
Lucid: An R Package for Pretty-Printing Floating Point
Numbers

Kevin Wright1
1DuPont Pioneer, 8305 NW 62nd Street, Johnston, IA 50131

Abstract

A. B. Farquhar and Farquhar (1891) provided this humorous quote about numerical
tables:

The graphic method has considerable superiority for the exposition of
statistical facts over the tabular. A heavy bank of figures is grievously
wearisome to the eye, and the popular mind is as incapable of drawing
any useful lessons from it as of extracting sunbeams from cucumbers.

The lucid package intends to make your life easier by helping you extract information
from tables. The package has functions for printing vectors and tables of floating-point
numbers in a human-friendly format. An application is presented for printing of variance
components from mixed models.

1. Introduction

Numerical output from R is often in scientific notation, which can make it difficult to
quickly glance at numbers and understand the relative sizes of the numbers. This not a
new phenomenon. Before R had been created, Finney (1988) had this to say about
numerical output:

Certainly, in initiating analyses by standard software or in writing one's
own software, the aim should be to have output that is easy to read and
easily intelligible to others. ... Especially undesirable is the so-called
"scientific notation" for numbers in which every number is shown as a
value between 0.0 and 1.0 with a power of 10 by which it must be
multiplied. For example:

0.1234E00 is 0.1234
0.1234E02 is 12.34
0.1234E-1 is 0.01234

This is an abomination which obscures the comparison of related
quantities; tables of means or of analyses of variance become very
difficult to read. It is acceptable as a default when a value is
unexpectedly very much larger or smaller than its companions, but its
appearance as standard output denotes either lazy programming or failure
to use good software properly. Like avoidance of "E", neat arrangement
of output values in columns, with decimal points on a vertical line,
requires extra effort by a programmer but should be almost mandatory
for any software that is to be used often.

JSM 2016 - Section on Statistical Computing

2270

One recommendation for improving the display of tables of numbers is to round numbers
to 2 (Wainer 1997) or 3 (Feinberg and Wainer 2011) digits for the following reasons:

1. We cannot comprehend more than three digits very easily.
2. We seldom care about accuracy of more than three digits.
3. We can rarely justify more than three digits of accuracy statistically.

An alternative to significant digits is the concept of effective digits (Ehrenberg 1977,
Kozak et al. 2011), which considers the amount of variation in the data.

In R, the round() and signif() functions can be used to round to 3 digits of accuracy,
but those functions can still print results in scientific notation and leave much to be
desired. The lucid package provides functions to improve the presentation of floating
point numbers in a clear (or lucid) way that makes interpretation of the numbers
immediately apparent. Consider the standard display of the following vector of
coefficients from a fitted model:

R> print(df1)
 effect
(Intercept) 1.135000e+02
A -1.350000e+01
B 4.500000e+00
C 2.450000e+01
C1 6.927792e-14
C2 -1.750000e+00
D 1.650000e+01

Questions of interest about the coefficients might include:
1. Which coefficient is zero?
2. How large is the intercept?

Both questions can be answered using the output shown above, but it takes too much
effort to answer the questions. Now examine the same vector of coefficients with prettier
formatting:

R> require("lucid")
R> lucid(df1)
 effect
(Intercept) 114
A -13.5
B 4.5
C 24.5
C1 0
C2 -1.75
D 16.5

Which coefficient is zero? How large is the intercept?
Printing the numbers with the lucid() function has made the questions much easier to
answer.

The sequence of steps used by lucid() to format and print the output is.

1. Zap small numbers to zero using the function zapsmall().
2. Round to 3 significant digits (user controllable option).
3. Drop trailing zeros.
4. Align numbers at the decimal point (text format).

JSM 2016 - Section on Statistical Computing

2271

The lucid package contains a generic function lucid() with specific methods for
numeric vectors, data frames, and lists. The method for data frames applies formatting to
each numeric column and leaves other columns unchanged. The lucid() function is
primarily a formatting function, the results of which are passed to the regular print()
functions.

1.1 Example: Antibiotic effectiveness
Wainer and Larsen (2009) present data published by Will Burtin in 1951 on the
effectiveness of antibiotics against 16 types of bacteria. The data is included in the lucid
package as a dataframe called antibiotic. The default view of this data is:

R> print(antibiotic)

 bacteria penicillin streptomycin neomycin gramstain
1 Aerobacter aerogenes 870.000 1.00 1.600 neg
2 Brucella abortus 1.000 2.00 0.020 neg
3 Escherichia coli 100.000 0.40 0.100 neg
4 Klebsiella pneumoniae 850.000 1.20 1.000 neg
5 Mycobacterium tuberculosis 800.000 5.00 2.000 neg
6 Proteus vulgaris 3.000 0.10 0.100 neg
7 Pseudomonas aeruginosa 850.000 2.00 0.400 neg
8 Salmonella typhosa 1.000 0.40 0.008 neg
9 Salmonella schottmuelleri 10.000 0.80 0.090 neg
10 Bacillis anthracis 0.001 0.01 0.007 pos
11 Diplococcus pneumoniae 0.005 11.00 10.000 pos
12 Staphylococcus albus 0.007 0.10 0.001 pos
13 Staphylococcus aureus 0.030 0.03 0.001 pos
14 Streptococcus fecalis 1.000 1.00 0.100 pos
15 Streptococcus hemolyticus 0.001 14.00 10.000 pos
16 Streptococcus viridans 0.005 10.00 40.000 pos

Due to the wide range in magnitude of the values, nearly half of the floating-point
numbers in the default view contain trailing zeros after the decimal, which adds
significant clutter and impedes interpretation. The lucid() display of the data is:

R> lucid(antibiotic)
 bacteria penicillin streptomycin neomycin gramstain
1 Aerobacter aerogenes 870 1 1.6 neg
2 Brucella abortus 1 2 0.02 neg
3 Escherichia coli 100 0.4 0.1 neg
4 Klebsiella pneumoniae 850 1.2 1 neg
5 Mycobacterium tuberculosis 800 5 2 neg
6 Proteus vulgaris 3 0.1 0.1 neg
7 Pseudomonas aeruginosa 850 2 0.4 neg
8 Salmonella typhosa 1 0.4 0.008 neg
9 Salmonella schottmuelleri 10 0.8 0.09 neg
10 Bacillis anthracis 0.001 0.01 0.007 pos
11 Diplococcus pneumoniae 0.005 11 10 pos
12 Staphylococcus albus 0.007 0.1 0.001 pos
13 Staphylococcus aureus 0.03 0.03 0.001 pos
14 Streptococcus fecalis 1 1 0.1 pos

JSM 2016 - Section on Statistical Computing

2272

15 Streptococcus hemolyticus 0.001 14 10 pos
16 Streptococcus viridans 0.005 10 40 pos

The lucid() display is dramatically simpler, providing a clear picture of the
effectiveness of the antibiotics against bacteria. This view of the data matches exactly the
appearance of Table 1 in Wainer and Larsen (2009).

A stem-and-leaf plot is a semi-graphical display of data, in that the positions of the
numbers create a display similar to a histogram. In a similar manner, the lucid() output
is also a semi-graphical view of the data. The figure below shows a dotplot of the
penicillin values on a reverse log10 scale. The values are also shown along the right axis
in lucid() format. Note the similarity in the overall shape of the dots and the positions
of the left-most significant digit in the numerical values along the right axis.

1.2 Example: Using lucid with broom
The broom package by Robinson (2016) can be used to collect statistics from fitted
models into tidy data frames. For example, using the Orange tree data, it is possible to fit
a separate regression line for each tree. (The straight-line regression here is not entirely
sensible, but illustrates a point.)

R> require(dplyr)
R> Orange %>% group_by(Tree) %>%
 do(tidy(lm(circumference~age, data=.)))

 Tree term estimate std.error statistic p.value
 <ord> <chr> <dbl> <dbl> <dbl> <dbl>
1 3 (Intercept) 19.20353638 5.863410215 3.275148 2.207255e-02
2 3 age 0.08111158 0.005628105 14.411881 2.901046e-05
3 1 (Intercept) 24.43784664 6.543311039 3.734783 1.350409e-02

JSM 2016 - Section on Statistical Computing

2273

4 1 age 0.08147716 0.006280721 12.972581 4.851902e-05
5 5 (Intercept) 8.75834459 8.176436207 1.071169 3.330518e-01
6 5 age 0.11102891 0.007848307 14.146861 3.177093e-05
7 2 (Intercept) 19.96090337 9.352361105 2.134317 8.593318e-02
8 2 age 0.12506176 0.008977041 13.931291 3.425041e-05
9 4 (Intercept) 14.63762022 11.233762751 1.303002 2.493507e-01
10 4 age 0.13517222 0.010782940 12.535748 5.733090e-05

Extracting information from the sea of numbers above is difficult. The lucid function
comes to the rescue, simply by adding one more step to the sequence of pipes.

R> Orange %>% group_by(Tree) %>%
 do(tidy(lm(circumference~age, data=.))) %>% lucid

 Tree term estimate std.error statistic p.value
 <ord> <chr> <chr> <chr> <chr> <chr>
1 3 (Intercept) 19.2 5.86 3.28 0.0221
2 3 age 0.0811 0.00563 14.4 0.000029
3 1 (Intercept) 24.4 6.54 3.73 0.0135
4 1 age 0.0815 0.00628 13 0.0000485
5 5 (Intercept) 8.76 8.18 1.07 0.333
6 5 age 0.111 0.00785 14.1 0.0000318
7 2 (Intercept) 20 9.35 2.13 0.0859
8 2 age 0.125 0.00898 13.9 0.0000343
9 4 (Intercept) 14.6 11.2 1.3 0.249
10 4 age 0.135 0.0108 12.5 0.0000573

After formatting, information in the table almost jumps out at the reader, reducing the
amount of cognitive effort needed for interpretation.

2 Application to mixed models

During the process of fitting of mixed models, it is often useful to compare fits of
different models to data, for example using loglikelihood or AIC values. It can also be
very informative to inspect the estimated values of variance components.

To that end, the generic VarCorr() function found in the nlme (Pinheiro et al. 2014)
and lme4 (Bates et al. 2014) packages can be used to print variance estimates from fitted
models. The VarCorr() function is not available for models obtained using the asreml
(Butler 2009) package.

The lucid package provides a generic function called vc() that provides a unified
interface for extracting the variance components from fitted models obtained from the
asreml, lme4, nlme, and rjags packages. The vc() function has methods specific to
each package that make it easy to extract the estimated variances and correlations from
fitted models and formats the results using the lucid() function.

Pearce et al. (1988) suggest showing four significant digits for the error mean square and
two decimal places digits for 𝐹 values. The lucid() function uses a similar philosophy,
presenting the variances with four significant digits and asreml 𝑍 statistics with two
significant digits.

JSM 2016 - Section on Statistical Computing

2274

2.1 vc() example 1 - Rail data
The following simple example illustrates use of the vc() function for identical REML
models in the nlme, lme4, and asreml packages. The travel times of ultrasonic waves in
six steel rails was modeled as an overall mean, a random effect for each rail, and a
random residual. The package rjags is used to fit a similar Bayesian model inspired by
Wilkinson (2014).

R> require("nlme")
R> data(Rail)
R> mn <- lme(travel~1, random=~1|Rail, data=Rail)
R> vc(mn)

 effect variance stddev
 (Intercept) 615.3 24.81
 Residual 16.17 4.021

R> require("lme4")
R> m4 <- lmer(travel~1 + (1|Rail), data=Rail)
R> vc(m4)

 grp var1 var2 vcov sdcor
 Rail (Intercept) <NA> 615.3 24.81
 Residual <NA> <NA> 16.17 4.021

R> require("asreml")
R> ma <- asreml(travel~1, random=~Rail, data=Rail)
R> vc(ma)
 effect component std.error z.ratio constr
 Rail!Rail.var 615.3 392.6 1.6 pos
 R!variance 16.17 6.6 2.4 pos

R> require("rjags")
R> m5 <-
"model {
for(i in 1:nobs){
 travel[i] ~ dnorm(mu + theta[Rail[i]], tau)
}
for(j in 1:6) {
 theta[j] ~ dnorm(0, tau.theta)
}
mu ~ dnorm(50, 0.0001) # Overall mean. dgamma()
tau ~ dgamma(1, .001)
tau.theta ~ dgamma(1, .001)
residual <- 1/sqrt(tau)
sigma.rail <- 1/sqrt(tau.theta)
}"

R> jdat <- list(nobs=nrow(Rail), travel=Rail$travel, Rail=Rail$Rail)
jinit <- list(mu=50, tau=1, tau.theta=1)
tc5 <- textConnection(m5)
j5 <- jags.model(tc5, data=jdat, inits=jinit, n.chains=2, quiet=TRUE)
close(tc5)
c5 <- coda.samples(j5, c("mu","theta", "residual", "sigma.rail"),
 n.iter=100000, thin=5, progress.bar="none")
vc(c5)

JSM 2016 - Section on Statistical Computing

2275

 Mean SD 2.5% Median 97.5%
mu 66.84 9.838 47.42 66.78 86.69
residual 3.949 0.8154 2.736 3.821 5.896
sigma.rail 23.42 7.567 13.62 21.9 42.42
theta[1] -34.72 10.02 -54.94 -34.63 -15.04
theta[2] -16.63 10.03 -36.93 -16.55 3.244
theta[3] -12.69 10.03 -33.06 -12.58 7.105
theta[4] 15.63 10 -4.271 15.67 35.34
theta[5] 17.58 10 -2.44 17.63 37.37
theta[6] 28.8 10.02 8.679 28.81 48.71

Compare the JAGS point estimates and quantiles (above) with the results from lme4
below:

R> summary(m4)
Linear mixed model fit by REML ['lmerMod']
Formula: travel ~ 1 + (1 | Rail)
 Data: Rail
REML criterion at convergence: 122.177
Random effects:
 Groups Name Std.Dev.
 Rail (Intercept) 24.805
 Residual 4.021
Number of obs: 18, groups: Rail, 6
Fixed Effects:
(Intercept)
 66.5

R> ranef(m4)

$Rail
 (Intercept)
2 -34.53091
5 -16.35675
1 -12.39148
6 16.02631
3 18.00894
4 29.24388

While the lucid() function is primarily a formatting function and uses the standard
print() functions in R, the vc() function defines an additional class for the value of
the function and has dedicated print methods for the class. This was done to allow
additional formatting of the results.

2.2 vc() example 2 - Analysis of federer.diagcheck data
The second, more complex example is based on a model in Federer and Wolfinger (2003)
in which orthogonal polynomials are used to model trends along the rows and columns of
a field experiment. The data are available in the agridat package (Wright 2014) as the
federer.diagcheck data frame. The help page for that data shows how to reproduce
the analysis of Federer and Wolfinger (2003). When using the lme4 package to
reproduce the analysis, two different optimizers are available. Do the two different
optimizers lead to similar estimated variances?

JSM 2016 - Section on Statistical Computing

2276

In the output below, the first column identifies terms in the model, the next two columns
are the variance and standard deviation from the "bobyqa" optimizer, while the final two
columns are from the "NelderMead" optimizer. Note, these results are from lme4 version
1.1-7 and are likely to be different than the results from more recent versions of lme4.

The default output printing is shown first.

R> print(out)

 term vcov-bo sdcor-bo sep vcov-ne sdcor-ne
1 (Intercept) 2869.4469 53.56722 3.228419e+03 56.81917727
2 r1:c3 5531.5724 74.37454 7.688139e+03 87.68203447
3 r1:c2 58225.7678 241.30016 6.974755e+04 264.09761622
4 r1:c1 128004.1561 357.77668 1.074270e+05 327.76064925
5 c8 6455.7495 80.34768 6.787004e+03 82.38327224
6 c6 1399.7294 37.41296 1.636128e+03 40.44907560
7 c4 1791.6507 42.32790 1.226846e+04 110.76308194
8 c3 2548.8847 50.48648 2.686302e+03 51.82954364
9 c2 5941.7908 77.08301 7.644730e+03 87.43414634
10 c1 0.0000 0.00000 1.225143e-03 0.03500204
11 r10 1132.9501 33.65932 1.975505e+03 44.44665149
12 r8 1355.2291 36.81344 1.241429e+03 35.23391157
13 r4 2268.7296 47.63118 2.811241e+03 53.02113582
14 r2 241.7894 15.54958 9.282275e+02 30.46682578
15 r1 9199.9022 95.91612 1.036358e+04 101.80169429
16 <NA> 4412.1096 66.42371 4.126832e+03 64.24042100

How similar are the variance estimates obtained from the two optimization methods? It is
difficult to compare the results due to the clutter of extra digits, and because of some
quirks in the way R formats the output. The variances in column 2 are shown in non-
scientific format, while the variances in column 5 are shown in scientific format. The
standard deviations are shown with 5 decimal places in column 3 and 8 decimal places in
column 6. (All numbers were stored with 15 digits of precision.)

The lucid() function is now used to show the results in the manner of the vc()
function.

R> lucid(out, dig=4)

 term vcov-bo sdcor-bo sep vcov-ne sdcor-ne
1 (Intercept) 2869 53.57 3228 56.82
2 r1:c3 5532 74.37 7688 87.68
3 r1:c2 58230 241.3 69750 264.1
4 r1:c1 128000 357.8 107400 327.8
5 c8 6456 80.35 6787 82.38
6 c6 1400 37.41 1636 40.45
7 c4 1792 42.33 12270 110.8
8 c3 2549 50.49 2686 51.83
9 c2 5942 77.08 7645 87.43
10 c1 0 0 0 0.035
11 r10 1133 33.66 1976 44.45
12 r8 1355 36.81 1241 35.23

JSM 2016 - Section on Statistical Computing

2277

13 r4 2269 47.63 2811 53.02
14 r2 241.8 15.55 928.2 30.47
15 r1 9200 95.92 10360 101.8
16 <NA> 4412 66.42 4127 64.24

The formatting of the variance columns is consistent as is the formatting of the standard
deviation columns. Fewer digits are shown. It is easy to compare the columns and see
that the two optimizers are giving quite different answers. Note: The bobyqa results are
almost identical to the results obtained when using ASREML or SAS.

Note: Data frames have no quotes, but numeric matrices are printed with quotes. Use
noquote() to print without quotes, for example:
R> noquote(lucid(as.matrix(head(mtcars)),2))

 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.6 16 0 1 4 4
Mazda RX4 Wag 21 6 160 110 3.9 2.9 17 0 1 4 4
Datsun 710 23 4 110 93 3.8 2.3 19 1 1 4 1
Hornet 4 Drive 21 6 260 110 3.1 3.2 19 1 0 3 1
Hornet Sportabout 19 8 360 180 3.2 3.4 17 0 0 3 2
Valiant 18 6 220 100 2.8 3.5 20 1 0 3 1

References

Bates, Douglas, Martin Maechler, Ben Bolker, and S. Walker (2014). lme4: Linear

mixed-effects models using Eigen and S4. http://CRAN.R-project.org/package=lme4.

Butler, David (2009). asreml: asreml() fits the linear mixed model. www.vsni.co.uk.

Ehrenberg, A. S. C. (1977). Rudiments of Numeracy. Journal of the Royal Statistical

Society. Series A, 277–97. doi:10.2307/2344922.

Farquhar, Arthur B., and Henry Farquhar (1891). Economic and Industrial Delusions.
New York: G. P. Putnam’s Sons.
https://books.google.com/books?id=BHkpAAAAYAAJ.

Federer, Walter T., and Russell D. Wolfinger (2003). In Handbook of Formulas and

Software for Plant Geneticists and Breeders. Edited by Manjit Kang. Haworth Press.

Feinberg, Richard A., and Howard Wainer (2011). Extracting Sunbeams from
Cucumbers. Journal of Computational and Graphical Statistics 20 (4): 793–810.
doi:10.1198/jcgs.2011.204a.

Finney, D. J. (1988). Was This in Your Statistics Textbook? II. Data Handling.
Experimental Agriculture 24: 343–53. doi:10.1017/S0014479700015891.

Kozak, Marcin, Ricardo Antunes Azevedo, Justyna Jupowicz-Kozak, and Wojtek
Krzanowski (2011). Reporting Numbers in Agriculture and Biology: Don’t Overdo the
Digits. Australian Journal of Crop Science 5: 1876–81.
http://www.cropj.com/kozak_5_13_2011_1876_1881.pdf.

JSM 2016 - Section on Statistical Computing

2278

http://cran.r-project.org/package=lme4
file:///C:/Users/wrightkevi/Downloads/www.vsni.co.uk
https://doi.org/10.2307/2344922
https://books.google.com/books?id=BHkpAAAAYAAJ
https://doi.org/10.1198/jcgs.2011.204a
https://doi.org/10.1017/S0014479700015891
http://www.cropj.com/kozak_5_13_2011_1876_1881.pdf

Pearce, S. C., G. M. Clarke, G. V. Dyke, and R. E. Kempson (1988). A Manual of Crop

Experimentation. Charles Griffin; Company.

Pinheiro, Jose, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and R Core Team
(2014). nlme: Linear and Nonlinear Mixed Effects Models. http://CRAN.R-
project.org/package=nlme.

Robinson, David (2016). broom: Convert Statistical Analysis Objects into Tidy Data

Frames. https://CRAN.R-project.org/package=broom.

Wainer, Howard (1997). Improving Tabular Displays, with NAEP Tables as Examples
and Inspirations. Journal of Educational and Behavioral Statistics 22. Sage Publications:
1–30. doi:10.3102/10769986022001001.

Wainer, Howard, and Mike Larsen (2009). Pictures at an Exhibition. Chance 22 (2): 46–
54. doi:10.1080/09332480.2009.10722958.

Wilkinson, Darren (2014). One-Way ANOVA with Fixed and Random Effects from a
Bayesian Perspective. https://darrenjw.wordpress.com/2014/12/22/one-way-anova-with-
fixed-and-random-effects-from-a-bayesian-perspective/.

Wright, Kevin (2014). Agridat: Agricultural Datasets. http://CRAN.R-
project.org/package=agridat.

JSM 2016 - Section on Statistical Computing

2279

http://cran.r-project.org/package=nlme
http://cran.r-project.org/package=nlme
https://cran.r-project.org/package=broom
https://doi.org/10.3102/10769986022001001
https://doi.org/10.1080/09332480.2009.10722958
https://darrenjw.wordpress.com/2014/12/22/one-way-anova-with-fixed-and-random-effects-from-a-bayesian-perspective/
https://darrenjw.wordpress.com/2014/12/22/one-way-anova-with-fixed-and-random-effects-from-a-bayesian-perspective/
http://cran.r-project.org/package=agridat
http://cran.r-project.org/package=agridat

