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Abstract 

The Pearson and likelihood ratio statistics are commonly used to test goodness-of-fit 
for models applied to data from a multinomial distribution. When data are from a table 
formed by cross-classification of a large number of variables, the common statistics may 
have low power and inaccurate Type I error level due to sparseness in the cells of the 
table. It has been proposed to assess model fit by using a new version of GFfit statistic 
based on orthogonal components of Pearson chi-square as a diagnostic to examine the fit 
on two-way subtables. However, due to variables with a large number of categories and 
small sample size, even the GFfit statistic may have low power and inaccurate Type I 
error level due to sparseness in the two-way subtable. In this paper, a method based on 
choosing different orthogonal components for the GFfit statistic on the subtables is 
developed to improve the performance of the GFfit statistic. Simulation results for power 
and type I error rate for several different cases along with comparisons to other 
diagnostics are presented. 
 
Key words: sparseness, GFfit statistic, orthogonal components, chi-square test, 
goodness-of-fit, 
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1.INTRODUCTION 
Traditionally we use the likelihood ratio (𝐿𝑅   and the Pearson chi-square (𝐺𝐹   to test 
goodness of fit for a model fit on cross-classified variables 

𝐿𝑅 = 2𝑛 ∑ 𝑓𝑟ln⁡(
𝑓𝑟
�̂�𝑟

)

𝑘

𝑟=1

 

𝐺𝐹 = 𝑛 ∑
(𝑓𝑟 − �̂�𝑟)

2

�̂�𝑟

𝑘

𝑟=1

 

Suppose we have 𝑝 categorical variables and the i-th variable has 𝑐𝑖 categories. Thus there 
are 𝑘 = ∏ 𝑐𝑖

p
i=1   cells in the cross-classified table. Each cell corresponds to a response 

pattern. Then 𝑓𝑟  is the sample proportion of the r-th response pattern and �̂�𝑟  is the 
estimated probability of the r-th response pattern. If the number of observations in each 
response pattern is large enough and under the conditions (Koehler and Larntz, 1980  that 
i)⁡𝐻0: π = π(θ), ii)⁡𝑘⁡is fixed and iii)⁡min1≤r≤k𝑛𝜋𝑟 → ∞ for 𝑛 → ∞, both 𝐿𝑅 and 𝐺𝐹 are 
approximately distributed χ2  with degree of freedom equal to k − 1 −  number of 
estimated parameters. However, when there is a problem of sparseness, these two statistics 
may not have an approximate chi-square distribution. Several statistics have been proposed 
using marginal distributions of the joint variables rather than the joint distribution.  
Joreskog and Moustaki (2001  proposed the GFfit statistic as a diagnostic to help in finding 
the source of model lack of fit. A new version of the GFfit statistic is proposed by Reiser, 
Cagnone & Zhu (2014  by decomposing the Pearson statistic from the full table into 
orthogonal components defined on lower-order marginal distributions. Then the GFfit 
statistic is defined as a sum of a subset of these components. However, due to variables 
with a large number of categories and small sample size, even this GFfit statistic may have 
low power and inaccurate Type I error level due to sparseness in the two-way subtable. In 
this paper, a method based on choosing different orthogonal components for the GFfit 
statistic on the subtables is developed to improve the performance of the GFfit statistic.  
The paper is organized as follows: In Section 2 we introduce the marginal proportion and 
the GFfit orthogonal components. In Section 3 we introduce the method to choose several 
orthogonal components for the GFfit statistic. In Section 4 we give a discussion of the 
GLLVM model. In Section 5 simulation results for power of the GFfit statistic to detect 
lack of fit along with comparisons to other diagnostics are presented.  

 
2. MARGINAL PROPORTIONS 

A traditional method such as Pearson’s statistic uses the joint frequencies to calculate 
goodness of fit for a model that has been fit to a cross-classified table. This section 
presents a transformation from joint proportions or frequencies to marginal proportions. 

 
2.1 First- and Second-order Marginals 
Consider the three variables, two categories case. An 8 by 3 matrix 𝑽 can be used to 
denote the response patterns as the rows: 
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𝑉 =

[
 
 
 
 
 
 
 
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1]

 
 
 
 
 
 
 

 

Let 𝑣𝑖𝑠 represent element 𝑖 of response pattern 𝑠, 𝑖 = 1,… , 𝑝⁡and 𝑠 = 1,… , 𝑘. In this 
example, 𝑝 = 3 and 𝑘 = 8. Then, under some specific model, which we will introduce 
later, the first-order marginal proportion for variable 𝑦𝑖 can be defined as 

𝑃𝑖(𝜃) =Prob(𝑦𝑖 = 1|𝜃) = ∑ 𝑣𝑖𝑠𝜋𝑠(𝜃)𝑠  
and the true first-order marginal proportion is given by 

𝑃𝑖 =Prob(𝑦𝑖 = 1) = ∑ 𝑣𝑖𝑠𝜋𝑠𝑠  . 
Thus the marginal proportions are linear combination of joint proportions: 

𝑷 = 𝐇𝝅 
The H matrix can be defined from the V matrix. For first-order marginal, 𝐇[1] = 𝑽′. 
For 3 variables with 3 categories, 𝐇[1] = 𝑽′, where 

𝑉27∗6 =

[
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0⁡⁡⁡⁡⁡0 0 0
0 0 0⁡⁡⁡⁡⁡0 1 0
0 0 0⁡⁡⁡⁡⁡0 0 1
0 0 1⁡⁡⁡⁡⁡0 0 0
0 0 1⁡⁡⁡⁡⁡0 1 0
⋮ ⁡⋮ ⁡⋮⁡⁡⁡⁡⁡⁡⁡⋮ ⋮ ⁡⋮
1 0 0⁡⁡⁡⁡0 0 0
1 0 0⁡⁡⁡⁡0 1 0
1 0 0⁡⁡⁡⁡0 0 1
⋮ ⁡⋮ ⁡⋮⁡⁡⁡⁡⁡⁡⁡⋮ ⋮ ⁡⋮
0 1 0⁡⁡⁡⁡1 0 0
0 1 0⁡⁡⁡⁡1 1 0
0 1 0⁡⁡⁡⁡1 0 1]

 
 
 
 
 
 
 
 
 
 
 
 

 

Under the model, for two categories, the second-order marginal proportion for variable 𝑦𝑖 
and 𝑦𝑗 can be defined as  

𝑃𝑖𝑗(𝜽) =Prob(𝑦𝑖 = 1, 𝑦𝑗 = 1|𝜽) = ∑ 𝑣𝑖𝑠𝑣𝑗𝑠𝜋𝑠(𝜃)𝑠  , 
and the true second-order marginal proportion is given by 

𝑃𝑖𝑗 =Prob(𝑦𝑖 = 1, ⁡𝑦𝑗 = 1) = ∑ 𝑣𝑖𝑠𝑣𝑗𝑠𝜋𝑠𝑠  . 
If the number of categories 𝑐 is greater than 2, the second-order marginal proportions for 
𝑦𝑖 and 𝑦𝑗 can be represented as a⁡𝑐 by 𝑐 table with (𝑐 − 1)2 independent proportions. 
Thus for second-order marginal proportions, the rows of H are Hadamard products 
among the columns of V. For 3 variables with 3 categories, 𝐇[2] is an 12 by 27 matrix: 

𝐇[2] = ⁡

[
 
 
 
 
 
 
 
 
 

(𝑣1 ∘ 𝑣3)
′

(𝑣1 ∘ 𝑣4)
′

⋮
(𝑣1 ∘ 𝑣5)

′

(𝑣1 ∘ 𝑣6)
′

⋮
(𝑣3 ∘ 𝑣5)

′

⋮
(𝑣𝑖(𝑐−1) ∘ 𝑣𝑗(𝑐−1))

′
]
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where 𝑣𝑖 is the column 𝑖 of matrix V, and 𝑣𝑖 ∘ 𝑣𝑗 is the Hadamard product of columns 𝑖 
and 𝑗. 
 
2.2 Test statistic 
Linear combinations of 𝝅 may be tested under the null hypothesis 𝐻0:𝐇𝝅 = 𝐇𝝅(𝜽) and 
the test statistic is 

𝑋[𝑡:𝑢]
2 = 𝒆′�̂�𝒆

−𝟏𝒆⁡, 
�̂�𝒆 = 𝑛−1𝛀𝒆 with 𝛀𝒆 evaluated at the maximum likelihood estimates �̂�, and where 

𝛀𝒆 = 𝐇(𝐷(𝝅) − 𝝅𝝅′ − 𝐆(𝐀′𝐀)−𝟏𝐆′)𝐇′ 
𝐷(𝝅) =diagnal matrix with (𝑠, 𝑠) element equal to 𝜋𝑠(𝜽) 

𝐀 = 𝐷(𝜋)−1/2
∂𝝅(𝜽)

∂𝜽
 

𝐆 =
∂𝝅(𝜽)

∂𝜽
 

𝒆 = 𝐇(𝒇 − 𝝅) is the matrix form of the marginal residuals. 
𝐇 = 𝐇[1:2] produces 𝑋[1:2]

2  and 𝐇 = 𝐇[2] produces 𝑋[2]
2 . It has been proven that for two 

categories, the distributions of 𝑋[1:2]
2  and 𝑋[2]

2  are chi-square distributions with degrees of 
freedom equal to 𝑞(𝑞 + 1)/2 and 𝑞(𝑞 − 1)/2 respectively. 𝑋[1:𝑞]

2 = 𝐺𝐹. 𝑋[𝑡:𝑢]
2  is a score 

statistic, Reiser (1996 , Reiser and Lin (1999 , Cagnone and Mignani (2007 , Rayner and 
Best (1989 . 
 
2.3 Orthogonal components 
Consider the 𝑘 − 𝑔 − 1 by c𝑞 matrix 𝐇∗ = 𝑭′𝐇[1:𝑞;−𝑔], where 𝑔 is the number of 
unknown model parameters to be estimated and 𝐇[1:𝑞;−𝑔] is matrix 𝐇[1:𝑞] deleting 𝑔 
rows. 𝐇∗ has full row rank. 𝑭 is the upper triangular matrix such that⁡𝑭′𝛀𝒆𝑭 = 𝑰. 𝑭 =
(𝑪′)−1, where 𝑪 is the Cholesky factor of 𝛀𝒆. Premultiplication by (𝑪′)−1 
orthonormalises the matrix 𝐇[1:𝑞;−𝑔] in the matrix 𝐷(𝝅) − 𝝅𝝅′ − 𝐆(𝐀′𝐀)−𝟏𝐆′. 

𝑋𝑃𝐹
2 = 𝑋[1:𝑞;−𝑔]

2 = 𝑛𝐫′(�̂�∗)′�̂�∗𝐫 
where �̂�∗ = 𝐇∗(�̂�), and 𝐫 = (�̂� − 𝝅(�̂�)). 
Define 

�̂� = 𝑛
1
2�̂�′𝐇𝐫 = 𝑛

1
2�̂�∗𝐫 

where �̂�⁡ is the matrix 𝑭 evaluated at 𝜽 = �̂�. Then 

𝑋𝑃𝐹
2 = �̂�′�̂� = ∑ γ̂𝑗

2

𝒋=𝒌−𝒈−𝟏

𝒋=𝟏

 

�̂�∗𝐫 has asymptotic covariance matrix ⁡𝑭′𝛀𝒆𝑭 = 𝑰𝒌−𝒈−𝟏. The elements γ̂𝑗
2 are 

asymptotically independent chi-square random variables with 𝑑𝑓 = 1 (Reiser, 2008 . 
Using Sequential Sum of Squares: Redefine 

𝑧𝑠 = √𝑛 (𝜋𝑠(�̂�))
−

1

2
(�̂�𝑠 − 𝜋𝑠(�̂�)). 

Perform the regression of 𝒛 on the columns of 𝐇′: 
𝒛 = 𝐇′𝜷 

Then, 
�̂� = (𝐇�̂�𝐇′)−𝟏𝐇�̂�𝐮 

where 𝐮 = √𝑛𝐫, �̂� = �̂�
𝟏

𝟐�̂��̂��̂�
𝟏

𝟐 = �̂�
𝟏

𝟐𝚺�̂�
𝟏

𝟐, and 𝑫 = 𝑑𝑖𝑎𝑔(𝝅(𝜽)). 

Σ = Σ(𝜃) = (𝑰 − 𝝅
𝟏
𝟐 (𝝅

𝟏
𝟐)

′

− 𝑨(𝑨′𝑨)−𝟏𝑨′) is idempotent. 
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Let �̂� = �̂��̂�
𝟏

𝟐𝐇′. Then 
�̂� = (�̂�′�̂�)−𝟏�̂�′𝒛 

γ̂𝑗
2, 𝑗 = 1, 𝑘 − 𝑔 − 1 are the sequential SS from this regression. 𝜸 = 𝑪′𝜷 are the 

orthogonal coefficients.  
Now define an orthogonal components version of 𝐺𝐹𝑓𝑖𝑡: 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

= ∑ 𝛾𝑙
2

𝑙=𝑚+(𝑐−1)2

𝑙=𝑚+1

 

where 𝑚 = ((𝑖 − 1)𝑝 −
𝑖(𝑖−1)

2
)(𝑐 − 1)2 + (𝑗 − 2)(𝑐 − 1)2, assuming 𝐇 = 𝐇[2]. The 

extended 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) are independent chi-square statistics with 𝑑𝑓 = (𝑐 − 1)2 because of 

the definition on orthogonal components. The original 𝐺𝐹𝑓𝑖𝑡(𝑖𝑗) statistics are not 
necessarily independent and do not necessarily sum to 𝑋[2]

2 . 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) statistics are order 

dependent since they are defined on orthogonal components. 
 

3. Improve 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋) by choosing appropriate orthogonal components. 

Although using 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)  is a good remedy to problem of sparseness, sometimes even 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) may have low power and inaccurate Type I error level due to sparseness in the 

two-way subtable. 
We want to improve 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗) by choosing appropriate orthogonal components. Since the 
problem is due to sparseness, one way to improve 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗) is just using the orthogonal 
components corresponding to several cells with the largest frequencies. I denote this 
statistic by 𝐺𝐹𝑓𝑖𝑡⊥(t)

(𝑖𝑗) , where 𝑡 means computing the statistic with the t cells having the 
largest frequencies. In this case we only use t orthogonal components, so the degrees-of-
freedom is t for 𝐺𝐹𝑓𝑖𝑡⊥(t)

(𝑖𝑗) . Since we are selecting the t orthogonal components 
corresponding to t cells with the largest frequencies, not the t largest orthogonal 
components, 𝐺𝐹𝑓𝑖𝑡⊥(t)

(𝑖𝑗)  is not an order statistic. 

In the following table, I labeled the cells that used to compute the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) for the four 

categories case. For example, cell 2 is the cell with category 3 in variable i and category 4 
in variable j. 
TABLE 1: label of cells for variables 4 variables 4 categories case 

Label of the cells Category of variable j 
1 2 3 4 

Category of 
variable i 

1 16 12 8 4 
2 15 11 7 3 
3 14 10 6 2 
4 13 9 5 1 

 
Theoretically, we can choose any 9 cells that can produce the full table to compute 
𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗). By default, we will use the cells in the bottom right corner to compute 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗). 

For the four categories case, these cells are 1, 2, 3, 5, 6, 7, 9, 10 and 11. When computing 
𝐺𝐹𝑓𝑖𝑡⊥(t)

(𝑖𝑗) , we only use t orthogonal components corresponding to t cells with the largest 
frequencies. Here “largest” means the largest frequencies among the (𝑐 − 1)2  cells we 
choose to compute 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗).  
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4. THE GENERALIZED LINEAR LATENT VARIABLE MODEL 
Let 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑝) be the vector of p ordinal observed variables, each of them having 
ci categories. Thus there are ∏ 𝑐𝑖

𝑝
𝑖=1   cells, also called response patterns in the cross-

classified table. The r-th response pattern is indicated as 𝒚𝒓 = (𝑦1 = 𝑎1, 𝑦2 = 𝑎2, … , 𝑦𝑝 =

𝑎𝑝), where 𝑎𝑖 is the value of the i-th observed variable(𝑎𝑖 = 1,…⁡, 𝑐𝑖 ⁡𝑎𝑛𝑑⁡𝑖 = 1,… , 𝑝 .  
Let 𝒛 = (𝑧1, 𝑧2, … , 𝑧𝑝) be the vector of q continuous latent variables. Then the probability 
of the r-th response pattern 𝒚𝒓 is given by 

𝜋𝑟(𝜃) = ∫𝜋𝑟(𝒛) ℎ(𝒛) 𝑑𝒛⁡, 

where 𝜃 is a vector of parameters. ℎ(𝒛) is the density function of z, and we assume every 
latent variable to be distributed standard normal independently. 𝜋𝑟(𝑧) is the conditional 
probability of 𝑦𝑟 given z and it is a multinormial probability function 

𝜋𝑟(𝒛) = ∏𝜋𝑎𝑖

(𝑖)
(𝑧)

𝑝

𝑖=1

= ∏(𝜏𝑎𝑖

(𝑖)
− 𝜏𝑎𝑖−1

(𝑖)
)

𝑝

𝑖=1

 

where 𝜏𝑎𝑖

(𝑖)
= 𝜋1

(𝑖)(𝑧) + 𝜋2
(𝑖)(𝑧) + ⋯+ 𝜋𝑎𝑖

(𝑖)
(𝑧) is the probability of a response in category 

𝑎𝑖 or lower on the variable 𝑖 and 𝜋𝑎𝑖

(𝑖)
(𝑧) is the probability of a response in category 𝑎𝑖 on 

the variable 𝑖. 
We use logistic regression to model the interrelationship between 𝜏𝑎𝑖

(𝑖)  and the latent 
variables. 

𝑙𝑜𝑔 [
⁡𝜏𝑠

(𝑖)

1 − 𝜏𝑠
(𝑖)

] = 𝛼𝑖0(𝑠) − ∑𝛼𝑖𝑗𝑧𝑗

𝑞

𝑗=1

,⁡⁡⁡𝑠 = 1,…⁡, 𝑐𝑖−1 

𝛼𝑖0(𝑠) and 𝛼𝑖𝑗 are the parameters of the model. 𝛼𝑖0(𝑠) is the intercept and 𝛼𝑖𝑗 is the j-th 
slope for variable 𝑖. The intercepts should satisfy the condition 𝛼𝑖0(1) ≤ 𝛼𝑖0(2) ≤ ⋯ ≤
𝛼𝑖0(𝑐𝑖). 
We use the E-M algorithm to calculate the maximum likelihood estimator for the 
parameters in the model. The integrals are approximated through the Gauss-Hermite 
quadrature method (Cagnone & Mignani, 2007 . 
 

5. Monte Carlo Simulations 
 
A simulation study was conducted using GLLVM to assess the power of 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
, 𝑀𝑖𝑗 and 

𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗) . 𝑀𝑖𝑗 is the individual Joe & Maydeu-Olivares chi-square statistic. 

In this power study, I tried one 4 variables 4 categories case and one 5 variables 5 categories 
case. For the 4 variables case, two sample sizes are used, 150 and 500. For the 5 variables 
case, the sample size is 150. In both simulations, data were generated from a two-factor 
model and fitted with a one-factor model. The parameters for the data generating models 
are the following: for 4 variables case 𝛼0(1) = (−1,−1,−1,−1)′, 𝛼0(2) =

(0.5,0.5,0.5,0.5)′, 𝛼0(3) = (2,2,2,2)′, 𝛼1 = (0.0, 1.0, 1.0, 0.0)′, 𝛼2 = (2.0,0.1,0.2,2.0)′⁡   
for 5 variables case, 𝛼0(1) = (−1.59,−2.30,−1.43,−3.02,−1.26)′, 𝛼0(2) =

(−0.84,−0.38,−0.32,−1.50,−0.21)′, 𝛼0(3) = (0.71,0.16,0.15,0.57,0.78)′, 𝛼0(3) =

(1.48,1.80,1.66,2.13,1.65)′, 𝛼1 = (1.5,1.7,1.9,2.1,2.3)′, 𝛼2 = (0.8,0.8,0,0,0)′. 
For the four variables 500 sample size case, the power of 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)  and 𝑀𝑖𝑗  are listed 
below. 
TABLE 2: power of 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
⁡and⁡⁡𝑀𝑖𝑗, 4 variables 4 categories 500 sample size 
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 Power 
 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗) 𝑀𝑖𝑗 
(12  0.067 0.057 
(13  0.070 0.041 
(14  0.364 0.036 
(23  0.816 0.065 
(24  0.057 0.064 
(34  0.052 0.050 

 
The 𝐺𝐹𝑓𝑖𝑡⊥

(23) has a power of 0.816, which is already a pretty good power since this case 
is not very sparse for 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗). All the 𝑀𝑖𝑗’s  have very low power. Then the power of 
𝐺𝐹𝑓𝑖𝑡⊥(t)

(23)  are also computed and listed in Table 3.  

TABLE 3: Power of 𝐺𝐹𝑓𝑖𝑡⊥(t)
(23) for 4 variables 500 sample size case 

t=number of cells Power of 𝐺𝐹𝑓𝑖𝑡⊥(t)
(23) 

1 0.284 
2 0.441 
3 0.565 
4 0.647 
5 0.721 
6 0.752 
7 0.796 
8 0.816 
9 0.816 

 
We can see that the original 𝐺𝐹𝑓𝑖𝑡⊥

(23), which is equivalent to 𝐺𝐹𝑓𝑖𝑡⊥(9)
(23), already has a 

pretty good power. Then in this case, using only several cells with the largest frequencies 
to compute 𝐺𝐹𝑓𝑖𝑡⊥(t)

(23)  won’t be able to improve the power. For example, 𝐺𝐹𝑓𝑖𝑡⊥(2)
(23)  is 

computed by summing up the two orthogonal components corresponding to the cells with 
largest and second largest frequencies in the (2,3  subtable. And in this case, it only has a 
power of 0.441, which is much lower than 0.816, the power of the original 𝐺𝐹𝑓𝑖𝑡⊥

(23) 
Then for the 4 variables 150 sample size case, the table is sparse for 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗). The power 
of 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗) and 𝑀𝑖𝑗 are listed below. 
TABLE 4: power of 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
⁡and⁡⁡𝑀𝑖𝑗, 4 variables 4 categories 150 sample size 

 Power 
 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗) 𝑀𝑖𝑗 
(12  0.057 0.049 
(13  0.065 0.052 
(14  0.133 0.049 
(23  0.276 0.061 
(24  0.041 0.054 
(34  0.064 0.053 

 
For the 4 variables 150 sample size case, the table is sparse for 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗). The original 
𝐺𝐹𝑓𝑖𝑡⊥

(23)  has a power of 0.276, which is not very good. The power of 𝐺𝐹𝑓𝑖𝑡⊥(t)
(23)   are 
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computed and listed in Table 5. We can see that 𝐺𝐹𝑓𝑖𝑡⊥(4)
(23) has the largest power of 0.415. 

The reduction in power after t=4 is due to sparseness in the 4 by 4 table for variable 2 and 
3. 
TABLE 5: Power of 𝐺𝐹𝑓𝑖𝑡⊥(t)

(23) for 4 variables 150 sample size case 
t=number of cells Power of 𝐺𝐹𝑓𝑖𝑡⊥(t)

(23) 
1 0.303 
2 0.360 
3 0.394 
4 0.415 
5 0.410 
6 0.413 
7 0.371 
8 0.317 
9 0.276 

 
For the 5 variables 150 sample size case, the table is quite sparse even for 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗). The 
power of 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗) and 𝑀𝑖𝑗 are listed below. 
TABLE 6: power of 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
⁡and⁡⁡𝑀𝑖𝑗, 5 variables 5 categories 150 sample size 

 Power 
 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗) 𝑀𝑖𝑗 
(12  0.087 0.032 
(13  0.059 0.051 
(14  0.050 0.056 
(15  0.054 0.057 
(23  0.063 0.059 
(24  0.060 0.063 
(25  0.050 0.061 
(34  0.053 0.053 
(35  0.052 0.043 
(45  0.049 0.041 

 
The 𝐺𝐹𝑓𝑖𝑡⊥

(12) has a very low power of 0.086, which is already the largest power among 
all the 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)’s. All the 𝑀𝑖𝑗’s  have very low power again. Then the power of 𝐺𝐹𝑓𝑖𝑡⊥(t)
(12)  

are computed and listed below.  
TABLE 7: Power of 𝐺𝐹𝑓𝑖𝑡⊥(t)

(12) for 5 variables 150 sample size case 
t Power of 𝐺𝐹𝑓𝑖𝑡⊥(t)

(12) 
1 0.139 
2 0.190 
3 0.187 
4 0.190 
5 0.184 
6 0.192 
7 0.190 
8 0.185 
9 0.178 
10 0.155 
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11 0.141 
12 0.135 
13 0.116 
14 0.103 
15 0.089 
16 0.086 

 
We can see that by using only two cells with the largest frequencies, 𝐺𝐹𝑓𝑖𝑡⊥(2)

(12) has a power 

of 0.19, which is more than twice of 0.086, the power of the original 𝐺𝐹𝑓𝑖𝑡⊥
(12). 

 
6. Conclusion 

The ⁡𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)   statistics can be calculated by choosing the t orthogonal components 

corresponding to t cells with the largest frequencies. This statistic is not an order statistic.  
Monte Carlo simulations demonstrated that the 𝐺𝐹𝑓𝑖𝑡⊥(t)

(𝑖𝑗)   statistics perform well when 
sparseness is present. It can be used as diagnostic to assist in detecting the source of poor 
fit when the model specified in the null hypothesis is rejected. However, when 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗) 
has a good power, using only several cells with the largest frequencies to compute 
𝐺𝐹𝑓𝑖𝑡⊥(t)

(𝑖𝑗)   won’t be able to improve the power. When the dataset is really sparse and 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗) has a very poor power,  𝐺𝐹𝑓𝑖𝑡⊥(t)

(𝑖𝑗)  can improve the power. Further research is 

needed to determine the level of sparseness in a two-way subtable when 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)  would 

have higher power than 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗). 
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