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Abstract 
The stochastic process model (SPM) provides a general framework for modeling the 
dynamics of repeatedly measured variables (represented by a stochastic process) in relation 
to time-to-event outcomes (modeled as the quadratic function of such stochastic 
covariates). Until recently, there were no publically available software tools implementing 
the SPM methodology. Recently we developed an R package stpm implementing different 
specifications of the SPM including discrete- and continuous-time multidimensional 
versions and a one-dimensional model with time-dependent components. In this work, we 
present simulation studies focusing on two aspects of applications of SPM currently 
underexplored in the literature: 1) behavior of estimation procedures in cases of small 
numbers of longitudinal observations per individual and 2) sensitivity to violations of 
assumption on independence of individuals. We consider here the one-dimensional model 
taking the recently developed measure of physiological dysregulation based on the 
statistical (Mahalanobis) distance of biomarker profiles as an example of a variable 
repeatedly measured in a longitudinal study. Simulations illustrated that the estimation 
algorithms produce reasonable estimates in case of small numbers of observations per 
individual. Simulations investigating the sensitivity of the estimation procedure to 
violations of independence assumption showed that only parameters of baseline hazard are 
affected in case of dependence in hazards induced by a gamma-distributed random 
variable. Development of SPM modifications that take into account dependence between 
individuals (both in hazard rates as well as in the dynamics of longitudinal variables) is 
necessary to accommodate such dependencies in analyses. 
 
Key Words: stochastic process model, Mahalanobis distance, longitudinal data, 
mortality, simulations 
 
 

1. Introduction 
 
The stochastic process model (SPM) originates from the random walk model by Woodbury 
and Manton (1977). The theoretical background of SPM was presented in Yashin et al. 
(1985) and Yashin et al. (1989). This model provides a general framework for modeling 
the dynamics of repeatedly measured variables (represented by a stochastic process) in 
relation to time-to-event outcomes (modeled as the quadratic function of such stochastic 
covariates, hence its alternative name, the quadratic hazard model). Recently the approach 
has been further elaborated to address questions specifically relevant to research on aging 
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(Yashin et al., 2007) and SPM was extended in different ways, for example to work with 
latent classes and partially observed covariates (Arbeev et al., 2009; Arbeev et al., 2015; 
Yashin et al., 2008). Recent book Biodemography of Aging (Yashin et al., 2016) presents 
this methodological framework in more details, see Chapters 11-16. Arbeev et al. (2016b) 
provides description of the approach targeted at a non-technical audience.  
 
Arbeev et al. (2016a) implemented the measure of multivariate distance (DM) in the SPM 
framework. DM is a composite measure constructed from multiple variables (e.g., 
biomarkers), see Cohen et al. (2013), and it is based on statistical distance (specifically, 
Mahalanobis distance, (De Maesschalck et al., 2000; Mahalanobis, 1936)). In case of 
biomarkers, it is interpreted as a measure of physiological dysregulation (Cohen et al., 
2013) representing the deviation of a current physiological state of an organism from the 
“normal” physiological state. Such a combination (SPM and DM) is important from the 
standpoint of applications as it allows one to work with multiple variables in a one-
dimensional model while still permitting estimation and interpretation of all components 
of this one-dimensional SPM in the same way as in the original model (Arbeev et al., 
2016a). This provides an opportunity to address relevant research questions still avoiding 
potential computational difficulties associated with estimation of multidimensional 
models.  
 
Until recently, there were no publically available software tools implementing the SPM 
methodology. Recently we developed an R package stpm implementing different 
specifications of the SPM (stable version is available on CRAN: https://cran.r-
project.org/web/packages/stpm/index.html; and the most recent version can be 
downloaded from GitHub: https://github.com/izhbannikov/spm/). The detailed description 
of the usage of this package will be presented elsewhere (Zhbannikov et al., submitted). In 
this work, we present simulation studies focusing on two aspects of applications of SPM 
currently underexplored in the literature: 1) behavior of estimation procedures in cases of 
small numbers of longitudinal observations per individual and 2) sensitivity to violations 
of assumption on independence of individuals. Although the general model is 
multidimensional, we focus on its one-dimensional form in this work (see Zhbannikov et 
al., submitted, presenting simulations in a multidimensional case) taking the measure of 
multivariate distance (DM) as an example of a variable repeatedly measured in a 
longitudinal study.  
 

2. Stochastic process model: General description and specifications for 
simulation studies 

 
2.1 Description of model 
 
The stochastic process model (Yashin et al., 2007) represents the dynamics of  K variables 
(e.g., biomarkers) as a function of age (or time) t in the form of the stochastic process:  

)()())()(()()( 1 tdWtbdttftYtatdY +−= ,    (1) 
with initial condition )( 0tY . Here Y(t) is a vector of variables at age t, W(t) is a vector 
Wiener process with independent components (W(t) is assumed to be independent of the 
initial vector )( 0tY ), b(t) is a matrix of diffusion coefficients, f1(t) is the vector function 
representing the trajectory that Y(t) tends to follow (i.e., the process has the “mean-
reverting property” so that, in a long run, the process tends to drift towards its long-
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term mean), and the matrix a(t) is the (negative) feedback coefficient regulating how fast 
the trajectory of Y(t) reverts to  f1(t).  
 
The conditional hazard rate at age t given the values of the longitudinal variables measured 
at respective age (Y(t)) is specified as: 

))()(()())()(()())(,( 000 tftYtQtftYttYt T −−+= µµ .                   (2) 

Here )(0 tµ  is the baseline hazard that represents the risk which would remain if the 
variables in Y(t) followed the “optimal trajectory” represented by the vector function 

)(0 tf . The positive-definite symmetric matrix Q(t) regulates the quadratic shape of the 
hazard (as a function of variables Y(t)). T denotes transposition. 
 
All components in the model can include dependence on observed (Yashin et al., 2012) 
and partially observed (Arbeev et al., 2009) variables. The components of the model have 
interpretations relevant in research on aging as discussed in the literature (see, e.g., Arbeev 
et al., 2011; Yashin et al., 2007; Yashin et al., 2012). 
 
The SPM presented in Arbeev et al. (2016a) implemented the measure of physiological 
dysregulation (DM) by Cohen et al. (2013) which is based on the multivariate statistical 
(Mahalanobis) distance (De Maesschalck et al., 2000; Mahalanobis, 1936) constructed for 
the joint distribution of multiple biomarkers. Such implementation allows working with 
multiple variables in a one-dimensional setting and interpreting all components of this one-
dimensional SPM similarly to the original model. DM is defined for a given set of variables 
measured in an individual at age t, X(t), as:  

))(())(())(( 1 XtXSXtXtXD T
M −−= − ,     (3) 

where X  is a vector of means and S is the variance-covariance matrix for respective 
variables calculated from some population representing the “normal” state (which could be 
defined from the same population or some other “reference” population) (see more details 
and discussion on reference populations in Arbeev et al., 2016a; Cohen et al., 2015; Cohen 
et al., 2013). Then Y(t) = DM(X(t)) can be modeled as the one-dimensional process in (1). 
The one-dimensional version of (2) is: 

2
00 ))()(()()())(,( tftYtQttYt −+= µµ                    (4) 

where )(0 tf  and Q(t) are scalars. 
 
In this work, we performed simulation studies in this one-dimensional version (1), (4). The 
DM variable was taken as a prototype for Y(t) in the model. The specific parameters were 
selected to mimic the dynamics observed in the real data applications, see Arbeev et al. 
(2016a).  
 
2.2 Description of simulation studies 
 
We considered two simulation scenarios to study designs comparable to data with a long 
follow-up period and more frequent exams (simulation scenario 1, “sim1”) and a short 
follow-up with longer periods between exams (simulation scenario 2, “sim2”). The first 
scenario is similar to the original cohort of the Framingham Heart Study (FHS) and the 
second resembles the Long Life Family Study (LLFS). In each case, we simulated 100 
datasets for different sample sizes and numbers of exams (i.e., time periods when 
measurements of biomarkers are collected for participants of the study). Sample sizes were 
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selected to be comparable to specific subgroups of respective datasets: 1) the total sample 
in LLFS or FHS (5,000); 2) sex-specific subsample in LLFS or FHS (2,500) and 3) the 
probands generation in LLFS (1,500). In sim1, the number of observations equals 1, 2, 3, 
or 30 (this last number is taken for comparison with the real data where currently 30 
examinations are available for the original Framingham cohort) with a two-year period 
between exams (similar to the design of the original Framingham cohort). The age at the 
baseline in this case was generated as a uniformly distributed random variable over the 
interval [30, 60]. In sim2, the number of observations equals 1, 2 or 3 with seven-year 
periods between exams (like in LLFS) and the age at the baseline was generated from a 
uniform distribution over the range 50 to 100. The interval between observations for a 
specific individual was simulated as a sum of the number of years between observations 
specified above and the uniformly distributed random variable over the interval [-0.1, 0.1]. 
 
We used two specifications of the one-dimensional continuous-time model (1), (4):  
 
Model 1: Gompertz baseline hazard: tbeat 0

0
)(0

µ

µµ = ; constant parameters QatQ =)( , 

Yata =)( , 
1

)(1 fatf = , 
0

)(0 fatf = , 1)( σ=tb .  
 

Model 2: Gompertz baseline hazard: tbeat 0

0
)(0

µ

µµ = ; linear functions for 

tbatQ QQ +=)( , tbata YY +=)( , tbatf ff 11
)(1 += , tbatf ff 00

)(0 += ; and constant 

1)( σ=tb . 
 
The parameters used in simulations were selected to provide realistic patterns of mortality 
observed in modern human populations and dynamics of DM similar to that observed in 
analyses of FHS data in Arbeev et al. (2016a):  
 
Model 1: 410

0

−=µa , 08.0
0
=µb , 3108 −⋅=Qa , 2.0−=Ya , 0.1

1
=fa , 0.0

0
=fa ,  

5.01 =σ .  
 
Model 2: 410

0

−=µa , 08.0
0
=µb , 4105 −⋅=Qa , 410−=Qb , 2.0−=Ya , 310−=Yb , 

0
1
=fa , 03.0

1
=fb , 0

0
=fa , 0

0
=fb , 5.01 =σ .  

 
We also simulated data for the scenario in which the assumption on the independence of 
individuals is violated. We assumed that the data consist of pairs of related individuals with 
hazards in the pair i given by  

),))()(()()(())(,( 2
00 tftYtQtZtYt ii −+= µµ                    (5) 

where  iZ  is a gamma-distributed random variable with mean 1 and variance s2. We used 
different values of s2 (0.1, 0.5, 1.0, 1.5) to test sensitivity of estimates in case of smaller 
and bigger variances of iZ . For each value of s2 , we generated 100 datasets using the 
hazard rate (5) and dynamics of the longitudinal covariate given by (1) and estimated these 
data using the likelihood for the original model (1) and (4). Due to space limitation, we 
report only the results of Model 1 and sample size N=5000. 
 

3. Results of simulation studies 
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Figure 1 illustrates components of the models (hazard rate and the quadratic term in the 
hazard) for Models 1 and 2. Fig. 1 (A) and 1 (C) show the hazard rate (4) in Models 1 and 
2, respectively. Note the U-shape of the hazard as a function of Y(t). This shape does not 
change with t in Model 1 but narrows with t in Model 2. The black lines denote function 

)(0 tf corresponding to the minimal hazard rate given by )(0 tµ . The blue line show 

function )(1 tf  to which the trajectories of Y(t) tend to revert (see sample trajectories 
represented by red lines in Fig. 1 (B) and (D)). Note a constant )(1 tf in Model 1 and its 
time-dependence in Model 2. Such dependence of model components on time t (e.g., age) 
can be relevant in different research areas. For example, it has biologically relevant 
interpretation in research on aging (see discussion in, e.g., Arbeev et al., 2016a) so it is 
important to have time-dependence represented and estimated in the models.  
 
The results of simulations in scenarios sim1 and sim2 for models 1 and 2 are shown in 
Tables 1-4. The simulations indicate that the estimation procedure produces reasonably 
accurate results in cases with small number of longitudinal observations per individual in 
both scenarios sim1 and sim2 which differ in terms of the length of period between 
measurements and the age distribution at baseline (hence, the proportion of censored 
individuals). This observation is valid for both model 1 (with all constant parameters except 
the baseline hazard) as well as for model 2 (where some parameters are represented by 
linear functions). 
 
The results for data generated assuming pairs of related individuals (i.e., the hazards given 
by (5)) and estimated using the procedure which ignores such dependence (i.e., using the 
equation for hazards (4)) in scenarios sim1 and sim2 for model 1 are given in Tables 5 and 
6. The tables show that in such cases the estimates of parameters of the stochastic process 
Y(t) remain largely unaffected even in case of big variances of the random variable iZ  

(parameter s2) and only the parameter of the baseline hazard (
0µ

b ) shows substantial 
deviation from the true values starting with small s2. We note here that these results 
illustrate only the situation when such dependence structure is introduced through the 
hazards. Additional studies are needed to investigate the sensitivity of the estimation 
procedure to violations of independence assumption induced also through specification of 
the process Y(t). 
 

3. Conclusions 
 
The stochastic process model provides a general framework for modeling the dynamics of 
repeatedly measured variables (modeled by a stochastic process) in relation to time-to-
event outcomes (modeled as the quadratic function of such stochastic covariates). 
Implementation of the measure of multivariate distance (DM) in the SPM framework 
provides an opportunity to address relevant research questions avoiding potential 
computational difficulties associated with estimation of multidimensional models. We 
developed the R-package stpm which implements different specifications of SPM (both 
one-dimensional and multidimensional versions) and validated it in simulation studies. 
Simulations illustrated that the estimation algorithms produce reasonable estimates in case 
of small numbers of observations per individual. Simulations investigating the sensitivity 
of the estimation procedure to violations of independence assumption showed that only 
parameters of baseline hazard are affected in case of dependence in hazards induced by a 
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gamma-distributed random variable. Development of SPM modifications that take into 
account dependence between individuals (both in hazard rates as well as in the dynamics 
of longitudinal variables) is necessary to accommodate such dependencies in analyses. 
 

Acknowledgements 
 
This work was partly supported by the National Institute on Aging of the National Institutes 
of Health under Award Numbers R01AG046860, P01AG043352, and P30AG034424. The 
content is solely the responsibility of the authors and does not necessarily represent the 
official views of the National Institutes of Health.  
 

References 
 
Arbeev, K.G., Akushevich, I., Kulminski, A.M., Arbeeva, L.S., Akushevich, L., 

Ukraintseva, S.V., Culminskaya, I.V., Yashin, A.I., 2009. Genetic model for 
longitudinal studies of aging, health, and longevity and its potential application to 
incomplete data. J. Theor. Biol. 258, 103-111. 

Arbeev, K.G., Arbeeva, L.S., Akushevich, I., Kulminski, A.M., Ukraintseva, S.V., Yashin, 
A.I., 2015. Latent Class and Genetic Stochastic Process Models: Implications for 
Analyses of Longitudinal Data on Aging, Health, and Longevity, JSM 
Proceedings, Section on Statistics in Epidemiology. American Statistical 
Association, Alexandria, VA, pp. 121-133. 

Arbeev, K.G., Cohen, A.A., Arbeeva, L.S., Milot, E., Stallard, E., Kulminski, A.M., 
Akushevich, I., Ukraintseva, S., Christensen, K., Yashin, A.I., 2016a. Optimal 
versus Realized Trajectories of Physiological Dysregulation in Aging and their 
Relation to Sex-Specific Mortality Risk. Frontiers in Public Health 4, article 3. 

Arbeev, K.G., Ukraintseva, S.V., Akushevich, I., Kulminski, A.M., Arbeeva, L.S., 
Akushevich, L., Culminskaya, I.V., Yashin, A.I., 2011. Age trajectories of 
physiological indices in relation to healthy life course. Mech. Ageing Dev. 132, 
93-102. 

Arbeev, K.G., Ukraintseva, S.V., Yashin, A.I., 2016b. Dynamics of biomarkers in relation 
to aging and mortality. Mech. Ageing Dev. 156, 42-54. 

Cohen, A.A., Li, Q., Milot, E., Leroux, M., Faucher, S., Morissette-Thomas, V., Legault, 
V., Fried, L.P., Ferrucci, L., 2015. Statistical Distance as a Measure of 
Physiological Dysregulation Is Largely Robust to Variation in Its Biomarker 
Composition. PLoS ONE 10. 

Cohen, A.A., Milot, E., Yong, J., Seplaki, C.L., Fueloep, T., Bandeen-Roche, K., Fried, 
L.P., 2013. A novel statistical approach shows evidence for multi-system 
physiological dysregulation during aging. Mech. Ageing Dev. 134, 110-117. 

De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L., 2000. The Mahalanobis distance. 
Chemometrics Intellig. Lab. Syst. 50, 1-18. 

Mahalanobis, P.C., 1936. Mahalanobis distance. Proceedings National Institute of Science 
of India 49, 234-256. 

Woodbury, M.A., Manton, K.G., 1977. A random-walk model of human mortality and 
aging. Theor. Popul. Biol. 11, 37-48. 

Yashin, A.I., Arbeev, K.G., Akushevich, I., Kulminski, A., Akushevich, L., Ukraintseva, 
S.V., 2007. Stochastic model for analysis of longitudinal data on aging and 
mortality. Math. Biosci. 208, 538-551. 

JSM 2016 - Section on Statistical Computing

2345



Yashin, A.I., Arbeev, K.G., Akushevich, I., Kulminski, A., Akushevich, L., Ukraintseva, 
S.V., 2008. Model of hidden heterogeneity in longitudinal data. Theor. Popul. Biol. 
73, 1-10. 

Yashin, A.I., Arbeev, K.G., Akushevich, I., Kulminski, A., Ukraintseva, S.V., Stallard, E., 
Land, K.C., 2012. The quadratic hazard model for analyzing longitudinal data on 
aging, health, and the life span. Physics of Life Reviews 9, 177-188. 

Yashin, A.I., Manton, K.G., Stallard, E., 1989. The propagation of uncertainty in human 
mortality processes operating in stochastic environments. Theor. Popul. Biol. 35, 
119-141. 

Yashin, A.I., Manton, K.G., Vaupel, J.W., 1985. Mortality and aging in a heterogeneous 
population: A stochastic process model with observed and unobserved variables. 
Theor. Popul. Biol. 27, 154-175. 

Yashin, A.I., Stallard, E., Land, K.C., 2016. Biodemography of Aging: Determinants of 
Healthy Life Span and Longevity, The Springer Series on Demographic Methods 
and Population Analysis. Springer, New York, p. 463. 

 
Figures: 
 

 
Figure 1: Illustration of stochastic process models (models 1 and 2): Hazard rate as 
a function of time (e.g., age) t and some variable Y(t) (e.g., DM, see the text), and 
other components of the model. (A) Hazard rate ( ))(,( tYtµ ) in model 1. (B) The 
quadratic term in hazard ( 2

01 ))()(()())(,( tftYtQtYt −=µ ) in model 1 (shown as 
contour lines for visibility). (C) Hazard rate ( ))(,( tYtµ ) in model 2. (D) The 
quadratic term in hazard ( 2

01 ))()(()())(,( tftYtQtYt −=µ ) in model 2. The blue 
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lines denote function )(1 tf . The black lines correspond to function )(0 tf . The red 
lines show a sample trajectory of Y(t). 
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Tables: 
 
Table 1: Results of simulation studies of model 1 in simulation scenario 1 (sim1). The numbers show mean values of parameter estimates in 100 
simulated datasets (lower 2.5% and upper 97.5% values are in brackets). Nind denotes number of individuals in each dataset and Nobs is maximal 
number of longitudinal observations (exams) per individual. Some parameters are scaled for better visibility. True values used in simulations are 
shown in the last row. 

Nind Nobs 310
0
⋅µa  10

0
⋅µb  210⋅Qa  10⋅Ya  

1f
a  

0f
a  101 ⋅σ  

1500 1 0.1 
[0.06,0.14] 

0.8 
[0.60,0.95] 

0.8 
[0.60,1.00] 

-2.0 
[-2.18,-1.77] 

1.0 
[0.87,1.13] 

-0.0 
[-0.36,0.28] 

5.0 
[4.74,5.37]  

2 0.1 
[0.06,0.14] 

0.8 
[0.62,0.87] 

0.8 
[0.60,1.00] 

-2.0 
[-2.14,-1.87] 

1.0 
[0.91,1.08] 

-0.0 
[-0.25,0.20] 

5.0 
[4.76,5.18]  

3 0.1 
[0.06,0.14] 

0.8 
[0.69,0.87] 

0.8 
[0.64,1.00] 

-2.0 
[-2.12,-1.89] 

1.0 
[0.94,1.07] 

-0.0 
[-0.22,0.18] 

5.0 
[4.82,5.19]  

30 0.1 
[0.07,0.13] 

0.8 
[0.76,0.84] 

0.8 
[0.71,0.93] 

-2.0 
[-2.05,-1.95] 

1.0 
[0.98,1.04] 

0.0 
[-0.09,0.12] 

5.0 
[4.91,5.08] 

2500 1 0.1 
[0.06,0.14] 

0.8 
[0.60,0.88] 

0.8 
[0.60,1.00] 

-2.0 
[-2.16,-1.83] 

1.0 
[0.92,1.08] 

-0.0 
[-0.34,0.23] 

5.0 
[4.80,5.25]  

2 0.1 
[0.08,0.14] 

0.8 
[0.71,0.86] 

0.8 
[0.66,0.95] 

-2.0 
[-2.09,-1.88] 

1.0 
[0.95,1.06] 

0.0 
[-0.19,0.16] 

5.0 
[4.84,5.16]  

3 0.1 
[0.08,0.14] 

0.8 
[0.71,0.86] 

0.8 
[0.64,0.94] 

-2.0 
[-2.09,-1.91] 

1.0 
[0.95,1.05] 

-0.0 
[-0.17,0.13] 

5.0 
[4.86,5.13]  

30 0.1 
[0.08,0.13] 

0.8 
[0.76,0.82] 

0.8 
[0.74,0.92] 

-2.0 
[-2.04,-1.97] 

1.0 
[0.98,1.02] 

0.0 
[-0.06,0.12] 

5.0 
[4.95,5.07] 

5000 1 0.1 
[0.09,0.14] 

0.8 
[0.66,0.85] 

0.8 
[0.62,0.98] 

-2.0 
[-2.10,-1.88] 

1.0 
[0.94,1.06] 

-0.0 
[-0.22,0.20] 

5.0 
[4.83,5.15]  

2 0.1 
[0.08,0.14] 

0.8 
[0.70,0.85] 

0.8 
[0.68,0.92] 

-2.0 
[-2.08,-1.91] 

1.0 
[0.97,1.03] 

-0.0 
[-0.14,0.12] 

5.0 
[4.89,5.11]  

3 0.1 
[0.08,0.14] 

0.8 
[0.72,0.83] 

0.8 
[0.70,0.92] 

-2.0 
[-2.06,-1.95] 

1.0 
[0.96,1.03] 

-0.0 
[-0.12,0.10] 

5.0 
[4.89,5.10] 
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30 0.1 

[0.09,0.13] 
0.8 

[0.77,0.81] 
0.8 

[0.76,0.87] 
-2.0 

[-2.03,-1.97] 
1.0 

[0.98,1.02] 
0.0 

[-0.04,0.08] 
5.0 

[4.95,5.04] 
True 

 
0.1 0.8 0.8 -2.0 1.0 0.0 5.0 

 
Table 2: Results of simulation studies of model 1 in simulation scenario 2 (sim2). The numbers show mean values of parameter estimates in 100 
simulated datasets (lower 2.5% and upper 97.5% values are in brackets). Nind denotes number of individuals in each dataset and Nobs is maximal 
number of longitudinal observations (exams) per individual. Some parameters are scaled for better visibility. True values used in simulations are 
shown in the last row. 

Nind Nobs 310
0
⋅µa  10

0
⋅µb  210⋅Qa  10⋅Ya  

1f
a  

0f
a  101 ⋅σ  

1500 1 0.1 
[0.06,0.14] 

0.8 
[0.76,0.86] 

0.8 
[0.60,1.00] 

-2.0 
[-2.14,-1.85] 

1.0 
[0.93,1.07] 

0.0 
[-0.26,0.28] 

5.0 
[4.57,5.41]  

2 0.1 
[0.06,0.14] 

0.8 
[0.76,0.86] 

0.8 
[0.66,0.99] 

-2.0 
[-2.10,-1.90] 

1.0 
[0.93,1.05] 

-0.0 
[-0.25,0.21] 

5.0 
[4.70,5.31]  

3 0.1 
[0.06,0.14] 

0.8 
[0.76,0.85] 

0.8 
[0.68,0.98] 

-2.0 
[-2.08,-1.93] 

1.0 
[0.95,1.03] 

-0.0 
[-0.23,0.21] 

5.0 
[4.74,5.26] 

2500 1 0.1 
[0.06,0.14] 

0.8 
[0.76,0.85] 

0.8 
[0.60,1.00] 

-2.0 
[-2.10,-1.87] 

1.0 
[0.96,1.06] 

0.0 
[-0.21,0.26] 

5.0 
[4.74,5.26]  

2 0.1 
[0.07,0.14] 

0.8 
[0.76,0.84] 

0.8 
[0.66,0.97] 

-2.0 
[-2.07,-1.91] 

1.0 
[0.96,1.04] 

-0.0 
[-0.24,0.17] 

5.0 
[4.80,5.20]  

3 0.1 
[0.08,0.13] 

0.8 
[0.76,0.83] 

0.8 
[0.72,0.94] 

-2.0 
[-2.06,-1.92] 

1.0 
[0.96,1.04] 

0.0 
[-0.16,0.17] 

5.0 
[4.76,5.19] 

5000 1 0.1 
[0.07,0.14] 

0.8 
[0.77,0.85] 

0.8 
[0.66,0.98] 

-2.0 
[-2.07,-1.92] 

1.0 
[0.96,1.04] 

0.0 
[-0.19,0.16] 

5.0 
[4.80,5.20]  

2 0.1 
[0.07,0.13] 

0.8 
[0.76,0.83] 

0.8 
[0.71,0.91] 

-2.0 
[-2.04,-1.95] 

1.0 
[0.97,1.03] 

-0.0 
[-0.13,0.12] 

5.0 
[4.83,5.17]  

3 0.1 
[0.07,0.12] 

0.8 
[0.78,0.83] 

0.8 
[0.73,0.89] 

-2.0 
[-2.05,-1.95] 

1.0 
[0.97,1.03] 

0.0 
[-0.10,0.11] 

5.0 
[4.84,5.20] 

True 
 

0.1 0.8 0.8 -2.0 1.0 0.0 5.0 
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Table 3: Results of simulation studies of model 2 in simulation scenario 1 (sim1). The numbers show mean values of parameter estimates in 100 
simulated datasets (lower 2.5% and upper 97.5% values are in brackets). Nind denotes number of individuals in each dataset and Nobs is maximal 
number of longitudinal observations (exams) per individual. Some parameters are scaled for better visibility. True values used in simulations are 
shown in the last row. 

Nind Nobs 310
0
⋅µa  10

0
⋅µb  310⋅Qa  310⋅Qb  10⋅Ya  210⋅Yb  

1f
a  10

1
⋅fb  

0f
a  10

0
⋅fb  101 ⋅σ  

1500 1 0.1 
[0.06,0.14] 

0.8 
[0.64,0.89] 

0.5 
[0.42,0.60] 

0.1 
[0.05,0.15] 

-1.9 
[-2.42,-1.21] 

0.1 
[-0.05,0.20] 

0.0 
[-0.37,0.41] 

0.3 
[0.20,0.38] 

0.0 
[-0.49,0.50] 

-0.0 
[-0.13,0.11] 

5.0 
[4.67,5.31]  

2 0.1 
[0.07,0.14] 

0.8 
[0.66,0.87] 

0.5 
[0.41,0.60] 

0.1 
[0.06,0.14] 

-2.0 
[-2.29,-1.63] 

0.1 
[0.01,0.16] 

0.0 
[-0.43,0.40] 

0.3 
[0.21,0.40] 

0.1 
[-0.47,0.49] 

-0.0 
[-0.13,0.10] 

5.0 
[4.76,5.18]  

3 0.1 
[0.06,0.14] 

0.8 
[0.68,0.89] 

0.5 
[0.43,0.59] 

0.1 
[0.07,0.13] 

-2.0 
[-2.34,-1.69] 

0.1 
[0.03,0.17] 

0.0 
[-0.25,0.35] 

0.3 
[0.23,0.35] 

0.0 
[-0.49,0.49] 

-0.0 
[-0.11,0.09] 

5.0 
[4.87,5.20]  

30 0.1 
[0.08,0.13] 

0.8 
[0.76,0.83] 

0.5 
[0.45,0.57] 

0.1 
[0.09,0.12] 

-2.0 
[-2.17,-1.80] 

0.1 
[0.07,0.12] 

0.1 
[-0.13,0.25] 

0.3 
[0.26,0.32] 

-0.0 
[-0.33,0.29] 

0.0 
[-0.06,0.05] 

5.0 
[4.93,5.09] 

2500 1 0.1 
[0.06,0.14] 

0.8 
[0.66,0.89] 

0.5 
[0.43,0.60] 

0.1 
[0.06,0.14] 

-1.9 
[-2.34,-1.58] 

0.1 
[0.01,0.18] 

0.0 
[-0.36,0.39] 

0.3 
[0.21,0.39] 

0.0 
[-0.50,0.50] 

-0.0 
[-0.12,0.13] 

5.0 
[4.71,5.26]  

2 0.1 
[0.07,0.14] 

0.8 
[0.71,0.86] 

0.5 
[0.44,0.60] 

0.1 
[0.07,0.13] 

-2.0 
[-2.31,-1.67] 

0.1 
[0.04,0.17] 

0.0 
[-0.31,0.35] 

0.3 
[0.21,0.37] 

0.0 
[-0.47,0.47] 

-0.0 
[-0.11,0.09] 

5.0 
[4.81,5.19]  

3 0.1 
[0.08,0.13] 

0.8 
[0.70,0.85] 

0.5 
[0.45,0.59] 

0.1 
[0.08,0.13] 

-2.0 
[-2.32,-1.78] 

0.1 
[0.05,0.15] 

0.0 
[-0.23,0.31] 

0.3 
[0.23,0.36] 

0.0 
[-0.45,0.46] 

-0.0 
[-0.09,0.08] 

5.0 
[4.87,5.14]  

30 0.1 
[0.09,0.12] 

0.8 
[0.77,0.82] 

0.5 
[0.47,0.58] 

0.1 
[0.09,0.11] 

-2.0 
[-2.14,-1.81] 

0.1 
[0.07,0.12] 

0.0 
[-0.14,0.27] 

0.3 
[0.26,0.33] 

0.0 
[-0.19,0.28] 

-0.0 
[-0.06,0.03] 

5.0 
[4.93,5.08] 

5000 1 0.1 
[0.07,0.14] 

0.8 
[0.68,0.86] 

0.5 
[0.43,0.60] 

0.1 
[0.06,0.14] 

-2.0 
[-2.25,-1.65] 

0.1 
[0.03,0.15] 

0.0 
[-0.33,0.32] 

0.3 
[0.22,0.37] 

0.0 
[-0.47,0.49] 

-0.0 
[-0.10,0.09] 

5.0 
[4.84,5.17]  

2 0.1 
[0.07,0.13] 

0.8 
[0.73,0.87] 

0.5 
[0.45,0.59] 

0.1 
[0.08,0.12] 

-2.0 
[-2.17,-1.73] 

0.1 
[0.05,0.14] 

0.0 
[-0.17,0.27] 

0.3 
[0.24,0.34] 

-0.0 
[-0.47,0.44] 

0.0 
[-0.08,0.08] 

5.0 
[4.87,5.09]  

3 0.1 
[0.09,0.13] 

0.8 
[0.73,0.83] 

0.5 
[0.45,0.59] 

0.1 
[0.08,0.11] 

-2.0 
[-2.21,-1.77] 

0.1 
[0.05,0.14] 

0.0 
[-0.14,0.31] 

0.3 
[0.24,0.34] 

-0.0 
[-0.44,0.36] 

0.0 
[-0.07,0.09] 

5.0 
[4.89,5.08]  

30 0.1 
[0.09,0.12] 

0.8 
[0.77,0.82] 

0.5 
[0.47,0.57] 

0.1 
[0.09,0.11] 

-2.0 
[-2.16,-1.83] 

0.1 
[0.07,0.13] 

0.0 
[-0.08,0.18] 

0.3 
[0.27,0.31] 

-0.0 
[-0.31,0.25] 

-0.0 
[-0.04,0.05] 

5.0 
[4.96,5.04] 

True 
 

0.1 0.8 0.5 0.1 -2.0 0.1 0.0 0.3 0.0 0.0 5.0 
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Table 4: Results of simulation studies of model 2 in simulation scenario 1 (sim2). The numbers show mean values of parameter estimates in 100 
simulated datasets (lower 2.5% and upper 97.5% values are in brackets). Nind denotes number of individuals in each dataset and Nobs is maximal 
number of longitudinal observations (exams) per individual. Some parameters are scaled for better visibility. True values used in simulations are 
shown in the last row. 

Nind Nobs 310
0
⋅µa  10

0
⋅µb  310⋅Qa  310⋅Qb  10⋅Ya  210⋅Yb  

1f
a  10

1
⋅fb  

0f
a  10

0
⋅fb  101 ⋅σ  

1500 1 0.1 
[0.06,0.13] 

0.8 
[0.77,0.85] 

0.5 
[0.42,0.60] 

0.1 
[0.06,0.14] 

-2.0 
[-2.31,-1.67] 

0.1 
[0.05,0.14] 

0.0 
[-0.37,0.41] 

0.3 
[0.23,0.36] 

0.0 
[-0.39,0.48] 

-0.0 
[-0.09,0.08] 

5.0 
[4.60,5.40]  

2 0.1 
[0.08,0.13] 

0.8 
[0.77,0.83] 

0.5 
[0.43,0.59] 

0.1 
[0.08,0.13] 

-2.0 
[-2.28,-1.66] 

0.1 
[0.06,0.13] 

0.0 
[-0.39,0.39] 

0.3 
[0.23,0.36] 

-0.0 
[-0.39,0.49] 

0.0 
[-0.07,0.05] 

5.0 
[4.70,5.25]  

3 0.1 
[0.07,0.12] 

0.8 
[0.77,0.84] 

0.5 
[0.45,0.57] 

0.1 
[0.08,0.12] 

-2.0 
[-2.20,-1.74] 

0.1 
[0.06,0.13] 

0.1 
[-0.16,0.34] 

0.3 
[0.25,0.33] 

-0.0 
[-0.38,0.40] 

-0.0 
[-0.06,0.05] 

5.0 
[4.72,5.27] 

2500 1 0.1 
[0.07,0.13] 

0.8 
[0.77,0.84] 

0.5 
[0.43,0.59] 

0.1 
[0.07,0.13] 

-2.0 
[-2.24,-1.71] 

0.1 
[0.06,0.13] 

0.1 
[-0.33,0.39] 

0.3 
[0.24,0.35] 

0.0 
[-0.34,0.48] 

-0.0 
[-0.07,0.05] 

5.0 
[4.74,5.29]  

2 0.1 
[0.08,0.12] 

0.8 
[0.77,0.82] 

0.5 
[0.45,0.58] 

0.1 
[0.08,0.12] 

-2.0 
[-2.21,-1.69] 

0.1 
[0.06,0.13] 

0.1 
[-0.29,0.35] 

0.3 
[0.24,0.34] 

0.0 
[-0.35,0.32] 

-0.0 
[-0.05,0.05] 

5.0 
[4.77,5.24]  

3 0.1 
[0.08,0.12] 

0.8 
[0.77,0.82] 

0.5 
[0.44,0.59] 

0.1 
[0.08,0.11] 

-1.9 
[-2.25,-1.65] 

0.1 
[0.05,0.13] 

0.1 
[-0.23,0.36] 

0.3 
[0.24,0.33] 

-0.0 
[-0.40,0.25] 

0.0 
[-0.04,0.04] 

5.0 
[4.80,5.19] 

5000 1 0.1 
[0.09,0.13] 

0.8 
[0.77,0.82] 

0.5 
[0.44,0.59] 

0.1 
[0.07,0.13] 

-1.9 
[-2.21,-1.67] 

0.1 
[0.06,0.12] 

0.1 
[-0.22,0.36] 

0.3 
[0.24,0.34] 

-0.0 
[-0.34,0.24] 

-0.0 
[-0.04,0.05] 

5.0 
[4.78,5.17]  

2 0.1 
[0.08,0.13] 

0.8 
[0.77,0.82] 

0.5 
[0.46,0.59] 

0.1 
[0.09,0.11] 

-2.0 
[-2.21,-1.72] 

0.1 
[0.06,0.13] 

0.1 
[-0.28,0.33] 

0.3 
[0.25,0.34] 

-0.0 
[-0.34,0.29] 

0.0 
[-0.04,0.05] 

5.0 
[4.84,5.14]  

3 0.1 
[0.08,0.12] 

0.8 
[0.78,0.82] 

0.5 
[0.47,0.57] 

0.1 
[0.09,0.11] 

-1.9 
[-2.16,-1.74] 

0.1 
[0.06,0.12] 

0.1 
[-0.17,0.42] 

0.3 
[0.24,0.33] 

0.0 
[-0.31,0.31] 

-0.0 
[-0.05,0.04] 

5.0 
[4.82,5.19] 

True 
 

0.1 0.8 0.5 0.1 -2.0 0.1 0.0 0.3 0.0 0.0 5.0 
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Table 5: Results of simulation studies of model 1 in simulation scenario 1 (sim1) in case of data with dependence in hazards induced by a gamma-
distributed random variable with different variances 2s . The numbers show mean values of parameter estimates in 100 simulated datasets (lower 
2.5% and upper 97.5% values are in brackets). Nind denotes number of individuals in each dataset and Nobs is maximal number of longitudinal 
observations (exams) per individual. Some parameters are scaled for better visibility. True values used in simulations are shown in the last row. 

Nobs 2s  310
0
⋅µa  10

0
⋅µb  210⋅Qa  10⋅Ya  

1f
a  

0f
a  101 ⋅σ  

1 0.1 0.1 
[0.09,0.14] 

0.8 
[0.74,0.87] 

0.8 
[0.68,0.98] 

-2.0 
[-2.08,-1.90] 

1.0 
[0.97,1.04] 

0.0 
[-0.16,0.14] 

5.0 
[4.91,5.09] 

1 0.5 0.1 
[0.08,0.14] 

0.7 
[0.60,0.76] 

0.8 
[0.68,0.93] 

-2.0 
[-2.07,-1.94] 

1.0 
[0.96,1.04] 

0.0 
[-0.11,0.14] 

5.0 
[4.90,5.12] 

1 1.0 0.1 
[0.06,0.14] 

0.6 
[0.60,0.72] 

0.8 
[0.68,0.90] 

-2.0 
[-2.08,-1.90] 

1.0 
[0.96,1.04] 

0.0 
[-0.12,0.11] 

5.0 
[4.88,5.12] 

1 1.5 0.1 
[0.06,0.14] 

0.6 
[0.60,0.68] 

0.8 
[0.67,0.93] 

-2.0 
[-2.08,-1.92] 

1.0 
[0.96,1.04] 

0.0 
[-0.12,0.13] 

5.0 
[4.89,5.10] 

2 0.1 0.1 
[0.10,0.14] 

0.8 
[0.77,0.85] 

0.8 
[0.70,0.91] 

-2.0 
[-2.04,-1.94] 

1.0 
[0.97,1.02] 

-0.0 
[-0.11,0.10] 

5.0 
[4.93,5.08] 

2 0.5 0.1 
[0.08,0.14] 

0.7 
[0.60,0.74] 

0.8 
[0.70,0.89] 

-2.0 
[-2.06,-1.95] 

1.0 
[0.97,1.04] 

0.0 
[-0.09,0.10] 

5.0 
[4.92,5.09] 

2 1.0 0.1 
[0.06,0.14] 

0.6 
[0.60,0.71] 

0.8 
[0.72,0.87] 

-2.0 
[-2.06,-1.95] 

1.0 
[0.96,1.03] 

0.0 
[-0.08,0.10] 

5.0 
[4.90,5.07] 

2 1.5 0.1 
[0.06,0.14] 

0.6 
[0.60,0.67] 

0.8 
[0.70,0.88] 

-2.0 
[-2.04,-1.95] 

1.0 
[0.97,1.03] 

0.0 
[-0.07,0.12] 

5.0 
[4.91,5.08] 

3 0.1 0.1 
[0.10,0.14] 

0.8 
[0.77,0.85] 

0.8 
[0.73,0.88] 

-2.0 
[-2.05,-1.95] 

1.0 
[0.98,1.03] 

-0.0 
[-0.09,0.09] 

5.0 
[4.92,5.06] 

3 0.5 0.1 
[0.06,0.14] 

0.7 
[0.61,0.78] 

0.8 
[0.74,0.87] 

-2.0 
[-2.04,-1.96] 

1.0 
[0.98,1.02] 

0.0 
[-0.07,0.07] 

5.0 
[4.93,5.06] 

3 1.0 0.1 
[0.07,0.14] 

0.6 
[0.60,0.69] 

0.8 
[0.73,0.86] 

-2.0 
[-2.04,-1.95] 

1.0 
[0.98,1.03] 

0.0 
[-0.06,0.07] 

5.0 
[4.93,5.05] 
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3 1.5 0.1 
[0.06,0.14] 

0.6 
[0.60,0.66] 

0.8 
[0.74,0.88] 

-2.0 
[-2.05,-1.96] 

1.0 
[0.98,1.02] 

0.0 
[-0.05,0.08] 

5.0 
[4.92,5.08] 

30 0.1 0.1 
[0.10,0.13] 

0.8 
[0.80,0.83] 

0.8 
[0.76,0.92] 

-2.0 
[-2.02,-1.98] 

1.0 
[0.99,1.01] 

0.0 
[-0.06,0.07] 

5.0 
[4.97,5.03] 

30 0.5 0.1 
[0.06,0.12] 

0.7 
[0.71,0.79] 

0.8 
[0.75,0.85] 

-2.0 
[-2.02,-1.98] 

1.0 
[0.99,1.01] 

0.0 
[-0.04,0.07] 

5.0 
[4.97,5.03] 

30 1.0 0.1 
[0.06,0.11] 

0.7 
[0.67,0.75] 

0.8 
[0.73,0.83] 

-2.0 
[-2.02,-1.98] 

1.0 
[0.99,1.01] 

0.0 
[-0.05,0.06] 

5.0 
[4.97,5.03] 

30 1.5 0.1 
[0.06,0.12] 

0.7 
[0.64,0.72] 

0.8 
[0.73,0.84] 

-2.0 
[-2.02,-1.98] 

1.0 
[0.99,1.01] 

0.0 
[-0.05,0.07] 

5.0 
[4.96,5.03] 

True 
 

0.1 0.8 0.8 -2.0 1.0 0.0 5.0 
 
 
Table 6: Results of simulation studies of model 1 in simulation scenario 2 (sim2) in case of data with dependence in hazards induced by a gamma-
distributed random variable with different variances 2s . The numbers show mean values of parameter estimates in 100 simulated datasets (lower 
2.5% and upper 97.5% values are in brackets). Nind denotes number of individuals in each dataset and Nobs is maximal number of longitudinal 
observations (exams) per individual. Some parameters are scaled for better visibility. True values used in simulations are shown in the last row. 

Nobs 2s  310
0
⋅µa  10

0
⋅µb  210⋅Qa  10⋅Ya  

1f
a  

0f
a  101 ⋅σ  

1 0.1 0.1 
[0.10,0.14] 

0.8 
[0.79,0.83] 

0.8 
[0.68,0.98] 

-2.0 
[-2.06,-1.94] 

1.0 
[0.97,1.03] 

0.0 
[-0.14,0.16] 

5.0 
[4.85,5.14] 

1 0.5 0.1 
[0.06,0.11] 

0.8 
[0.72,0.79] 

0.8 
[0.64,0.93] 

-2.0 
[-2.06,-1.95] 

1.0 
[0.98,1.03] 

0.0 
[-0.13,0.13] 

5.0 
[4.87,5.13] 

1 1.0 0.1 
[0.06,0.11] 

0.7 
[0.68,0.75] 

0.8 
[0.66,0.90] 

-2.0 
[-2.06,-1.95] 

1.0 
[0.97,1.03] 

0.0 
[-0.11,0.12] 

5.0 
[4.86,5.14] 

1 1.5 0.1 
[0.06,0.14] 

0.7 
[0.63,0.72] 

0.8 
[0.67,0.96] 

-2.0 
[-2.05,-1.93] 

1.0 
[0.97,1.03] 

0.0 
[-0.10,0.19] 

5.0 
[4.84,5.14] 

2 0.1 0.1 
[0.09,0.14] 

0.8 
[0.79,0.84] 

0.8 
[0.74,0.91] 

-2.0 
[-2.03,-1.96] 

1.0 
[0.98,1.02] 

0.0 
[-0.10,0.10] 

5.0 
[4.84,5.11] 
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2 0.5 0.1 
[0.06,0.11] 

0.8 
[0.72,0.79] 

0.8 
[0.73,0.87] 

-2.0 
[-2.04,-1.97] 

1.0 
[0.98,1.02] 

0.0 
[-0.08,0.09] 

5.0 
[4.91,5.11] 

2 1.0 0.1 
[0.06,0.10] 

0.7 
[0.69,0.75] 

0.8 
[0.69,0.89] 

-2.0 
[-2.04,-1.97] 

1.0 
[0.98,1.02] 

0.0 
[-0.10,0.10] 

5.0 
[4.90,5.12] 

2 1.5 0.1 
[0.06,0.12] 

0.7 
[0.65,0.72] 

0.8 
[0.70,0.87] 

-2.0 
[-2.03,-1.97] 

1.0 
[0.97,1.02] 

0.0 
[-0.10,0.11] 

5.0 
[4.89,5.12] 

3 0.1 0.1 
[0.09,0.14] 

0.8 
[0.79,0.84] 

0.8 
[0.74,0.95] 

-2.0 
[-2.03,-1.97] 

1.0 
[0.98,1.03] 

0.0 
[-0.10,0.10] 

5.0 
[4.86,5.13] 

3 0.5 0.1 
[0.06,0.11] 

0.8 
[0.73,0.79] 

0.8 
[0.73,0.87] 

-2.0 
[-2.03,-1.98] 

1.0 
[0.97,1.02] 

0.0 
[-0.06,0.09] 

5.0 
[4.91,5.11] 

3 1.0 0.1 
[0.06,0.12] 

0.7 
[0.68,0.75] 

0.8 
[0.72,0.85] 

-2.0 
[-2.03,-1.98] 

1.0 
[0.98,1.02] 

0.0 
[-0.04,0.09] 

5.0 
[4.89,5.09] 

3 1.5 0.1 
[0.06,0.11] 

0.7 
[0.65,0.73] 

0.8 
[0.72,0.85] 

-2.0 
[-2.03,-1.97] 

1.0 
[0.98,1.02] 

0.0 
[-0.07,0.10] 

5.0 
[4.89,5.10] 

True 
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