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Abstract
Bayesian adaptive design is a popular concept in recent dose-finding studies. The idea of adaptive

design is to use accrued data to make adaptation or modification to an ongoing trial to improve the
efficiency of the trial. While performing the interim analysis, most current methods only use data
from patients who have completed the study. However, in certain therapeutic areas subjects are
usually studied for months to observe a treatment effect. Thus, a large proportion of them have not
completed the study at the interim analysis. Fu and Manner (2010) proposed a Bayesian integrated
two-component prediction model to incorporate subjects who have not yet completed the study at
the time of interim analysis. In this paper, we extend this method to accommodate delayed binary
response and illustrate the Bayesian adaptive design through a simulation example.

Key Words: Adaptive Design; Bayesian method; Dose-finding; Delayed responses; BITP model;
Emax model

1. Introduction

One major goal of Phase II dose-ranging studies is to identify the right dose for Phase III
registration studies. It is one of the most challenging steps in drug development. According
to Powell (2005), poor dose selection is one of the key reasons accounting for 50% failure
rate in Phase III clinical studies. There are often several doses tested in Phase II studies to
establish a dose-response curve. The chosen dose will be carried to the more expensive and
pivotal Phase III registration studies. Traditional Phase II dose-ranging studies usually as-
sign equal number of patients to different parallel dose arms and estimate the dose-response
relationship at the study completion. Chow and Chang (2012) has shown that the tradition-
al fixed designs are not efficient. It is also well agreed that adaptive designs can efficiently
improve the learning of the dose-ranging studies (Berry et al. 2010; Krams et al. 2007). In
an adaptive design, investigators can prespecify one or more interim time to analyze the da-
ta early to make adjustments to the rest of the study, such as dropping dose arms, changing
allocation ratio or stopping early for futility.

There are many published references describing various adaptive designs (Jennison and
Turnbull 2000; Berry et al. 2010; Chow and Chang 2012). Most of these methods only use
the end of study values (endpoints) from patients who have completed the study. Such
designs can be very useful when patients can complete the study quickly, or when the
treatment effects can show up quickly and early responses are highly predictive of the final
responses. In the later case, some traditional imputation methods such as last observation
carried forward (LOCF) can be applied to impute the final responses (Weir et al. 2007).
However, it is very common that clinical studies can take several months to even years to
complete and the treatment effects can take a long time to show. In these studies, most
patients have not completed the study at the interim time. It is very inefficient to only use
patients with observed endpoints in the interim analysis. How to utilize intermediate data
for patients who have not completed the study at the interim time postulates a common
challenge for many adaptive designs.
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Fu and Manner (2010) proposed an integrated two-component prediction (ITP) mod-
el to utilize the intermediate outcomes to predict the endpoints in the clinical trials with
delayed responses. The ITP model was nicely integrated in a Bayesian adaptive design
to estimate the dose-response curve. However, their method can only handel continuous
outcomes. In this manuscript, we extend the method in Fu and Manner (2010) to binary
outcomes and propose a binary integrated two-component prediction (BITP) model.

In an ideal hypothetical world, the sponsor of study owns the data and can retrieve and
look at the data and adjust the trial design at any time. However, in the realistic world,
the number of interim analyses are limited because there are many operational aspects to
consider. Nowadays, many clinical trials are multi-regional with many different sites and
even countries involved. It often takes weeks for the sponsor to receive the interim data
after the interim data cut-off date. Then the data need to be cleaned to pass the quality con-
trol process and it will take another several weeks for data analyses and decision making.
The whole process takes tremendous amount of resource. In addition, regulatory agencies
often raise concerns of introduced bias to studies with too many interims. Thus, although
theoretically a clinical study can have multiple interim analyses, the one-interim design is
still the most popular and practical in the pharmaceutical research.

The goal of this manuscript is to propose a Bayesian adaptive design for dose-finding
studies with delayed binary outcomes. Section 2 describes the BITP model and the utility
based decision making. The method is evaluated through simulation and the results are
presented in section 3. In section 4, we conclude this manuscript with a discussion.

2. Method

In order to handle delayed responses, we need to develop a method to utilize the information
at interim to predict future outcomes at study completion. Then we will evaluate different
decisions by analyzing the predictions from the interim analysis. In section 2.1, we will
briefly introduce the integrated two-component prediction (ITP) model with continuous
responses. Then we will generalize the ITP model to accommodate binary responses (BITP
model) in section 2.2. Section 2.3 will illustrate how to make decisions to drop arms by
optimizing a utility function.

2.1 Integrated Two-Component Prediction (ITP) Model for Continuous Responses

During the interim analysis of dose ranging trial, the goal is to utilize the information col-
lected to make recommendations for the next step. The main challenge with adaptive design
for delayed responses is that a large portion of subjects may have not completed the study
at the time of interim analysis. Furthermore, the time course of the drug effect is usually
a nonlinear curve with a diminishing return shape and the variance of the responses also
changes over time. Thus, Fu and Manner (2010) designed an Integrated Two-component
Prediction (ITP) model for continuous data to extrapolate the information from partially
completed subjects to predict their results at the completion of the study:

Yijl = (θi + sij + ϵijl)
1− ekitijl

1− edki

where Yijl is the observed change from baseline from dose level i, subject j at time l; tijl
is the time covariate for dose level i, subject j at time l and d is the duration of the study.
This model consists of two components. The first component (θi+ sij + ϵijl) describes the
drug effect at study completion, where θi represents the predicted drug effect at dose level
i at study completion (tijl = d). This component is a mixed-effect analysis of variance
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(ANOVA) model. Parameter sij is the random effect for dose i subject j, which describes
the between subject variability and parameter ϵijl is the residual error, which describes the
within subject variability. The second component (1 − ekitijl) \ (1 − edki) describes the
time course of the treatment effect, where ki is a shape parameter to control how quickly
the drug is taking effect over the treatment time. The integration of the time effect (second
component) to the drug effect (first component) enables the model to predict drug effect at
study completion while subjects have not yet completed the study or have dropped out, as
well as to capture the increase of variability as treatment time increases.

2.2 Binary Integrated Two-Component Prediction (BITP) Model

While Fu and Manner (2010) focused in continuous responses, in some situations the ma-
jor outcomes are binary. Thus it is imperative to extend the method to handle delayed
binary responses. While the delayed binary responses share similar characteristics as con-
tinuous responses: (1) many patients will not be able to complete the study at the time
of interim analysis, (2) the drug effect follows a nonlinear curve with diminishing return
shape over treatment time, (3) the variance of responses changes as time changes, there
are still some differences compared to continuous responses. The distribution of the bi-
nary responses is specified as Bernoulli distribution or binomial distribution, in which the
probability is modeled through a link function (e.g. logit link) to linear predictors, thus
there is no level-1 residual error ϵijl and the probability is determined completely by the
covariates. The variability associated with the binary responses comes from the Bernoulli
or binomial distribution with the probability determined by the model. Thus the within
subject variability is associated with the probability and is not modeled directly. Secondly,
while we usually model change from baseline if the data is continuous, there is no change
from baseline when the data is binary. Thus, we designed the following Binary Integrated
Two-Component Prediction (BITP) model to handle delayed binary responses:

logit(Pijl) = a0i + (θi + sij)
1− ekitijl

1− edki

Yijl ∼ Bernoulli(Pijl)

where Yijl is the observed binary outcome for dose level i, subject j at time l and Pijl is
the corresponding probability of event occurring; tijl is the time covariate for dose level
i, subject j at time l and d is the duration of the study. Parameter a0i are the logit of
the baselines for each subject, which is invariant over time. Similar to the continuous ITP
model, the BITP model also consists of two components. The first component is drug effect,
which is a generalized mixed effect ANOVA model. The parameter θi represents the drug
effect of does level i at study completion and sij is the random effect for subject j at dose
level i. There is no individual residual error in this component. The second component is
the time effect, which is similar to the time effect in the continuous ITP model. Figure 1(a)
describes how the second component, the time effect, extrapolates the drug effect during a
3-month study via a diminishing return curve. The larger the absolute value of the shape
parameter k, the quicker the drug takes effect and reaching a steadier state. Figure 1(b)
illustrates the drug effect (the logit of the interested probability) over time. Parameter theta
decides effect size, while the time effect component extrapolates it across the treatment
time.

We choose to use Bayesian method to fit the BITP model. There are many ways to
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choose priors. If history data is limited, we can always use the noninformative priors as:

θi ∝ 1

ki ∝ 1

a0i ∝ 1

sij ∼ N(0, τ2)

log(τ2) ∝ 1

log(σ2) ∝ 1

A Markov Chain Monte Carlo (MCMC) algorithm was used to sample the posterior
parameters.

2.3 Adaptive Design Decision Making

Based on the interim data I , we summarize the interim information from the posterior
distribution P (Θ|I) of the BITP model, where Θ represents all parameters of interests.
Among a set of all possible decisions {δ|δ = 1, 2, , n} such as dropping dose arms or
change allocation ratio, we can evaluate each decision delta by obtaining the posterior
predictive distribution and compare different decisions by optimizing a utility function. We
illustrate how the optimal decision is chosen in the following steps:

1. Fit BITP model by using the interim data to obtain the posterior distribution p(Θ|I)
and generate M sets of parameters from the posterior distribution, each generated at
an iteration of the MCMC sampler.

2. For each decision delta, use the M sets of posterior parameters to generate M sets of
posterior predictive data sets under the posterior predictive distribution:

p(Yδ|I) =
∫

p(Yδ|Θ)p(Θ|I)dΘ

Thus, we have M sets of predictive trial observations for each decision δ, denoted as
{Y j

δ }
M
j=1.

3. A utility function g(.) is then constructed and calculated under each predictive data
{Y j

R}.

4. Estimate E(g(Yδ)|I) by taking the average of the {g(Y j
δ )}

M
j=1, to minimize the

Monte Carlo error.

5. Estimate E(g(Yδ)|I) for each decision delta and choose the optimal decision which
maximize the utility function:

δ̂ = argmax{1,2,...,n}E(g(Yδ)|I).

There are many choices for the utility function depending on the questions to answer by
the interim analysis. In dose ranging trials, the most important question is which decision
will be the most efficient in estimating the dose response curve. Often the primary goal
is to maximize our learning on ED90, which is the minimum dose to achieve 90% of the
maximum drug efficacy. ED90 can be estimated from an Emax model (Rowland and Tozer,
1995). By denoting ED90 as a function of predictive observations Yδ as ˆED90 = h(Yδ), we
can define our utility function as g(Yδ) = −{h(Yδ) − E[h(Yδ)|I]}2, and E{g(Yδ)|I} =
−var{h(Yδ)|I}. The expectation of this utility increases as the precision of estimated
ED90 increases. More details will be illustrated via the simulation example in Section 3.
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3. Simulation and Results

We illustrate how to use the BITP model and the utility based decision rule to conduct
dose-finding clinical studies with delayed binary responses through a simulation example.

3.1 Study Design

Consider a randomized, double blinded, parallel-group placebo controlled Phase II dose-
finding clinical study. The primary objective is to learn the dose-response relationship to
find a clinical dose for Phase III development. The planned sample size is 324 patients
with 36 subjects allocated to the placebo arm and 288 patients allocated to active treatment
arms. Initially, there are 8 treatment arms and 1 placebo arm with equal number of subjects
allocated. The patients are enrolled and screened during prestudy period and randomized
to the placebo arm or one of the 8 treatment arms in a staggered manner. Once the patients
started the study, they will be administered with the allocated treatment from week 0 to
week 12 and will have biweekly visits during the treatment period. Thus there will be 7
measurements taken for each patient including baseline. An interim analysis is planned at
some time during the study and after which 4 less informative active treatment arms will be
dropped and the incoming patients will be randomized to the 4 more informative arms and
the placebo arm. We assume the enrollment rate is approximately 18 patients per month,
so there are roughly 21 months from the first group of patients started the treatments until
the last group of patients finished the treatments.

3.2 Simulation Setups and Implementations

Most pharmacodynamics variables exhibit a nonlinear dose-response nature which is often
described by the Emax model (Rowland and Tozer 1995; Shargel et al. 2012). Because our
response is binary, we assume the logit of the probability of interested responses by the end
of the study follows a true dose-response curve of an Emax shape:

logit(P ) = E0 +
Emaxdose

h

EDh
50 + doseh

with E0 = −2, Emax = 4 translated to ∼ 12% probability at baseline and a maximum of
∼ 88% probability at maximum efficacy. We assume the true ED50, the minimum dose to
achieve 50% of the efficacy, is 40 mg, and the hill parameter h = 1. Figure 2 displays the
true dose response curve under this model.

In reality, our therapeutic window is limited due to safety and other concerns. Suppose
we are going to dose as high as the highest safe dose identified from Phase I studies and
evaluate the adaptive design under three dosing scenarios in our simulation, where the
highest safe dose is 400 mg under the low dose range scenario, 600 mg under the median
dose range scenario and 1000 mg under the high dose range scenario:

Low dose range: 5, 10, 20, 40, 60, 100, 200, 400 mg;
Median dose range: 5, 15, 40, 80, 120, 200, 400, 600 mg;
High dose range: 20, 40, 80, 160, 300, 500, 800, 1000 mg.
Figure 3 illustrate how doses are distributed on the true response curve under these

scenarios. Under low dose range, the drug effect just starts to approaching plateau and only
a portion of the dose-response curve is covered, while under the high dose range, the drug
effect has almost achieved the plateau and a larger portion of the dose response curve is
covered and the medium dose range lies in between.
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In addition, we assume the shape parameter for time effect ki = −0.75. The random
effect sij ∼ N(0, τ2), where τ = 0.45. The missing data mechanism in this study is
missing at random (MAR) with 22.5% dropout rate. After a patient is dropped out, all of
his future data are missing. We chose to perform the interim analysis at month 10, where
more than half of the patients have enrolled in the study and there are a good portion of
patients who have completed the study. Table 1 illustrates how subjects are allocated at
month 10.

For one simulated data, with noninformative priors, parameters of the BITP model are
estimated using the Markov Chain Monte Carlo (MCMC) algorithm at the time of interim
analysis. To illustrate in more details, after burn-in, we obtain 1000 posterior samples of
parameters of the BITP model {a0i, ki, θi, τi, i = 1, 2, ..., 9}. To select 4 treatment arms
to keep from 8 treatment arms, there are 70 possible combinations (C4

8 = 70). For each
combination of treatment arms, we assign the rest of the subjects in those kept arms and
obtain 1000 posterior predictive trial data based on the 1000 sets of posterior parameters.
For each predictive trial data, an Emax model is fitted to the last observation of each patient
to estimate ED50, thus for each combination of treatment arms, we have 1000 estimated
ED50. In this example, we consider ED50 to be our parameter of interest, because for a
fixed h, EDx is proportional to ED50. We can derive EDX from EmaxEDh

X/(EDh
50 +

EDh
X) = X%Emax and EDX = ED50(1−X%)−(1/h). Therefore, the precision of ED50

estimate directly indicates the precision of ED90 or ED80 estimates. Thus, we choose the
treatment combination with the most precise estimate of ED50:

argminδ∈{1,2,...,70}var{h(Yδ)|I}

where ˆED50 = h(Yδ). For each given interim time and dosing scenario, we repeat the
above simulation for 500 times and evaluate the loss by the loss function:

Loss =
1

500

500∑
i=1

( ˆED50,i − ED50)
2

For comparison purpose, we also evaluate the same loss function for the traditional parallel
design with 1 placebo arm and 8 treatment arms (N = 36 / arm).

3.3 Simulation Results

Figure 4 displays the simulation results of interim analysis for different dosing scenarios.
The box plots present differences of the estimated and true ED50. The figure suggests that
the adaptive design is more efficient than the traditional design. Table 2 summarizes the
numerical comparison between adaptive design versus traditional design under the three
dosing scenarios. Because the low dose range scenario covers the smallest portion of the
dose response curve among the three dosing scenarios simulated, the learning of the curve
is less efficient than the other two scenarios and we observed a smaller saving compared
to the other two scenarios. Also, one can see that the loss is the smallest under the high
dose range scenario and the largest under low dose range scenario, suggesting having doses
approaching dose-response plateau will enhance the learning accuracy. Compared to tradi-
tional design with equal number of subjects (N=324). The adaptive design reduced the loss
by approximately 5%, 21% and 19% under the low, medium and high dose range scenarios.
When comparing the adaptive design (N=324) to the traditional design with more number
of subjects (N = 360), adaptive design still produces comparable losses.
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4. Discussion

In order to utilize as much information as possible to better estimate the dose-response
curve in Phase II delayed binary response dose-finding trials, we have proposed a BITP
model to predict the clinical trial data using interim information. This model can be con-
sidered as an extension of the ITP model by adapting it to incorporate the binary data. We
then apply a utility based decision rule to decide the adjustment of the future trial design.
In addition, we have discussed the importance of timing of the interim analysis.

The BITP model is able to deal with generalized nonlinear longitudinal models with
binary responses, as well as to incorporate subjects who have not completed the study at
the time of interim analysis, which account for a large portion in the delayed response study.
Subjects enrolled after interim analysis are able to be allocated to more informative arms,
thus to improve the accuracy of estimates. Simulation results suggest that the adaptive
design improves the learning accuracy of the dose-response under three dosing scenarios
when the interim adaption is conducted at an appropriate time. The accuracy of estimating
the dose-response also relies on the dosing scenario. Generally, the more the dose-response
curve is covered, the better we can estimate the dose response curve. However, in reality our
therapeutic window is often limited by safety and other concerns. Our simulation suggests
that the Bayesian adaptive design has the largest saving compared to the traditional design
when the therapeutic window is limited.

One concern of the adaptive design is the timing of the interim analysis. The optimal
timing is an optimal allocation of information collected before and after the interim in
order to optimize our learning of the dose-response curve. It is very important to guarantee
sufficient information at the interim time so that the BITP model can give a more accurate
prediction of the trial data to help us making correct interim decision. Binary responses
are associated with more uncertainty compared to continuous responses, thus when the
responses are binary, the interim analysis should be scheduled later to accumulate sufficient
information.In our example, we chose to perform the interim analysis at month 10, where
more than half of the planned patients have enrolled in the study and a good portion of them
(135 out of 324, 42%) have completed the study. This will also depend on the enrollment
rate and other characteristics of the study and the next step of this research is to conduct
simulation according to the actual trial characteristics to determine the interim time.
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Table 1: Allocation of subject with different timing of the interim analysis.

Interim time
(months)

No. subjects en-
rolled at interim
time

No. subjects in
each droppedl treat-
ment arm

No. subjects in
each kept treatment
arm

10 180 20 52
Subjects are allocated to the placebo arm in the same time, the total number of sub-
jects receiving placebo does not exceed 36 subjects.
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