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Abstract
We developed a robust Bayesian method, based on the generalized beta distribution of the second

kind (GB2) to analyze consumption data from Nepal. Our objective is to predict the poverty rates
of small areas. The consumption data are positively-skewed and this suggests transforming the data
using a logarithmic transformation, which however could be problematic. We use a standard small
area model with two covariates and we assume that the consumption data have a flexible distribu-
tion that can be conveniently expressed as the scale mixture of generalized gamma distributions with
another generalized gamma distribution being the mixing distribution. We have constructed a hier-
archical Bayesian model and we have incorporated the covariates in an innovative manner. We have
applied this model to the second Nepal Living Standards Survey (NLSS-II). We have compared our
model with the hierarchical Bayesian nested error regression (NER) model which uses normality
assumption. Under the GB2 density the joint posterior density is complex, so we have used Markov
chain Monte Carlo (MCMC) methods to fit it. The NER model does not need MCMC methods but,
as indicated, it could be problematic under the logarithmic transformation.

Key Words: GB2 distribution, Hierarchical Bayes, Logarithmic transformation, Noninformative
priors, Non-normality, Poverty, Small area estimation.

1. Introduction

Positively skewed continuous data are seen in many situations. Size data such as income,
consumption, insurance and loss data are examples of continuous positively skewed data.
In many situations, such data could be heavy-tailed as well. There are numerous statistical
models and tests which have been developed under the normality assumption of a variable
under study. If the variable under study is not normal or approximately normal, then the
usual way to meet the normality assumption is by transformation. If we have positively-
skewed data, log transformation is the widely-used tool to meet the normality assumption
and proceed for model-building. Once the normality assumption holds, it makes model-
building, further analysis, and computation easier. The usual practice, frequentist as well
as in Bayesian paradigm, is to get estimates by the log transformation of a response vari-
able. For example, the small area estimation (SAE) of poverty applied by the World Bank
in numerous countries uses a nested error model with a logarithmic-transformed response
variable. The hierarchical Bayesian small area estimation paper (Molina, Nandram, and
Rao, 2014) used the logarithm transformation of a response for estimating SAE of poverty.
Nandram and Choi (2010) also used the logarithmic transformation for a proposed nonig-
norable nonresponse model, a spline regression, to estimate the finite population means of
small domains formed by crossing age, race and sex within counties.

Log transformation is the most popular tool used to meet normality assumption when a re-
sponse variable has a positively-skewed distribution. Once we use transformation to build
a model, then the usual way to get back to the original scale estimates is to perform back
transformation. Does back transformation give the correct distribution of the response vari-
able? Furthermore, what if the normality assumption fails? There are numerous positively-
skewed distributions, one of them is a log-normal distribution. If the original data follow
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a log-normal or approximately log-normal distribution, then the log-transformed data fol-
low a normal or approximately normal distribution. However, back transformation does
not give a correct distribution (Feng et al. 2014). It would be better if we had a model
that could give better estimates and prediction, without logarithmic transformation of the
variable under study. Out concept is to develop a statistical model without the need for a
logarithmic transformation for positively-skewed data. This will definitely avoid the need
for transformation since we are not obligated to meet normality assumption of the response
variable.

There are many distributions which are positively-skewed. Which distribution should we
choose? Exponential, gamma, and generalized gamma distributions are some standard
examples of continuous positively-skewed distributions. Since we do not know the distri-
bution of the data, we may need to assume that the data follow some particular distribution
for model-building. If we do not know much about the data, it could be better to choose a
generalized distribution.

Which generalized distribution would be better to choose for positively-skewed data?GB2
is a generalized distribution which can give many distributions as special cases. A three-
parameter distribution includes log-t, generalized gamma, and beta of type two; two-parameter
distribution includes log-Cauchy, log-normal, Weibull, gamma, and shifted Pareto; one-
parameter distribution includes half normal, exponential, and Chisquare (Dong and Chan,
2013).

GB2 could be a useful distribution for continuous positively-skewed data with a heavy tail.
The shape and rate parameters included in GB2 distribution contribute in capturing those
heavy tails and can be used in modeling positively-skewed data. TheGB2 distribution is
acknowledged to give an excellent description of income distribution (McDonald, 1984;
McDonald and Xu, 1995). Graf and Nedyalkova (2014) usedGB2 distribution to model
income and as an indicators of poverty data. They fit theGB2 model to the income dis-
tribution and to study income inequality at the country level in the contest of the European
Union Statistics on Income and Living Conditions (EU-SILC). Dong and Chan (2013) pre-
sented a Bayesian approach in order to model long-tail loss-reserving data usingGB2.

A GB2 distribution could be a useful distribution, if the data have errors and bias. The
errors in the data could arise as a measurement error, a response error, a recalling error or a
bias along with many other possibilities. In a living standards survey the welfare variable
consumption is the aggregate of all food and all non-food items consumed. The respondent
has to recall all kind of consumptions (in monitory value) throughout the whole reference
year. In such cases the recorded data may not be the true response and GB2 could be help-
ful for modeling, since GB2 assumes that its rate parameter has a distribution.

This paper focuses on giving estimates for small areas. Small-area estimation refers to a
collection of statistical techniques designed for improving sample survey estimates through
the use of auxiliary information (Rao and Molina, 2015). It begins with a response variable
for which we require estimates over a range of small areas. To facilitate SAE we introduced
covariates in our model with the random area effect in hierarchical Bayesian paradigm. In
this paper, we will demonstrate use of the GB2 model for continuous positively-skewed
data using the NLSS-II, mountains stratum. The response variable is per capita consump-
tion and two covariates were used. We will show the results using the sampled data and
a prediction within the sampled units. An extension to a non-sampled units prediction
can also be done, which we will discuss in Section 5. The goal of this paper is to avoid log
transformation of a response variable, this is accommodated using the GB2 for a positively-
skewed data, and introduce covariates in the model.
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We organize the paper as follows. In Section 2, we discuss problems that arise with log-
arithmic transformation for continuous, positively-skewed data. In Section 3, we present
GB2 distribution as a mixture of two generalized gamma distributions. In Section 4, we
develop a Bayesian hierarchical model and introduce covariates into the model. In Section
5, we show how to predict a response variable for sampled as well as non-sampled observa-
tions from GB2 model. In Section 6, we talk about the computation and drawing samples.
In Section 7, we show the results from NLSS-II mountains stratum, consumption as the
response variable with two covariates, followed by a discussion in Section 8.

2. Problems with log transformation

Let us assume we have original response observations from the log-normal distribution,
y′ ∼ LN(µ, σ2). The mean of the original response variable is

E[Y ′] = eµ+
σ2

2 .

Let us take a log transformation,y = ln(y′). Now, the model with log-transformed re-
sponse variable follows a normal distribution with meanµln. The mean estimate of the
log-transformed variable is

µ̂ln =
1

n

n
∑

i=1

log(y′i).

Transferring back to the mean we geteµ̂ln , a maximum likelihood estimator but not an un-

biased estimate ofeµ. However, the mean of the original response datay′ is eµ+
σ2

2 , noteµ.
Thus, log transformation can not give correct estimates of the log-normal distribution (See
Feng et al., 2013, 2014).

There is yet another problem pertinent with the log transformation. We will show an exam-
ple of the non-existence of moments in the Bayesian paradigm. Let us consider a population
with sizeN , with response vectory, where we have sampledys = y1, · · · , yn. Let us take
the log transformation of the observed variable

zi = log(yi), i = 1, · · · , N.

Consider a model and its prior

z1, · · · , zn, zn+1, · · · , zN |µ, σ2 iid∼ N(µ, σ2), σ2 > 0

π(µ, σ2) ∝ 1

σ2
.

It gives

(n− 1)s2

σ2
|zs ∼ Γ

(

n− 1

2
,
1

2

)

, zs = (z1, · · · , zn)′,

µ− z̄

s/
√
n
|zs ∼ tn−1.

Let us find the expected value of response variable by integrating out parameters.

I = E[yi|zs] = Eµ,σ2

[

E(yi|µ, σ2, zs)
]

= Eµ,σ2 [eµ+
σ2

2 |zs]

=

∫ ∞

−∞

∫ ∞

0
eµ+

σ2

2 π(µ|σ2, zs) π(σ
2|zs) dσ2dµ.
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Sinceσ2

2 > 0,

I ≥
∫ ∞

−∞

∫ ∞

0
eµ π(µ|σ2, zs) π(σ

2|zs) dσ2dµ

=

∫ ∞

−∞

eµ
∫ ∞

0
π(µ|σ2, zs) π(σ

2|zs) dσ2dµ

=

∫ ∞

−∞

eµ tn−1

(

µ− z̄

s/
√
n
|zs
)

dµ

= ∞.

Thus the expected value ofyi does not exist. This is indeed problematic for inference.

3. The generalized beta distribution of the second kind (GB2)

GB2 distribution has four parameters, which can be expressed as a mixture of the gener-
alized gamma distributions. The probability density function of a response variabley and
the probability density function of the rate parameterλ both have the generalized gamma
distribution:

f(y|λ, α, γ) =
γe−(λy)γyα−1λα

Γ(αγ )
, λ, α, γ > 0, (1)

g(λ|η, φ, γ) =
γe−(ηλ)γλφ−1ηφ

Γ(φγ )
, η, φ, γ > 0. (2)

Mixing the generalized gamma density ofy with the generalized gamma density of the rate
parameterλ gives theGB2 distribution with four parameters,Y ∼ GB2(α, φ, γ, η). In the
GB2, the shape parametersα andφ determine the skewness of the distribution, the shape
parameterγ controls the overall shape, andη is the rate parameter

f(y|α, φ, γ, η) =

∫ ∞

0
f(y|λ, α, γ)g(λ|η, φ, γ) dλ (3)

= γηφ
Γ(α+φ

γ )

Γ(αγ )Γ(
φ
γ )

yα−1

(yγ + ηγ)
α+φ

γ

, α, φ, γ, η > 0. (4)

Thekth moment of theGB2 distribution exists ifφ > k, and it is given by

E[Y k|α, φ, γ, η] =
Γ
(

α+1
γ

)

Γ
(

α
γ

)

Γ
(

φ−k
γ

)

Γ
(

φ
γ

) ηk, φ > k.

For the mean to exist, we needφ > 1. If the mean exists, we have

η =
Γ
(

α
γ

)

Γ
(

α+1
γ

)

Γ
(

φ
γ

)

Γ
(

φ−1
γ

)E[Y |α, φ, γ, η], φ > 1.

LetE[Y |α, φ, γ, η] = eµ. Thenµ = ln(E[Y |α, φ, γ, η]), and

f(y|α, φ, γ, µ) = γ





Γ
(

α+1

γ

)

Γ
(

α
γ

)

Γ
(

φ−1

γ

)

Γ
(

φ

γ

) e
−µ





α

Γ(α+φ

γ
)

Γ(α
γ
)Γ(φ

γ
)

yα−1

(

1 +

[

y
Γ

(

α+1

γ

)

Γ

(

α
γ

)

Γ

(

φ−1

γ

)

Γ

(

φ
γ

) e−µ

]γ)
α+φ
γ

,
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with α, γ > 0, φ > 1.

We adjust the density function such that the mean exists withφ > 0, and fory ≥ 0

f(y|α, φ, γ, µ) = γ





Γ
(

α+1

γ

)

Γ
(

α
γ

)

Γ
(

φ

γ

)

Γ
(

φ+1

γ

)e
−µ





α

Γ(α+φ+1

γ
)

Γ(α
γ
)Γ(φ+1

γ
)

yα−1

(

1 +

[

y
Γ

(

α+1

γ

)

Γ

(

α
γ

)

Γ

(

φ
γ

)

Γ

(

φ+1

γ

)e−µ

]γ)
α+φ+1

γ

,

with α, φ, γ > 0.

4. The GB2 hierarchical Bayes model

Let the sample data haven observations, and the response variabley havep covariates.
There areℓ small areas,i = 1, · · · , ℓ, and each small area hasj = 1, · · · , ni, observations.
Let us considerµij = x′

ijβ+ νi, wherex is thep× 1 vector of covariates,β is the weight
parameter for each covariate andνi is the area effect. The likelihood function is

f(y|α, φ, γ,β, ν) =

ℓ
∏

i=1













γ

[

Γ
(

α+1

γ

)

Γ
(

α
γ

)

Γ
(

φ

γ

)

Γ
(

φ+1

γ

)

]α

(gi)
α−1

Γ(α
γ
)Γ(φ+1

γ
)

Γ(α+φ+1

γ
)













ni

×
ℓ
∏

i=1

















e−α[
∑ni

j=1
(x′

ijβ)+niνi]

∏ni

j=1

(

1 +

[

yij
Γ
(

α+1

γ

)

Γ
(

α
γ

)

Γ
(

φ

γ

)

Γ
(

φ+1

γ

)e−(x′
ijβ+νi)

]γ)α+φ+1

γ

















.

Let

R(α,φ,γ) =





Γ
(

α+1
γ

)

Γ
(

α
γ

)

Γ
(

φ
γ

)

Γ
(

φ+1
γ

)



, B(α,φ,γ) =
Γ(αγ )Γ(

φ+1
γ )

Γ(α+φ+1
γ )

,

gi =





ni
∏

j=1

yij





1/ni

, i = 1, · · · , ℓ.

We have

f(y|α, φ, γ,β, ν) =
ℓ
∏

i=1

[

γ
[

R(α,φ,γ)

]α
(gi)

α−1

B(α,φ,γ)

]ni

×
ℓ
∏

i=1









e−α(
∑ni

j=1
(x′

ijβ)+niνi)

∏ni

j=1

(

1 +
[

yijR(α,φ,γ)e
−(x′

ijβ+νi)
]γ)α+φ+1

γ









.

(5)
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We assume the area effects follow a normal distribution

νi|σ2 ∼ N(0, σ2), i = 1, · · · , ℓ.

Using non-informative independent priors forσ2, α, φ, γ, andβ given by

π(σ2) =
1

(1 + σ2)2
, π(α) =

1

(1 + α)2
, π(φ) =

1

(1 + φ)2
, π(γ) =

1

(1 + γ)2
,

π(β) ∝ 1,

the joint posterior distribution is

f(β, σ2, α, φ, γ,ν|y) ∝
1

(1 + σ2)2
× 1

(1 + α)2
× 1

(1 + φ)2
× 1

(1 + γ)2

×
ℓ
∏

i=1

[

γ
[

R(α,φ,γ)

]α
(gi)

α−1

B(α,φ,γ)

]ni

×
ℓ
∏

i=1









e−α(
∑ni

j=1
(x′

ijβ)+niνi)

∏ni

j=1

(

1 +
[

yijR(α,φ,γ)e
−(x′

ijβ+νi)
]γ)α+φ+1

γ









×
ℓ
∏

i=1

[

1√
σ2

e−
1

2

ν2i
σ2

]

.

(6)

5. Prediction

If we have the set of parametersα, φ, γ,β andνi, i = 1, · · · , ℓ, we can findµij for each
sampled PSU as

µij = x′

ijβ + νi, i = 1, · · · , ℓ, j = 1, · · · , ni.

For the non-sampled PSUs, we do not have information forνi, i = ℓ+1, · · · , L. However,
we can use the prior distribution,νi ∼ N(0, σ2), to draw area effects with information of
parameterσ2. (Note, this paper has shown results only for sampled observations.) Now,
we can calculate parameterη as

ηij =
Γ
(

α
γ

)

Γ
(

φ+1
γ

)

Γ
(

α+1
γ

)

Γ
(

φ
γ

)eµij .

From the generalized gamma density of responsey|λ, α, γ in (1) and parameterλ|η, α, γ in
(2), we can write these densities with transformation,t = (λy)γ andt = (ηλ)γ respectively
as

G1 = (ηλ)γ ∼ Γ

(

φ+ 1

γ
, 1

)

, and

G2 = (λy)γ ∼ Γ

(

α

γ
, 1

)

.
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If two gamma random samplesG1 andG2 are drawn from above two distributions respec-
tively, then we can predict the response,ŷij as follows

λij =
(G1)

1

γ

ηij
, and

ŷij =
(G2)

1

γ

λij
.

The ŷij are smoothed estimates of theyij , the observed response values.

6. Computation

There could be numerous small areas and it may not be feasible to sample area effects
within MCMC. So, we integrate out area parametersνi, i = 1, · · · , ℓ, from the joint pos-
terior density function which will reduce the large number of parameters in the MCMC
sequence, and help to provide better mixing in MCMC. However, posterior density is not
in a simple form, so we integrate outνi numerically. We transformνi to standard nor-
mal zi = νi/σ, for numerical integration, and divide the domain into m equal intervals
[tk−1, tk] , k = 1, · · · ,m. We can approximate joint posterior density after integrating out
νi, i = 1, · · · , ℓ as follows

f(β, σ2, α, φ, γ|y)

∝ 1

(1 + σ2)2
× 1

(1 + α)2
× 1

(1 + φ)2
× 1

(1 + γ)2
×

ℓ
∏

i=1

{[

γ
[

R(α,φ,γ)

]α
(gi)

α−1

B(α,φ,γ)

]ni
}

×
ℓ
∏

i=1







m
∑

k=1

∫ tk

tk−1





e−α(
∑ni

j=1
(x′

ijβ)+nizσ)

∏ni

j=1

(

1 +
[

yijR(α,φ,γ)e−(x′β+zσ)
]γ)

α+φ+1

γ





1√
σ2

e−
1
2
z2

dz







.

For numerical integration we take 50 grid points between(3,−3). The standard normal
density domain covers99.74% of the distribution within this range. The grid points are
the middle points of the intervals,zk =

tk−1+tk
2 , k = 1, · · · ,m. Using large number grid

values forνi: 100, 200, 1000 does not make much difference with the number of grids 50.

f(β, σ2, α, φ, γ|y)

∝ 1

(1 + σ2)2
× 1

(1 + α)2
× 1

(1 + φ)2
× 1

(1 + γ)2
×

ℓ
∏

i=1

{[

γ
[

R(α,φ,γ)

]α
(gi)

α−1

B(α,φ,γ)

]ni
}

×
ℓ
∏

i=1







m
∑

k=1





e−α(
∑ni

j=1
(x′

ijβ)+nizkσ)

∏ni

j=1

(

1 +
[

yijR(α,φ,γ)e−(x′β+zkσ)
]γ)

α+φ+1

γ



 (Φ(tk)− Φ(tk−1))







.

(7)

We have posterior density in complex form and none of the conditional posterior densities
are in simple form either. We have used the MCMC method for sampling parameters.
We used grid sampling and the Metropolis Hastings method to draw parameters. The grid
sampling method is used to drawσ2, α, φ andγ parameters and the Metropolis Hastings
algorithm is used to draw parametersβ, νi, i = 1, · · · , ℓ. The number of grids used to draw
parametersσ2, α, φ andγ is 100. Using more grids like 200, 500, 1000 does not make a
difference compared to the number of grids 100.

The proposal density forβ is a multivariate normal,β|∑ ∼ MN(β̂,
∑

), and a proposal
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densityνi, i = 1, · · · , ℓ, is a univariate normal,νi
iid∼ N(ν̂i, δ

2). We obtainβ̂ andΣ as
follows. Given other parameters, the proposal mean vectorβ̂ is obtained numerically from
the Nelder-Mead simplex method. For a covariance matrix, the variances and covariances
are calculated numerically and tuned by some positive constant (multiplied by two in our
case). Similarly, for the parameterνi, the proposal univariate normal distribution’s mean
and variance(ν̂i, δ2) are obtained using numerical integration given other parameters. The
target densities are respectively

f(β|σ2, α, φ, γ,y) ∝
l
∏

i=1

∫

νi





e−(x′β+νi)e−
1

2

ν2i
σ2 dνi

∏ni

j=1

(

1 +
[

yijR(α,φ,γ)e−(x′β+νi)
]γ)α+φ+1

γ



 ,

π(νi|β, σ2, α, φ, γ,y) ∝ e−α(
∑ni

j=1
(x′

ijβ)+niνi) e−
niν

2
i

2σ2

∏ni

j=1

(

1 +
[

yijR(α,φ,γ)e−(θ+νi)
]γ)α+φ+1

γ

, i = 1, · · · , ℓ.

The jumping probability from stepk−1 tok for νi is shown below (the jumping probability
for β can be written similarly)

ρ(k − 1, k) = min

(

1,
π(ν

(k)
i ) q(ν

(k−1)
i | ν(k)i )

π(ν
(k−1)
i ) q(ν

(k)
i | ν(k−1)

i )

)

,

whereπ(.) is the target density function andq(.) is the proposal density function. We
choose a newkth sample with probabilityU ∼ Unif(0, 1). Let us say, we draw a ran-

dom numberu from the standard uniform distribution, then accept the new sampleν
(k)
i if

u < ρ(k − 1, k), else keep the previous sampleν(k−1)
i .

We used Metropolis Hastings sampler for parameterβ within the Gibbs sampler. The ac-
ceptance rate for the Metropolis Hastings sampling ofβ is about20%. After drawing all
other rate and shape parameters we draw area effect parameterνi for each area separately.
We draw parameterνi using the Metropolis Hastings sampler that has an acceptance rate
ranging from40% to 75%.

We have used NLSS-II consumption data as our response variable with two covariates:
household size and share of kids aged between zero to seven. We show results using sam-
pled data in NLSS-II survey for the mountains stratum. We drew 5200 parameter sets
burn-in 270 samples with final 400 samples left. For consistency, we have also checked the
results of total Gibbs samples remaining 1000, 500, and 100 Gibbs and those estimates are
consistent with 400 Gibbs remaining. We went through diagnostic procedure of Geweke
test, auto-correlation test and trace plots to get the final samples.

7. Results

Figure 1 is a density plot of the observed response and estimated responses for each enu-
meration unit in the sampled data. Dark bold black line is the observed response from the
mountains stratum, NLSS-II and red thin lines are GB2 estimates of the responses from
the model. This plot shows that the GB2 model can give a better density estimate of the
observed density.

Figure 2 shows the a posterior poverty rates of the mountains stratum of Nepal using the
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GB2 model and hierarchical Bayes nested error regression model (NER). The GB2 model
estimates overall poverty rate of0.301 with standard error of0.034 and an hierarchical
Bayes NER model estimate of0.28 with a standard error of0.025. The estimate by direct
method in the NLSS-II report and the World bank report (2006) is0.326.

Poverty rates are calculated by comparing per capita consumption against the national
poverty line for Nepal of7, 696 rupees per year in average (2003) as given in the report,
SAE of Poverty, Caloric Intake and Malnutrition in Nepal (2006). It represents the per-
centage of the population below the national poverty line. Table 1 shows the district level
poverty estimates of 14 districts of the mountains stratum using sampled observations only.
We note that NLSS-II is not designed to give estimates in district levels because of the
small sample sizes. Therefore, direct estimates for district level from NLSS-II do not make
sense. If we do direct poverty estimates, the Manang and Dolpa districts have zero percent-
age poverty rates and the Humla district has a 91.3% poverty rate. Fitting a model will help
to smooth out prediction by borrowing strength. By fitting the GB2 and hierarchical Bayes
NER model these extreme poverty estimates have been smoothed out. Table 1 shows the
results obtained from the GB2 model, hierarchical Bayes model as described in Molina,
Nandram and Rao (2014) and direct estimates from NLSS-II survey. For both GB2 and hi-
erarchical Bayes NER models, some of the districts such as Solukhumbu (22.8% from GB2
vs 22.7% from NER model ) and Bajura (36.1% from GB2 vs 36.9% from NER model )
gave close poverty estimates of poverty rates but most of districts have different poverty
estimates. Here, we have shown results using only sampled households in the survey with
two covariates, to demonstrate GB2 model for positively-skewed continuous data.

Table 1: District poverty rates and standard errors by NLSS-II direct method, GB2 and
Bayesian nested error regression (NER) model for the mountains stratum.

Districts Sample size NLSS direct GB2 model NER model
Pov. Rate SE Pov. Rate SE Pov. Rate SE

Taplejung 36 0.288 0.075 0.260 0.083 0.199 0.072
Sankhuwasabha 48 0.290 0.066 0.290 0.072 0.252 0.069

Solukhumbu 24 0.166 0.076 0.228 0.094 0.227 0.098
Dolakha 48 0.192 0.057 0.244 0.068 0.218 0.064

Sindhupalchok 84 0.433 0.054 0.342 0.062 0.318 0.051
Manang 12 0 0 0.046 0.069 0.003 0.017

Dolpa 12 0 0 0.133 0.112 0.066 0.078
Jumla 12 0.258 0.126 0.206 0.124 0.256 0.149

Kalikot 12 0.593 0.142 0.402 0.153 0.532 0.166
Mugu 12 0.300 0.132 0.321 0.136 0.211 0.136

Humla 12 0.913 0.082 0.460 0.175 0.666 0.158
Bajura 24 0.288 0.092 0.361 0.104 0.369 0.105

Bajhang 24 0.116 0.065 0.319 0.107 0.227 0.088
Darchula 24 0.536 0.102 0.369 0.110 0.418 0.111

Mountains 384 0.326 0.024 0.301 0.034 0.280 0.025

8. Discussion

Logarithmic transformation for positively-skewed data could be problematic. We fit the
GB2 distribution to continuous positively-skewed consumption data within the Bayesian
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paradigm using the information of covariates without logarithmic transformation.This
paper fits hierarchical the Bayesian GB2 model using NLSS-II sampled data and predicts
within the same sampled data. In the future we will extend this GB2 model to give estimates
for non-sampled observation as we have discussed in Section 5. Here we have shown results
only using two covariates, our next extension is to use dimension reduction when we have
numerous covariates.

Figure 1: Density plot: Y vsŶ Figure 2: Posterior poverty rates
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