN=False Negative, Sensitivity=TP/(TP+FN),
Specificity=TN/(TN+FP); Mean(SD) represents the mean and the standard deviation obtained from 1000 iterations.

5. Discussion

The results in the previous section showed if the coefficients in the model are strong
(different from zero), then ALASSO and AENET outperformed AIC and BIC in
variable selection. The sparse estimation methods achieved low (good) false positive
rates but were suffered from high (bad) false negative rates. In other words, the
sparse estimation methods tend to excessively exclude true non-zero coefficients.
This result reflects the characteristic of sparse estimation methods, which shrink
some coefficient values to zero. Thus, when a true value of a coefficient is close to
zero, there is a high chance for this to be zero, which depends on the selected value
of the tuning parameter in the estimation process.
AIC and BIC showed similar performance in the selection of tuning parameters,
which was also reported in Chen and Chan (2011). The L1 penalty selected by BIC
resulted in the least favorite performance. The results of ALASSO and ANENT with
the BIC tuning parameters performed with respect to the sensitivity and specificity
well. The cross-validation (CV) and the generalized cross-validation (GCV) may be
considered to select the tuning parameters. Nardi and Rinaldo (2011) demonstrated
the choice of λT using CV in ’lars’ package. However, one cannot randomly select
some values from time series data for k-fold CV since this scheme ignores serial
dependency of the time series (Bergmeir, Hyndman, and Koo, 2015). Therefore, the
CV for time series data is different from the CV for a regular regression model.
Regarding the weight for the individual variable, the OLS and LASSO estimators
showed similar results. However, the ridge estimator outperformed for the sparse,
weak parameter space as can be seen in Table 1. ALASSO and AENET showed
similar performance for all three models. The selected tuning parameter for L2−
penalty by BIC was very close to zero. The ENET estimator was used as the initial
weight for the individual variables in the AENET estimation. In ’gcdnet’ package,
one can choose two penalty functions for the initial weight in AENET. We used
OLS, Ridge, and LASSO estimates as the initial weight for the L1- penalty term
and ENET estimates for L2-penalty term. Zou and Zhang (2009) used the ENET
for the initial weight of L1-penalty. We need further investigation on the role ENET
estimates for the L1-penalty.
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The maximal number of parameters included in the model, p∗, generates a sparse
parameter space. The choice of p∗ is usually depends on the sample size, T . In the
simulation study, we chose fixed values: p∗ = 15 and 30 for T = 200 and 1000. As
we increased p∗, the performance became slightly worse. Nardi and Rinald (2011)
assumed that p∗ = o(T 1/2) and Chen and Chan (2011) assumed that p∗ = 10 log10 T .
The effect of p∗ definitely needs more studies since a choice of p∗ affects selection
performance and computing time.
Although we did not presented the results with the sample size 1000, a larger sample
size demonstrated better performance for all three models. The effects of the signal-
to-noise is not addressed in this article. However, we expect that a smaller value of
σ in the white noise term will result in better performance.

6. Conclusion

In this study, we investigated the variable selection via sparse estimation methods in
the AR model. This study showed that the sparse estimation methods could be an
alternative solution to the information criterion methods. In particular, the perfor-
mance of ALASSO and AENET was better than or similar to the BIC performance.
When the coefficients are quite distant from zero, the sparse estimation methods
clearly outperformed the information criterion methods.
Despite of the interesting results, this study bears several limitations. First, simu-
lation studies mainly relied on R packages ‘glmnet’ and ‘gcdnet’. In order to fairly
compare the selected methods, our own programming is desirable. Second, the
cross-validation is a common method for the choice of the global tuning parameter.
However, the time series data cannot be randomly shuffled for a cross-validation.
Several time series cross-validation methods have been proposed, but their theoret-
ical properties are not fully exploited. Cross-validation is adopted for the sparse
estimation methods in time series analysis yet, which deserves a future study. An-
other future study will focus on the forecasting performance of the sparse estimation
methods.
Future studies can be performed in several directions. First, the adaptive elastic net
estimator in the ARMA model needs be investigated for their oracle property along
with time series assumptions. Second, the selection methods of tuning parameters
need more close investigation. In particular, the time series cross-validation meth-
ods should be compared to BIC. Third, the performance of selected methods need
be compared regarding the forecasting performance in addition to sensitivity and
specificity.
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Bergmeir, C., Hyndman, R. J., and Koo, B., (2015), “A Note on the Validity of Cross-Validation
for Evaluating Time Series Prediction, Monash University Department of Econometrics and
Business Statistics Working Paper, 10, 15.

Chan, N. H., Yau, C. Y., and Zhang, R. M., (2015), “LASSO estimation of threshold autoregressive
models,” Journal of Econometrics, 189(2), 285–296.

JSM 2016 - Business and Economic Statistics Section

2476



Chan, N.H., Yau, C.Y. and Zhang, R.M., (2014), “Group LASSO for structural break time series,”
Journal of the American Statistical Association, 109(506), 590–599.

Chen, K., and Chan, K.(2011), “Subset ARMA selection via the adaptive Lasso,” Statistics and its
Interface, 4, 197–205.

Chun, H., and Keles, S. (2009), “ Expression quantitative trait loci mapping with multivariate
sparse partial least squares regression.” Genetics, 182(1), 79–90.

Dickey, D. A., and Fuller, W. A., (1979), “Distribution of the estimators for autoregressive time
series with a unit root,” Journal of the American statistical association, 74(366a), 427–431.

Fan, J., and Li, R., (2001), “Variable selection via nonconcave penalized likelihood and its oracle
properties,” Journal of the American statistical Association, 96(456), 1348–1360.

Knight, K., and Fu, W., (2000), “Asymptotics for lasso-type estimators,” Annals of statistics, 28:5,
1356–1378.

Kock, A. B., (2016), “Consistent and conservative model selection with the adaptive lasso in sta-
tionary and nonstationary autoregressions,” Econometric Theory 32:1, 243–259.

Nardi, Y., and Rinaldo, A., (2011), “Autoregressive process modeling via the lasso procedure,”
Journal of Multivariate Analysis, 102:3, 528–549.

Park, H., and Sakaori, F., (2013), “Lag weighted lasso for time series model,” Computational
Statistics, 28:2, 493–504.

Schwarz, G., (1978), “Estimating the dimension of a model,” The annals of statistics, 6(2), 461–464.
Tibshirani, R., (1996), “Regression shrinkage and selection via the lasso,” Journal of the Royal

Statistical Society. Series B (Methodological), 58:1, 267-288.
Wang, H., Li, G. and Tsai, C.L., (2007), “Regression coefficient and autoregressive order shrinkage

and selection via the lasso,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 69(1), 63–78.

Zou, H., (2006), “The adaptive lasso and its oracle properties,” Journal of the American statistical
association, 101:476, 1418-1429.

Zou, H., and Hastie, T., (2005), “Regularization and variable selection via the elastic net,” Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.

Zou, H., Hastie, T. and Tibshirani, R., (2007), “On the “degrees of freedom” of the lasso,” The
Annals of Statistics, 35(5), 2173–2192.

Zou, H., and Zhang, H.H., (2009), “On the adaptive elastic-net with a diverging number of param-
eters,” Annals of statistics, 37:4, 1733-1751.

JSM 2016 - Business and Economic Statistics Section

2477


