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Abstract
Principal Differential Analysis (PDA; Ramsay 1996) is used to obtain low-dimensional representa-
tions of functional data, where each observation is a curve. PDA seeks to identify a Linear Differ-
ential Operator (LDO) of the form L = ω0I + ω1D + · · · + ωm−1D

m−1 + ωmD
m that satisfies

as closely as possible that Lx(t) = 0 for each functional observation x(t). A theorem from anal-
ysis establishes that there exists an LDO with coefficients in the Sobolev space, and thus can be
approximated by B-splines. Current PDA software used to estimate the LDO assumes that the lead-
ing coefficient ωm is 1, but the Sobolev space is not closed with respect to division. We present a
method that eliminates this restriction to ensure that the coefficients of the LDO are in the Sobolev
space, and that their approximation by B-splines is mathematically valid. The proposed method is
inspired by results in linear regression (Frees 1991; Wu 1986) that show that the weighted average
of pairwise slopes between data points is equivalent to the least squares estimator of the regression
line slope. By analyzing data, our approach is compared with pda.fd (R library fda).
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1. Functional Data
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Figure 1: Unregistered lip data, 20 curves

The term “functional data” refers to data in which each response may be represented
as a curve. Functional data analysis arose because advances in technology allow for the
recording of responses on a finer grid. For example, atmospheric phenomena that used to
be monitored once a day are now monitored (almost) continuously.

Figure 1 illustrates an example of functional data considered by Ramsay and Silverman
(1997). The position of the center of the bottom lip of a person saying the syllable “bob”
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was recorded. For each of the 20 vocalizations of the syllable “bob”, the position of the lip
was recorded on a regular grid of length 51 over a time interval of .35 seconds. In order to
obtain a response that could be considered a curve on the interval [0, 0.35] in time, such as
shown in figure 1, a smoothing spline of order 6 and penalty on the fourth derivative with
λ = 10−12 was fit using the R function smooth.basisPar in Ramsay’s R library fda.

The methodology called Principal Differential Analysis (PDA) was developed by Ram-
say (1996). Its objective is to “use a set of n functional observations (curves) {xi}ni=1 to
define a much smaller set of m functions {uj}mj=1 on the basis of which we can obtain
efficient approximations of the observed functions” (Ramsay and Silverman 1997, p. 239).

1.1 Principal Differential Analysis

PDA assumes that there exists a linear differential operator (LDO) defined by

L = ω0I + ω1D + · · ·+ ωm−1D
m−1 + ωmD

m (1)

that satisfies Lxi = 0 for each functional observation xi(t) (i = 1, · · · , n). The coeffi-
cients of the LDO (the functions ω0, · · · , ωm, which depend on t) need to be estimated such
that the LDO annihilates the collection of curves as closely as possible. Recall, that the null
space of the LDO is the collection of all functions annihilated by the LDO.

We know from results in analysis (Coddington and Levinson 1955, Theorem 6.2) that
a collection of m functions from a Sobolev space has such an annihilating LDO of order
m. Jin, Staniswalis, and Mallawaarachchi (2013, Theorem 1) provide conditions under
which the coefficients of an annihilating LDO are also in a Sobolev space, and thus can be
approximated well by B-splines.

Note that the coefficients of the LDO are not unique, since the null space is invariant
to multiplication of the LDO by any non-zero function from the Sobolev space. Ramsay
(1996) avoids this problem by assuming that the coefficient of the leading derivative in the
LDO is ωm(t) = 1. This is equivalent to dividing through by ωm in the LDO in order
to obtain a unique solution for the coefficients. However, the Sobolev space is not closed
under division, in which case we can no longer assume that the coefficients ω0, . . . , ωm−1

are in the Sobolev space and approximated well by B-splines. Ramsay leaves this concern
aside in the hope of finding a useful working solution. Ramsay represents the smooth coef-
ficients ω0(t), · · · , ωm−1(t) in a B-spline basis (see Appendix), then estimates the smooth
coefficients of the LDO by minimizing

∑n
i=1 ‖Lxi‖

2 =
∑n

i=1

∫ T
0 (Lxi(t))

2dt subject to a
penalty term (see R package fda). Once the coefficients of the LDO are estimated, numer-
ical methods to solve differential equations are used to construct a basis for the null space
of the LDO. Ramsay (1996) uses the Runge-Kutta numerical method to find a basis for the
null space of the LDO with coefficients estimated from the data when ωm(t) = 1. Dropping
the assumption ωm(t) = 1 requires the use of a different set of numerical methods, namely,
those that solve implicit systems of differential equations. Then, normalized basis functions
u1(t), . . . , um(t) are found by dividing each basis function by the square root of the norm.

Finally, since each curve in the functional data set is believed to be an element of the
null space of the LDO, a low-dimensional approximation is obtained by regressing each
curve on the normalized basis functions u1(t), . . . , um(t).
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2. Resampling Methods

Suppose we are given data of the form (xi, yi) for i = 1, . . . , n satisfying yi = βo+β1xi+
εi, where ε1, . . . , εn are iid random variables with mean 0 and common variance σ2. Frees
(1991) investigated robust estimators of βo, β1 by pursuing the alternative characterization
of the ordinary least squares estimator of the slope parameter. This is described next: com-
pute all pairwise slopes

sij =
yj − yi
xj − xi

,

and set

βFr =

∑
wijsij∑
wij

.

Here, βFr is a linear combination of all
(
n

2

)
pairwise slopes. It can be shown that choosing

wij = (xi − xj)2 yields the least squares estimator

β̂1 =
n∑
i=1

Xi(Yi − Ȳ )/
n∑
i=1

Xi(Xi − X̄).

If instead, we first order the pairwise slopes, then trim unusually high or low slopes, an
M-type estimator of the slope parameter is obtained.

The ideas in Frees (1991) inspired the resampling based method for estimation of the
coefficients ω0, . . . , ωm of the LDO in equation (1) presented here. We compute the anni-
hilating LDO for each collection of m curves sampled from the full collection of n curves.

This is computationally intensive because there are
(
n

m

)
subproblems that must be solved

for estimation of the LDO. Then a linear combination of the
(
n

m

)
LDO’s is used as the

final estimate L̂ of the LDO in equation (1).

Theorem 2.1 below provides a justification for breaking up the problem into
(
n

m

)
subproblems. In the case of an iid sample of size n, the collection of minimal sufficient

statistics for all
(
n

m

)
subproblems is sufficient for the family of joint distributions of the

sample. Let F = {fθ(x), θ ∈ Ω} denote a familiy of distributions with common support,
and X1, . . . , Xn a random sample that is iid fθ. The joint distribution of the sample is
given by fθ(x) =

∏n
i=1 fθ(xi). Let x∗ = (x∗1, . . . , x

∗
m) denote a sample of size m selected

without replacement from {x1, . . . , xn}.

Theorem 2.1. Suppose there is a k and θj ∈ Ω for j = 0, . . . , k so that

T (x) = (T1(x), . . . , Tk(x)) =

(
f1(x)

f0(x)
, . . . ,

fk(x)

f0(x)

)
(2)

is minimal sufficient forF , where fj(x) = fθj (x). Consider T (x∗) = (T1(x
∗), . . . , Tk(x

∗)),
where

Tj(x
∗) =

∏m
i=1 fj(x

∗
i )∏m

i=1 f0(x
∗
i )
.

T (x) can be recovered from the collection {T (x∗)} obtained by all possible resamples.
Hence {T (x∗)} is sufficient for F .
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Proof Set ai =
fθ(xi)

f0(xi)
, i = 1, . . . , n, suppressing the dependence on θ ∈ {θ1, . . . , θk}.

Then ∏n
i=1 fj(xi)∏n
i=1 f0(xi)

= a1 · . . . · an, ai > 0.

The product a1a2 · · · an can be written as a product of terms of the form ai1 · · · aim as
follows:

a1 · · · an =

(a1 · · · am)︸ ︷︷ ︸
length m

(a2 · · · amam+1) · · · (an−(m−1) · · · an) · · · (ana1 · · · am−1)


(1/m)

.

Hence the theorem is proven.

Condition (2) holds for many parametric families by an application of Theorem 6.65 in
Casella and Berger (2002, p.309): Gaussian (k = 2), Binomial (k = 1), Logistic (k = n).

2.1 Resampling Solution

For each t, solve for the least squares estimators ω̃0,s, . . . , ω̃(m−1),s inf1 Df1 · · · Dm−1f1
...

...
...

...
fr Dfr · · · Dm−1fr


︸ ︷︷ ︸

Xs

 ω̃0,s
...

ω̃(m−1),s


︸ ︷︷ ︸

ω̃s

=

−D
mf1
...

−Dmfr


︸ ︷︷ ︸

zs

,

where {f1, . . . , fr} ⊆ {x1, . . . , xn},m ≤ r ≤ n. Using notation in Ramsay (1996, Equa-
tion (5), p. 499), the least squares solution is

ω̃s(t) =
[
XT
s (t)Xs(t)

]−1
XT
s (t)zs(t). (3)

Note two special cases: (1) ω̃s(t) = X−1
s (t)zs(t), if r = m, and (2) the full problem

ω̃(t) =
[
XT (t)X(t)

]−1
XT (t)z(t), where X(t) is Xs(t) with r = n.

A “tilde” on the coefficients is used to indicate that the solution is obtained under ωm =
1. Wu (1986), stated as Theorem 2.2 below, gives us a way to write Ramsay’s pointwise
least squares estimates ω̃ = (ω̃0, . . . , ω̃m−1)

T as a weighted average of the coefficients
ω̃s =

(
ω̃0,s, . . . , ω̃(m−1),s

)T obtained by resampling.
Theorem 2.2 stated below tells us how the resampling coefficients ω̃s(t) relate back to

ω̃(t). Notice that the weights used in the statement of the theorem to combine the ω̃s(t)
sum to 1.

Theorem 2.2 (Wu 1986, p. 1267). The least squares solution ω̃(t) of (3) satisfies

ω̃(t) =

∑
r det

[
XT
s (t)Xs(t)

]
ω̃s(t)∑

r det
[
XT
s (t)Xs(t)

] ,

where r ≥ m and
∑

r is the sum over all subsets of size r.

JSM 2016 - Section on Statistics in Imaging

2373



Theorem 2.2 motivates an estimator for the LDO given by equation (1) without the
constraint ωm(t) = 1. Set r = m, then the solution is taken to be ω̂(t) =

∑
r ωs(t), where

ωs(t) = det
[
XT
s (t)Xs(t)

] [ω̃s(t)
1

]
(4)

= (det [Xs(t)])
2

[
X−1
s (t)zs(t)

1

]
=

[
det [Xs(t)] cofactors [Xs(t)] zs(t)

det
[
XT
s (t)Xs(t)

] ]
.

Note that dividing ω̂(t) through by by the leading coefficient ω̂m(t) recovers ω̃(t) with
ω̃m(t) = 1.

Another solution for r = m instead uses ωγ(t) =
∑

r ω
γ
s (t), where

ωγs (t) =
(
det
[
XT
s (t)Xs(t)

])γ [ω̃s(t)
1

]
(5)

= (det [Xs(t)])
2γ

[
X−1
s (t)zs(t)

1

]
=

[
det [Xs(t)]

2γ−1 cofactors [Xs(t)] zs(t)(
det
[
XT
s (t)Xs(t)

])γ ]
,

with 1/2 ≤ γ ≤ 1. This is a variation of an estimator suggested by Wu (1984) to guard
against outliers in the multiple regression problem.

The estimator ωγ(t) implemented here consists of the steps enumerated below.

1. Take m distinct curves xi1 , . . . , xim at a time to compute K =

(
n

m

)
sets of coeffi-

cients ωγ0k, ω
γ
1k, . . . , ω

γ
mk, k = k(i1, . . . , im) = 1, . . . ,K using equation (5).

2. Define the final estimators of the LDO coefficients ωγj =
∑K

k=1 ω
γ
jk, j = 0, . . . ,m.

Two cases were considered in the implementation:

• γ = 1 to obtain the multiple of the least squares solution given by
(∑

r det
[
XT
s (t)Xs(t)

])
ω̃s(t),

and

• γ = 1/2, a robust version of the latter solution.

3. Solve the differential equation L̂x(t) = ωγ0x(t)+ωγ1Dx(t)+· · ·+ωγm−1D
m−1x(t)+

ωγmDmx(t) = 0 to find the basis functions for the null space of the LDO.

4. Use the basis functions to find low-dimensional representations of the curves.

5. Display fits to the data.

3. Test Case: Lip Data, m = 2

The resampling method was applied to the lip data, and to the lip data modified by replacing
one curve with an obvious outlier. In this context an outlier is any functional observation
that is not in the span of the null space of the LDO. Figure 2 shows both sets of curves
registered using the same marks.
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Figure 2: Left, the lip data; right, the lip data with an outlier introduced. Each set of curves
is registered using the same marks.

Proposed Ratio of sum of squared norms:
Method PDA/proposed

Original lip data with outlier
γ = 1 1.00 1.00
γ = 1/2 0.98 1.63

Table 1: Ratio of sum of squared norms of the forcing functions: PDA/proposed

Ramsay assumes that the lip data is best described by a second-order LDO (m = 2),
and we adhere to that assumption. All computations were carried out in the R language
and environment. We used code from the lip.R script provided in Ramsay’s R library
fda. The script used to reproduce Ramsay’s results was lip.R with a few modifications
to adjust to the latest version of the fda library.

First, we estimated the coefficients of the LDO. The ratio of the sum of squared norms∑n
i=1 ‖Lxi‖

2 for Ramsay PDA (using λ = 0 and 146 knots so that we have 150 elements
in the basis) to each of the resampling estimates of the LDO is shown in Table 1. The term
contributed by the outlier curve was not included in the sum of squared norms. The PDA
estimates of ω0 and ω1 were multiplied by ωγ2 to compare the squared norms on the same
scale. Focusing on row 1, the fact that the ratio of the sum of squared norms is 1 supports
Theorem 2.2 that states that using γ = 1 with the proposed resampling method yields
the pointwise least squares solution ω̃. Focusing on column 1, an analysis of the original
lip data suggests there is a loss in efficiency when using a robust version of resampling
(γ = 1/2). An analysis of the lip data with an outlier suggests that resampling with γ = 1/2
can lead to substantial gains in efficiency as compared to the current PDA methodology
(ratio is 1.63). Simulation studies are needed to see the effect of more than one outlier on
the resampling methods illustrated for this test case.
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4. Conclusions

The resampling method eliminates the condition that ωm = 1 in the estimation of the
coefficients of an LDO. When applied to the lip data and to the lip data with an outlier
introduced, the resampling estimates yielded better sum of squared norms when compared
to current PDA methodology. Work in progress is using the DAE solver daspk in the R
library deSolve to obtain the basis for the null space by solving an implicit differential
equation.

The resampling approach used in this method has value in other problems where sub-

problems have exact solutions. Combining
(
n

m

)
subproblems to obtain a final estimator

falls under the general heading of Divide-and-Conquer strategies commonly used in Com-
puter Science (Cormen et al. 2010). The Divide-and-Conquer strategy implemented by
resampling to solve for the coefficients of the LDO has the following properties:

1. There is no loss of information (Theorem 2.1), and

2. The number of computations when m� n, and n is large are reduced.

5. Appendix

Regression analysis is used to model and investigate relationships among variables. For
example, the relationship between a dependent variable y and independent variable t may
be studied through the model

y = f(t) + ε, t ∈ [a, b], (6)

where ε is a random unobservable error with mean 0 and variance σ2. Suppose we have
data of the form (ti, yi) for i = 1, . . . n, satisfying equation (6).

In nonparametric regression, we only know that the true regression function f(t) is
smooth in t; its shape is estimated from the data, in contrast to parametric regression, in
which we assume that the functional form of the regression curve f(t) is known.

Consider the nonparametric estimator of the regression curve obtained as the minimizer
of

1

n

n∑
i=1

[yi − f(ti)]
2 + λ

∫ b

a

[
f (r)(t)

]2
dt, (7)

over f in the Sobolev space of order r denoted by W r
2 [a, b]. The Sobolev space of order r

is the set of all functions with r − 1 continuous derivatives and the integral of the square
of the rth derivative exists. The first term of the minimizing criteria (7) is a residual sum
of squares, as is used in ordinary least squares regression. The second term involves a
penalty, where λ is a positive scalar called the smoothing parameter. The solution fλ to this
minimization problem is called a smoothing spline (Wahba 1990). A spline function S(t)
is a piecewise polynomial function defined on the entire real line, subject to a maximum
number of continuity constraints.

Definition 5.1. A spline of order k ≥ 2 with knots t1 < t2 < · · · < tn is any function S(t)
of the form

S(t) =
k−1∑
i=0

αit
i +

n∑
i=1

δi(t− ti)k−1
+ (8)
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for real α0, α1, · · · , αk−1, δ1, · · · , δn satisfying that S(t) has k−2 continuous derivatives.

Definition 5.1 describes splines in terms of trucanted polynomial basis: 1, t, . . . , tn−1,
and

(t− ti)+ =

{
(t− ti), if t ≥ ti
0, if t < ti

i = 1, . . . , n.

B-splines can also be used as a basis for computing splines. In particular, the smoothing
spline estimator fλ can be represented with B-splines. Numerical computation with B-
splines is more stable than with the truncated power basis. B-splines are usually computed
following the Cox-de Boor recursion formula (Eubank 1999). To initialize the recursion,
we define an additional k knots and ”stack” them on the endpoints of the interval [a, b] we
are considering. Note that if k = 2r is the order of the spline, we stack r knots on each
endpoint of the interval. Given knots t1, · · · , tn on [a, b], define k = 2r additional knots as
follows:

t−r+1 = · · · = t0 = a

b = tn+1 = · · · = tn+r.

Then the B-spline of order k is defined by the recursion

Bi,1(t) =

{
1, ti ≤ t < ti+1

0, otherwise
i = 0, . . . , n

Bi,k(t) =

(
t− ti

ti+k−1 − ti

)
Bi,k−1(t) +

(
ti+k − t
ti+k − ti+1

)
Bi+1,k−1(t)

for i = −(k − 1), . . . , n.
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