Lucid: An R Package for Pretty-Printing Floating Point Numbers

Kevin Wright ${ }^{1}$
${ }^{1}$ DuPont Pioneer, 8305 NW $62{ }^{\text {nd }}$ Street, Johnston, IA 50131

Abstract

A. B. Farquhar and Farquhar (1891) provided this humorous quote about numerical tables:

The graphic method has considerable superiority for the exposition of statistical facts over the tabular. A heavy bank of figures is grievously wearisome to the eye, and the popular mind is as incapable of drawing any useful lessons from it as of extracting sunbeams from cucumbers.

The lucid package intends to make your life easier by helping you extract information from tables. The package has functions for printing vectors and tables of floating-point numbers in a human-friendly format. An application is presented for printing of variance components from mixed models.

1. Introduction

Numerical output from R is often in scientific notation, which can make it difficult to quickly glance at numbers and understand the relative sizes of the numbers. This not a new phenomenon. Before R had been created, Finney (1988) had this to say about numerical output:

Certainly, in initiating analyses by standard software or in writing one's own software, the aim should be to have output that is easy to read and easily intelligible to others. ... Especially undesirable is the so-called "scientific notation" for numbers in which every number is shown as a value between 0.0 and 1.0 with a power of 10 by which it must be multiplied. For example:
0.1234 E 00 is 0.1234
0.1234 E 02 is 12.34
$0.1234 \mathrm{E}-1$ is 0.01234
This is an abomination which obscures the comparison of related quantities; tables of means or of analyses of variance become very difficult to read. It is acceptable as a default when a value is unexpectedly very much larger or smaller than its companions, but its appearance as standard output denotes either lazy programming or failure to use good software properly. Like avoidance of "E", neat arrangement of output values in columns, with decimal points on a vertical line, requires extra effort by a programmer but should be almost mandatory for any software that is to be used often.

One recommendation for improving the display of tables of numbers is to round numbers to 2 (Wainer 1997) or 3 (Feinberg and Wainer 2011) digits for the following reasons:

1. We cannot comprehend more than three digits very easily.
2. We seldom care about accuracy of more than three digits.
3. We can rarely justify more than three digits of accuracy statistically.

An alternative to significant digits is the concept of effective digits (Ehrenberg 1977, Kozak et al. 2011), which considers the amount of variation in the data.

In R, the round() and signif() functions can be used to round to 3 digits of accuracy, but those functions can still print results in scientific notation and leave much to be desired. The lucid package provides functions to improve the presentation of floating point numbers in a clear (or lucid) way that makes interpretation of the numbers immediately apparent. Consider the standard display of the following vector of coefficients from a fitted model:

```
R> print(df1)
                        effect
(Intercept) 1.135000e+02
A -1.350000e+01
B 4.500000e+00
C 2.450000e+01
C1 6.927792e-14
C2 -1.750000e+00
D 1.650000e+01
```

Questions of interest about the coefficients might include:

1. Which coefficient is zero?
2. How large is the intercept?

Both questions can be answered using the output shown above, but it takes too much effort to answer the questions. Now examine the same vector of coefficients with prettier formatting:

```
R> require("lucid")
R> lucid(df1)
        effect
(Intercept) }11
A -13.5
B 4.5
C 24.5
C1 0
C2 -1.75
D 16.5
```

Which coefficient is zero? How large is the intercept?
Printing the numbers with the lucid() function has made the questions much easier to answer.

The sequence of steps used by lucid() to format and print the output is.

1. Zap small numbers to zero using the function zapsmall().
2. Round to 3 significant digits (user controllable option).
3. Drop trailing zeros.
4. Align numbers at the decimal point (text format).

The lucid package contains a generic function lucid() with specific methods for numeric vectors, data frames, and lists. The method for data frames applies formatting to each numeric column and leaves other columns unchanged. The lucid() function is primarily a formatting function, the results of which are passed to the regular print() functions.

1.1 Example: Antibiotic effectiveness

Wainer and Larsen (2009) present data published by Will Burtin in 1951 on the effectiveness of antibiotics against 16 types of bacteria. The data is included in the lucid package as a dataframe called antibiotic. The default view of this data is:

R> print(antibiotic)

bacteria penicillin	streptomycin	neomycin	gramstain	
Aerobacter aerogenes	870.000	1.00	1.600	neg
Brucella abortus	1.000	2.00	0.020	neg
Escherichia coli	100.000	0.40	0.100	neg
Klebsiella pneumoniae	850.000	1.20	1.000	neg
Mycobacterium tuberculosis	800.000	5.00	2.000	neg
Proteus vulgaris	3.000	0.10	0.100	neg
Pseudomonas aeruginosa	850.000	2.00	0.400	neg
Salmonella typhosa	1.000	0.40	0.008	neg
Salmonella schottmuelleri	10.000	0.80	0.090	neg
Bacillis anthracis	0.001	0.01	0.007	pos
Diplococcus pneumoniae	0.005	11.00	10.000	pos
Staphylococcus albus	0.007	0.10	0.001	pos
Staphylococcus aureus	0.030	0.03	0.001	pos
Streptococcus fecalis	1.000	1.00	0.100	pos
Streptococcus hemolyticus	0.001	14.00	10.000	pos
Streptococcus viridans	0.005	10.00	40.000	pos

Due to the wide range in magnitude of the values, nearly half of the floating-point numbers in the default view contain trailing zeros after the decimal, which adds significant clutter and impedes interpretation. The lucid() display of the data is:

lucid(antibiotic)				
Aerobacter aerogenes	870	1	1.6	neg
Brucella abortus	1	2	0.02	neg
Escherichia coli	100	0.4	0.1	neg
Klebsiella pneumoniae	850	1.2	1	neg
Mycobacterium tuberculosis	800	5	2	neg
Proteus vulgaris	3	0.1	0.1	neg
Pseudomonas aeruginosa	850	2	0.4	neg
Salmonella typhosa	1	0.4	0.008	neg
Salmonella schottmuelleri	10	0.8	0.09	neg
Bacillis anthracis	0.001	0.01	0.007	pos
Diplococcus pneumoniae	0.005	11	10	pos
Staphylococcus albus	0.007	0.1	0.001	pos
Staphylococcus aureus	0.03	0.03	0.001	pos
Streptococcus fecalis	1	1	0.1	pos

15	Streptococcus hemolyticus	0.001	14	10	pos
16	Streptococcus viridans	0.005	10	40	pos

The lucid() display is dramatically simpler, providing a clear picture of the effectiveness of the antibiotics against bacteria. This view of the data matches exactly the appearance of Table 1 in Wainer and Larsen (2009).

A stem-and-leaf plot is a semi-graphical display of data, in that the positions of the numbers create a display similar to a histogram. In a similar manner, the lucid() output is also a semi-graphical view of the data. The figure below shows a dotplot of the penicillin values on a reverse $\log 10$ scale. The values are also shown along the right axis in lucid() format. Note the similarity in the overall shape of the dots and the positions of the left-most significant digit in the numerical values along the right axis.

1.2 Example: Using lucid with broom

The broom package by Robinson (2016) can be used to collect statistics from fitted models into tidy data frames. For example, using the Orange tree data, it is possible to fit a separate regression line for each tree. (The straight-line regression here is not entirely sensible, but illustrates a point.)

```
R> require(dplyr)
R> Orange %>% group_by(Tree) %>%
    do(tidy(lm(circumference~age, data=.)))
\begin{tabular}{rrrrrr} 
Tree & term & estimate & std.error & statistic & p.value \\
<ord> & <chr> & <dbl> & <dbl> & <dbl> & <dbl> \\
3 & (Intercept) & 19.20353638 & 5.863410215 & 3.275148 & \(2.207255 \mathrm{e}-02\) \\
3 & age & 0.08111158 & 0.005628105 & 14.411881 & \(2.901046 \mathrm{e}-05\) \\
1 & (Intercept) & 24.43784664 & 6.543311039 & 3.734783 & \(1.350409 \mathrm{e}-02\)
\end{tabular}
```

4	1	age	0.08147716	0.006280721	12.972581	$4.851902 \mathrm{e}-05$
5	5	(Intercept)	8.75834459	8.176436207	1.071169	$3.330518 \mathrm{e}-01$
6	5	age	0.11102891	0.007848307	14.146861	$3.177093 \mathrm{e}-05$
7	2	(Intercept)	19.96090337	9.352361105	2.134317	$8.593318 \mathrm{e}-02$
8	2	age	0.12506176	0.008977041	13.931291	$3.425041 \mathrm{e}-05$
9	4	(Intercept)	14.63762022	11.233762751	1.303002	$2.493507 \mathrm{e}-01$
10	4	age	0.13517222	0.010782940	12.535748	$5.733090 \mathrm{e}-05$

Extracting information from the sea of numbers above is difficult. The lucid function comes to the rescue, simply by adding one more step to the sequence of pipes.

```
R> Orange %>% group_by(Tree) %>%
        do(tidy(lm(cirčumference~age, data=.))) %>% lucid
    Tree term estimate std.error statistic p.value
    <ord> <chr> <chr> <chr> <chr> <chr>
        3 (Intercept) 19.2 5.86 3.28 0.0221
        3 age 0.0811 0.00563 14.4 0.000029
        (Intercept) 24.4 6.54 3.73 0.0135
        1 age 0.0815 0.00628 13 0.0000485
        (Intercept) 8.76 8.18 1.07 0.333
        age 0.111 0.00785 14.1 0.0000318
        (Intercept) 20 9.35 2.13 0.0859
        age 0.125 0.00898 13.9 0.0000343
        (Intercept) 14.6 11.2 1.3 0.249
        age 0.135 0.0108 12.5 0.0000573
```

After formatting, information in the table almost jumps out at the reader, reducing the amount of cognitive effort needed for interpretation.

2 Application to mixed models

During the process of fitting of mixed models, it is often useful to compare fits of different models to data, for example using loglikelihood or AIC values. It can also be very informative to inspect the estimated values of variance components.

To that end, the generic VarCorr () function found in the nlme (Pinheiro et al. 2014) and lme4 (Bates et al. 2014) packages can be used to print variance estimates from fitted models. The VarCorr () function is not available for models obtained using the asreml (Butler 2009) package.

The lucid package provides a generic function called vc () that provides a unified interface for extracting the variance components from fitted models obtained from the asreml, lme4, nlme, and rjags packages. The vc () function has methods specific to each package that make it easy to extract the estimated variances and correlations from fitted models and formats the results using the lucid() function.

Pearce et al. (1988) suggest showing four significant digits for the error mean square and two decimal places digits for F values. The lucid () function uses a similar philosophy, presenting the variances with four significant digits and asreml Z statistics with two significant digits.

2.1 vc() example 1 - Rail data

The following simple example illustrates use of the vc () function for identical REML models in the nlme, lme4, and asreml packages. The travel times of ultrasonic waves in six steel rails was modeled as an overall mean, a random effect for each rail, and a random residual. The package rjags is used to fit a similar Bayesian model inspired by Wilkinson (2014).

```
R> require("nlme")
R> data(Rail)
R> mn <- lme(travel~1, random=~1|Rail, data=Rail)
R> vc(mn)
            effect variance stddev
    (Intercept) 615.3 24.81
    Residual 16.17 4.021
R> require("lme4")
R> m4 <- lmer(travel~1 + (1|Rail), data=Rail)
R> vc(m4)
            grp var1 var2 vcov sdcor
            Rail (Intercept) <NA> 615.3 24.81
    Residual <NA> <NA> 16.17 4.021
R> require("asreml")
R> ma <- asreml(travel~1, random=~Rail, data=Rail)
R> vc(ma)
            effect component std.error z.ratio constr
Rail!Rail.var }\quad615.3 392.6 1.6 pos
            R!variance }\begin{array}{lllll}{16.17}&{6.6}&{2.4}&{\mathrm{ pos}}
R> require("rjags")
R> m5 <-
"model {
for(i in 1:nobs){
    travel[i] ~ dnorm(mu + theta[Rail[i]], tau)
}
for(j in 1:6) {
    theta[j] ~ dnorm(0, tau.theta)
}
mu ~ dnorm(50, 0.0001) # Overall mean. dgamma()
tau ~ dgamma(1, .001)
tau.theta ~ dgamma(1, .001)
residual <- 1/sqrt(tau)
sigma.rail <- 1/sqrt(tau.theta)
}"
R> jdat <- list(nobs=nrow(Rail), travel=Rail$travel, Rail=Rail$Rail)
jinit <- list(mu=50, tau=1, tau.theta=1)
tc5 <- textConnection(m5)
j5 <- jags.model(tc5, data=jdat, inits=jinit, n.chains=2, quiet=TRUE)
close(tc5)
c5 <- coda.samples(j5, c("mu","theta", "residual", "sigma.rail"),
                    n.iter=100000, thin=5, progress.bar="none")
vc(c5)
```

	Mean		SD		2.5%
mu	66.84	9.838	47.42	66.78	86.69
mesidual	3.949	0.8154	2.736	3.821	5.896
sigma.rail	23.42	7.567	13.62	21.9	42.42
theta[1]	-34.72	10.02	-54.94	-34.63	-15.04
theta[2]	-16.63	10.03	-36.93	-16.55	3.244
theta[3]	-12.69	10.03	-33.06	-12.58	7.105
theta[4]	15.63	10	-4.271	15.67	35.34
theta[5]	17.58	10	-2.44	17.63	37.37
theta[6]	28.8	10.02	8.679	28.81	48.71

Compare the JAGS point estimates and quantiles (above) with the results from lme4 below:

```
R> summary(m4)
Linear mixed model fit by REML ['lmerMod']
Formula: travel ~ 1 + (1 | Rail)
    Data: Rail
REML criterion at convergence: 122.177
Random effects:
    Groups Name Std.Dev.
    Rail (Intercept) 24.805
    Residual 4.021
Number of obs: 18, groups: Rail, 6
Fixed Effects:
(Intercept)
    6 6 . 5
R> ranef(m4)
$Rail
    (Intercept)
2 -34.53091
5 -16.35675
1 -12.39148
6 16.02631
3 18.00894
4 29.24388
```

While the lucid() function is primarily a formatting function and uses the standard print() functions in R, the $\mathrm{vc}($) function defines an additional class for the value of the function and has dedicated print methods for the class. This was done to allow additional formatting of the results.

2.2 vc() example 2 - Analysis of federer.diagcheck data

The second, more complex example is based on a model in Federer and Wolfinger (2003) in which orthogonal polynomials are used to model trends along the rows and columns of a field experiment. The data are available in the agridat package (Wright 2014) as the federer. diagcheck data frame. The help page for that data shows how to reproduce the analysis of Federer and Wolfinger (2003). When using the lme4 package to reproduce the analysis, two different optimizers are available. Do the two different optimizers lead to similar estimated variances?

In the output below, the first column identifies terms in the model, the next two columns are the variance and standard deviation from the "bobyqa" optimizer, while the final two columns are from the "NelderMead" optimizer. Note, these results are from lme4 version 1.1-7 and are likely to be different than the results from more recent versions of lme4.

The default output printing is shown first.

	term	vcov-bo	sdcor-bo sep	vcov-ne	sdcor-ne
1	(Intercept)	2869.4469	53.56722	$3.228419 \mathrm{e}+03$	56.81917727
2	r1:c3	5531.5724	74.37454	$7.688139 \mathrm{e}+03$	87.68203447
3	r1:c2	58225.7678	241.30016	$6.974755 \mathrm{e}+04$	264.09761622
4	r1:c1	128004.1561	357.77668	$1.074270 \mathrm{e}+05$	327.76064925
5	c8	6455.7495	80.34768	$6.787004 \mathrm{e}+03$	82.38327224
6	c6	1399.7294	37.41296	$1.636128 \mathrm{e}+03$	40.44907560
7	c4	1791.6507	42.32790	$1.226846 \mathrm{e}+04$	110.76308194
8	c3	2548.8847	50.48648	$2.686302 \mathrm{e}+03$	51.82954364
9	c2	5941.7908	77.08301	$7.644730 \mathrm{e}+03$	87.43414634
10	c1	0.0000	0.00000	$1.225143 \mathrm{e}-03$	0.03500204
11	r10	1132.9501	33.65932	$1.975505 \mathrm{e}+03$	44.44665149
12	r8	1355.2291	36.81344	$1.241429 \mathrm{e}+03$	35.23391157
13	r4	2268.7296	47.63118	$2.811241 \mathrm{e}+03$	53.02113582
14	r2	241.7894	15.54958	$9.282275 \mathrm{e}+02$	30.46682578
15	r1	9199.9022	95.91612	$1.036358 \mathrm{e}+04$	101.80169429
16	<NA>	4412.1096	66.42371	$4.126832 \mathrm{e}+03$	64.24042100

How similar are the variance estimates obtained from the two optimization methods? It is difficult to compare the results due to the clutter of extra digits, and because of some quirks in the way R formats the output. The variances in column 2 are shown in nonscientific format, while the variances in column 5 are shown in scientific format. The standard deviations are shown with 5 decimal places in column 3 and 8 decimal places in column 6. (All numbers were stored with 15 digits of precision.)

The lucid() function is now used to show the results in the manner of the vc() function.

R> lucid(out, dig=4)

	term	vcov-bo	sdcor-bo sep	vcov-ne	sdcor-ne
1	(Intercept)	2869	53.57	3228	56.82
2	r1:c3	5532	74.37	7688	87.68
3	r1:c2	58230	241.3	69750	264.1
4	r1:c1	128000	357.8	107400	327.8
5	c8	6456	80.35	6787	82.38
6	c6	1400	37.41	1636	40.45
7	c4	1792	42.33	12270	110.8
8	c3	2549	50.49	2686	51.83
9	c2	5942	77.08	7645	87.43
10	c1	0	0	0	0.035
11	r10	1133	33.66	1976	44.45
12	r8	1355	36.81	1241	35.23

13	$r 4$	2269	47.63	2811	53.02
14	r2	241.8	15.55	928.2	30.47
15	$r 1$	9200	95.92	10360	101.8
16	<NA>	4412	66.42	4127	64.24

The formatting of the variance columns is consistent as is the formatting of the standard deviation columns. Fewer digits are shown. It is easy to compare the columns and see that the two optimizers are giving quite different answers. Note: The bobyqa results are almost identical to the results obtained when using ASREML or SAS.

Note: Data frames have no quotes, but numeric matrices are printed with quotes. Use noquote() to print without quotes, for example:

```
R> noquote(lucid(as.matrix(head(mtcars)),2))
\begin{tabular}{llllllllllll} 
& mpg & cyl & disp & hp & drat & wt & qsec & vs & am gear & carb \\
Mazda RX4 & 21 & 6 & 160 & 110 & 3.9 & 2.6 & 16 & 0 & 1 & 4 & 4 \\
Mazda RX4 Wag & 21 & 6 & 160 & 110 & 3.9 & 2.9 & 17 & 0 & 1 & 4 & 4 \\
Datsun 710 & 23 & 4 & 110 & 93 & 3.8 & 2.3 & 19 & 1 & 1 & 4 & 1 \\
Hornet 4 Drive & 21 & 6 & 260 & 110 & 3.1 & 3.2 & 19 & 1 & 0 & 3 & 1 \\
Hornet Sportabout & 19 & 8 & 360 & 180 & 3.2 & 3.4 & 17 & 0 & 0 & 3 & 2 \\
Valiant & 18 & 6 & 220 & 100 & 2.8 & 3.5 & 20 & 1 & 0 & 3 & 1
\end{tabular}
```


References

Bates, Douglas, Martin Maechler, Ben Bolker, and S. Walker (2014). lme4: Linear mixed-effects models using Eigen and S4. http://CRAN.R-project.org/package=lme4.

Butler, David (2009). asreml: asreml() fits the linear mixed model. www.vsni.co.uk.
Ehrenberg, A. S. C. (1977). Rudiments of Numeracy. Journal of the Royal Statistical Society. Series A, 277-97. doi:10.2307/2344922.

Farquhar, Arthur B., and Henry Farquhar (1891). Economic and Industrial Delusions. New York: G. P. Putnam's Sons.
https://books.google.com/books?id=BHkpAAAAYAAJ.
Federer, Walter T., and Russell D. Wolfinger (2003). In Handbook of Formulas and Software for Plant Geneticists and Breeders. Edited by Manjit Kang. Haworth Press.

Feinberg, Richard A., and Howard Wainer (2011). Extracting Sunbeams from Cucumbers. Journal of Computational and Graphical Statistics 20 (4): 793-810. doi:10.1198/jcgs.2011.204a.

Finney, D. J. (1988). Was This in Your Statistics Textbook? II. Data Handling. Experimental Agriculture 24: 343-53. doi:10.1017/S0014479700015891.

Kozak, Marcin, Ricardo Antunes Azevedo, Justyna Jupowicz-Kozak, and Wojtek Krzanowski (2011). Reporting Numbers in Agriculture and Biology: Don't Overdo the Digits. Australian Journal of Crop Science 5: 1876-81. http://www.cropj.com/kozak_5_13_2011_1876_1881.pdf.

Pearce, S. C., G. M. Clarke, G. V. Dyke, and R. E. Kempson (1988). A Manual of Crop Experimentation. Charles Griffin; Company.

Pinheiro, Jose, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and R Core Team (2014). nlme: Linear and Nonlinear Mixed Effects Models. http://CRAN.Rproject.org/package=nlme.

Robinson, David (2016). broom: Convert Statistical Analysis Objects into Tidy Data Frames. https://CRAN.R-project.org/package=broom.

Wainer, Howard (1997). Improving Tabular Displays, with NAEP Tables as Examples and Inspirations. Journal of Educational and Behavioral Statistics 22. Sage Publications: $1-30$. doi:10.3102/10769986022001001.

Wainer, Howard, and Mike Larsen (2009). Pictures at an Exhibition. Chance 22 (2): 4654. doi:10.1080/09332480.2009.10722958.

Wilkinson, Darren (2014). One-Way ANOVA with Fixed and Random Effects from a Bayesian Perspective. https://darrenjw.wordpress.com/2014/12/22/one-way-anova-with-fixed-and-random-effects-from-a-bayesian-perspective/.

Wright, Kevin (2014). Agridat: Agricultural Datasets. http://CRAN.Rproject.org/package=agridat.

