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Abstract 
The fraction of missing information (γ) and the number of imputations (m) are two 
important parameters in multiple imputation (MI). They are used them to define the 
relative efficiency (RE) of MI: RE = (1+γ/m)-1/2. Based on this RE, a very influential 
conclusion was made that a small m (≤5) would be sufficient for MI. However, 
evidences for much greater m have been accumulating. A better understanding of m-γ 
relationship is of importance in MI research and application. The effects of m on γ were 
examined using the data of the 2012 Physician Work Flow Mail Survey, which was a 
supplement to the National Ambulatory Medical Care Survey data. The results suggest 
that γ reduces with the increase of m, shaking the foundation of using the γ-based RE 
to determine the sufficient m. 
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1. Introduction 
 
Multiple imputation (MI) has become a popular approach of handling missing data [1, 
2, 3]. Prior to adopting MI, one has to decide the number of imputations (m) that is 
appropriate for one’s particular data situation and analytical needs. What m should be 
considered sufficient? The most influential answer, which was given by Rubin in his 
1987 classic book on MI, is that only a few imputations, i.e. m≤5, would be sufficient 
[4]. This conclusion was based on the relative efficiency (RE) as defined below: 
 𝑅𝐸 = (1 +

𝛾0

𝑚
)− 

1

2       (1) 
where γ0 is the population value of γ, the fraction of missing information. The γ at a 
finite m, γm, is defined as: 
 𝛾𝑚 =

𝑟+2/(𝑣+3)

𝑟+1
,        (2) 

where 𝑟 and 𝑣 are defined as [4]: 
 𝑣 = (𝑚 − 1)(1 +

1

𝑟
)2,       (3) 

 𝑟 =
(1+

1

𝑚
)𝐵

𝑈
,         (4) 

where B is the between-imputation variance and U is the within-imputation variance, 
defined by equations (5) and (6) below, respectively [4]: 
 𝑈 =

1

𝑚
∑ 𝑈𝑖

𝑚
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1 The statements of this paper do not represent the views of the National Center for Health 
Statistics (NCHS) or the Centers for Disease Control and Prevention (CDC) of the United 
States. Dr. Rong Wei of NCHS is acknowledged for her valuable suggestions. 
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where Q is the quantity of interest, and the subscript i denotes the ith imputation of 
the MI [4].  
 
The term “fraction of missing information” sounds similar to fraction of missing data 
(δ). But actually, γ and δ are very different [5, 6]. δ is a feature of the data and is fixed 
once the data collection is complete, whereas γ may be affected by whether and how 
MI is done and how the data are analyzed [5, 6]. The relationship between m and γ is 
of particular importance because γ was used by Rubin to determine the sufficient m. 
Nowadays people generally feel that m≤5 is too small and are using much greater m 
values in their MI [7, 8, 9, 10, 11, 12, 13, 14, 15]. If Rubin’s recommendation of small 
m is not valid, what might have gone wrong? How is γ related to m? How is γm related 
to γ0? An insight into the m-γ relationship may provide important information for 
answering these questions. The m-γ relationship has not been explicitly discussed in 
the published literature. The current research examines the effects of m on γ using the 
data of 2012 Physician Workflow Mail Survey (PWS12) of the National Ambulatory 
Medical Care Survey (NAMCS). 
 

2. Multiple imputation trials 
 
The Physician Workflow Mail Survey (PWS) shared the same sampling frame as 
NAMCS and was considered a supplement to the NAMCS [15]. PWS was conducted 
by the National Center for Health Statistics, Centers for Disease Control and 
Prevention, USA. It was a nationally representative, 3-year (2011-2013) panel mail 
survey of office-based physicians [16], with each year being a complete survey cycle. 
The data of the 2012 PWS, i.e. PWS12, were used in this research. PWS12 had 2,567 
eligible, responded physicians in the sample. The three variables, i.e. SIZE5, SIZE20 
and SIZE100, were selected as the variables for imputation (ImpV). They represented 
the physician’s practice size (SIZE). SIZE100 had a value range of 1 to 100. SIZE5 
was derived by recoding the values of SIZE100 into 5 categories, and SIZE20 was 
derived by top-coding the >20 values of SIZE100 into 20. The description of the three 
imputed variables is in Table 1.  
 
Four levels of δ, i.e. 4%, 10%, 20%, and 29%, were used. PWS12 initially had 29% 
missing data due to item nonresponse for SIZE. After the missing values were replaced 
with all the non-missing values of the 2011 data for the same physician, the δ of PWS12 
became 4%. The other two δ values, 10% and 20%, were created by partially replacing 
the missing values in 2012 with the non-missing values in the 2011 survey for the same 
physician in a random manner. Hot deck imputation [17] was used. The MCAR 
(missing completely at random) model was assumed and no covariant variables were 
used in the imputation model. The m values for the MI trials were 3, 5, 10, 20, 30, 40, 
60, 80 and 99. Thirty replicates were run for each MI.  
 
The MI data were analyzed by using REGION, PRIMEMP and DERIVED, 
respectively, as the analytic variable (AnaV), with the control (CONTROL) being the 
analysis with no analytic variable used.  REGION and PRIMEMP are two real variables 
from PWS12. DERIVED was a derived variable whose values were highly correlated 
with the ImpV variables. The description of the analytic variables is in Table 2. 
Analyses were conducted with the un-weighted data. The γ was calculated using 
equations (2) to (6), with the “quantity of interest”, Q, being the means of SIZE5, 
SIZE20, and SIZE100. 
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Table 1: The imputation variables (ImpV). 
ImpV Description Mean Value range Total 

variance 
SIZE5 Practice size – 5 group. Derived from 

SIZE100 
3.06 1 – 5 1.97 

SIZE20 Practice size – top-coded to 20. 
Derived from SIZE100 

6.47 1 – 20 38.26 

SIZE100 Practice size 11.41 1 – 100 483.02 
 
 

Table 2: The analytic variables (AnaV) 

AnaV Description Value range 

CONTROL No analytic variable 1 (the whole data) 
REGION Region of the 

Physicians Interview 
office 

1=Northeast, 2=Mid West, 3=South, 4=West 

PRIMEMP Primary present 
employment of the 
physician 

14 categories. Value examples: 22=AOA-
Office prac group; 40=AMA-Medical school; 
64=AMA-County/Cty/State Govt Other 

DERIVED Derived variable whose 
values are highly 
correlated with ImpV 
variables 

1 to 4 for SIZE5, 1 to 9 for SIZE20, and 1 to 17 
for SIZE 100 

 
 

3. Results 
 
3.1 γ decreased with increased m 
 
In Figures 1, 2, and 3, the γ values were plotted against the corresponding m values for 
different combinations of treatment factors δ, ImpV, and AnaV.  In Figure 1, the three 
ImpV variables were included in each graph to examine how ImpV affected the m-γ 
relationship. In addition, the comparison between graphs a and b and that between c 
and d allow us to see the difference in m-γ relationship between δ levels, and the 
comparison between graphs a and c and that between b and d allow us to see the 
difference between AnaV variables. The general trend was that the γ values decreased 
as m increased. The magnitude of the γ decrease was larger at smaller m. The ImpV of 
higher variance such as SIZE100 did not always have greater γ than ImpV of smaller 
variance such as SIZE5 and SIZE20 (Table 1; Figure 1). 
 
With all four δ levels included in each graph, the primary purpose of Figure 2 was to 
show the m-γ relationship at different δ levels. A comparison between graphs a and b 
shows the effects of ImpV and AnaV as well as the interactions among δ, ImpV and 
AnaV. In general, the decrease of γ with increased m was still obvious when m was 
less than 30. But exceptions existed. In general, higher δ usually resulted in bigger γ. 
 
Table 3 serves two purposes. First, it numerically shows that the magnitude of the γ 
decrease with increased m was much greater when m was smaller. Without any 
exception, the γ value difference between m=3 and m=40 was always much larger than 
that between m=40 and m=99. Secondly, the fact that γ value at m=40 was almost 
always greater than that at m=99 suggests that the general trend of γ decrease with 
increased m continued beyond m>40, which may not be obvious in Figures 1 and 2. 
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Table 3. Comparison of γ% (=γ×100) between m=3 and m=99 for SIZE5, SIZE20 
and SIZE100 for PRIMEMP and δ=4%, 10%, 20%, and 29%. 

m 
SIZE5 SIZE100 

δ=4% δ=10% δ=20% δ=29% δ=4% δ=10% δ=20% δ=29% 
3 0.088 0.272 0.960 0.954 0.067 0.246 0.915 0.748 

40 0.077 0.214 0.746 0.685 0.057 0.176 0.586 0.648 
99 0.074 0.221 0.743 0.671 0.055 0.176 0.627 0.622 

 
 
3.2 The variation of γ was bigger at smaller m 
Figure 3 presents the scatter graph showing the effects of m on γ using the treatment 
combination of ImpV=SIZE5, AnaV=PRIMIMP and δ=4%. Each dot in this graph 
represents the γ value of one of the 30 replicates. The dots were more scattered at lower 

 

 
Figure 1. The effects of m on γ for different ImpV variables. 
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Figure 2. The effects of m on γ for different missing data percentages (δ). 
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m, evidencing a greater variation of γ at a smaller m. To numerically examine γ 
variation at different m values, the coefficient of variation (CV) at different m values 
was presented in Table 4 for SIZE100 at δ=29 for PRIMEMP. At m=3, the CV was 
61.3%. Between m=3 and m=20, CV decreased sharply as m increased. The magnitude 
of the CV decrease with increased m was smaller as m got bigger (Table 4).  The γ 
value distribution for other treatment combinations was similar. 
 
 

 
Figure 3. Distribution of the γ values of the 30 replicate samples at different number 

of imputations (m) for SIZE5 at 4% of missing data percentage for PRIMEMP. 
 
 
Table 4. The means and the coefficients of variations (CV) of γ at different m values 

chosen for the MI for SIZE100 at δ=29% for PRIMEMP. 
m Mean γ CV (%) 
3 0.0075 61.3 
5 0.0077 45.1 
10 0.0070 24.6 
20 0.0069 15.8 
40 0.0065 10.8 
99 0.0062 7.7 

 
 

4. Discussions 
 

Equations (2) to (6) indicate that γ may be affected by m, B, and U. In the MI trials of 
this study, we may assume a fixed B and U for the same combination of the treatment 
factors, i.e. the same δ, ImpV, and AnaV. Figures 1 and 2 suggest that at a fixed B and 
U, γ decreases with the increase of m. As a result, if we repeat a particular MI for n 
times, the mean of the γm would not converge to γ0 when n goes to infinite. The 
relationship between γm and γ0 is not the same as that between the sample mean �̅� and 
the population mean μ. The expected value of �̅� is μ, whereas the expected value of γm 
is not γ0. For a finite m, the expected value of γm is always greater than the 
corresponding γ0. In the literature, researchers may have used γm or the means of γm of 
a relatively small m (≤ 20) as an estimate of γ0. As a result, the γ values presented in 
some literatures may be much inflated. 
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Let B0 and U0 be the expected value of B and U and the total variance T0 be the sum of 
B0 and U0, i.e. T0 = B0 + U0. By definition [4], γ0 is the ratio of B0 to T0, i.e. γ0 = B0/T0. 
From equations (2) , (3) and (4), we can prove that γ∞ = B0/T0 = γ0. Since for the same 
data, B0, U0 and T0 would be affected by how the data are analysed, γ0 would not be 
unique for the same data. The same dataset may have many different γ0 values. In 
Figures 1 and 2, the γ values was the mean of γm of 30 replicates. The level off of the 
m-γ curve when m approached 99 indicate that m=99 in these MI trials of this study 
can be regarded as an approximation of m=∞, and the γ values at m=99 can be regarded 
as the γ0. For the same ImpV and δ at m=99, the difference in γ values between different 
AnaV variables experimentally proved that that same data may have different γ0 values 
(Figures 1 and 2), which shakes the foundation of using γ0-based method to determine 
the sufficient m. 
 
Van Buuren (2012) pointed out that the scope of MI can be broad, intermediate, or 
narrow [1]. For MI of broad and intermediate scopes, the complete datasets generated 
by MI may be analysed in multiple ways. Government agencies such as NCHS conduct 
national surveys and release data to the public. The MI for the data of these national 
surveys such as PWS should be targeted for analyses in many ways by various data 
users. Therefore, the same survey data will definitely have many γ0 values. Use of γ0 
to determine sufficient numbers of m for these surveys may not be appropriate.  
 

5. Conclusions 
 
For m < ∞, the γ value decreases with the increase of m. As a result, the expected value 
of γm does not converge to γ0. The relationship between γm and γ0 is not the same as 
that between the sample mean �̅� and the population mean μ. Unlike δ, which is a feature 
of the data and will not change with how the data are analysed, γ is not a feature of the 
data and may change greatly with the ways the data are analysed. There may be many 
γ0 values for the same data. As a results, the method of determining the sufficient m 
based on the γ0-based RE is lack of solid foundation. 
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