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Abstract 
Discrete outcomes are often observed among survey responses, i.e., counts distributed as 

Poisson, Bernoulli, multinomial, etc. When some responses are missing, the observed 

data provide a foundation for predicting the unobserved values or estimating some 

statistic for the full sample.  In this paper, data are assumed to be a random sample from a 

discrete distribution in the exponential family with missing at random (MAR) responses, 

i.e., the probability of a response missing is unrelated to the value of that response, but 

could be related to other variables. A distribution-based technique to compute lower and 

upper bounds for a missing response is developed. The algorithm makes no use of the 

parameter estimate. Simulations are used to illustrate the technique and to assess its 

efficiency. Bayesian prediction bounds constructed based on gamma, Jeffreys, and 

uniform priors are also discussed for comparison purposes. We tested the algorithm using 

actual data from USDA’s National Agricultural Statistics Service’s Quarterly Hog 

Survey. 

 

Key Words: Bounds, Discrete distribution, Exponential family, Imputation, Predictive 

distribution. 

 

 

 

1. Introduction 
 

The existing techniques on handling missing data could roughly be categorized in 

complete case analysis, re-weighting (e.g., calibration), and imputation (e.g. hot-deck, 

mean, regression, data augmentation, fully conditional specification). Often, we want to 

consider limiting our imputations to a range of values to meet requirements of edits that 

are written for the survey or staying within the support of the variable to impute. This is 

handled using post-imputation adjustments and minimizing objective functions or 

imputing within bounds/limits. In practice, the bounds or range of plausible values are 

determined by the agency, organization, or analyst, often through programmed edits that 

flag erroneous or likely erroneous values. Literature exists on how to do both, and 

software programs are available to implement methodologies (Coutinho et al. (2010), De 

Waal (2005), Pannekoek et al (2008), Fellegi and Holt (1976), Raguhnathan (2001), 

Winkler (2001), Tempelman (2007), Kim et al. (2014), etc.). 

 

Prediction is used to address many practical problems related to estimating some statistic 

of an unobserved sample, e.g., the mean or the range of one or more unobserved values, 

based on the information available from an observed sample.  The literature goes back as 

far as Weiss (1955) who developed an approximate prediction interval (“parameter-free 
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confidence set”) by utilizing the approximation to the normal distribution and the idea of 

conditioning on a sufficient statistic.  Later, Weiss presented a prediction problem from 

the decision theory point of view (Weiss, 1961).  Thatcher (1964) developed prediction 

intervals (frequentist and Bayesian) for the number of successes that will be observed in a 

future binomial experiment.  Related issues on prediction intervals and their predictive 

likelihoods are addressed in Hahn and Nelson (1973).  Barndorff-Nielsen and Cox (1975) 

derived a predictive distribution function based on asymptotic considerations, and 

Lawless and Fredette (2005) estimated a predictive distribution using simulated base 

methods.  Predictive inferences are found in the Bayesian framework in Aitchison and 

Sculthorpe (1965), Aitchison and Dunsmore (1975), Hall et al. (1999), etc. 

 

In this paper, we present a distribution-based technique to compute prediction 

limits/bounds to use for imputation in conjunction with known support of the variable to 

impute. This is conducted as a complimentary (or alternative) to methods such as using 

extreme respondent values, respondent percentiles, previously reported data, etc. Data are 

assumed to be a random sample from a discrete distribution of the exponential family 

(i.e., Poisson, Bernoulli, multinomial, etc.) with missing at random (MAR) responses, 

i.e., the probability of a response missing is unrelated to the value of that response but 

could be related to values of other variables. We utilize the observed information and 

predictive inferences to generate the most extreme data values that would be acceptable 

for imputation, i.e. satisfy the survey edits or fit within a support of a variable of interest. 

After setting up the problem in Section 2, we derive the optimal (smallest) frequentist 

upper prediction limit for an unobserved data ��� in Section 3 based on some 

predetermined probability of wrong prediction, using the information from the observed 

data ��. For a fixed �, both the observed and the data to be predicted follow a discrete 

distribution from the exponential family. The upper limit of ��� is derived from the joint 

probability distribution of the observed and the unobserved data, ���� , ���|�
 =����|�
 ∗ �����|�
. It is computed using a numerical approach based on some 

predetermined probability  of wrong prediction.  Example 1 illustrates the technique.  

Bayesian prediction limits are also discussed for comparison purposes in Section 4. The 

optimal (lowest) Bayesian upper limit for the unobserved ��� is derived from the 

posterior predictive distribution of the random variable ��� given the random sample 

�� = ����, ���, … , ���
,  �����|��
 =
�� �����|�
� ������ ���
��� � �� � ������ ���
��� �� , based on some predetermined 

maximum probability of wrong coverage . Parameter � is assumed to be a random 

variable. Concluding remarks are presented later in Section 5. 

 

2. Problem Setup 
 

Let the random variable �� describe the observed data and ��� the missing data to be 

imputed, Y = ���, ���
. Both �� and ��� conditioned on � are independent  

 

������|�
 = ℎ���
���
� �!"��
��#                                                   (2.1) 

 

��$�����|��
 = ℎ����
����
� �!"���
���#,                                      (2.2) 

 

where �� = %�, % = �&'. Without loss of generality, let k = 1 and hence �� = �. 

Furthermore, ℎ�. 
 is a nonnegative real-valued function that does not depend on � and 

��. 
 is a nonnegative real valued function of � that does not depend on �� or ���. 
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In this paper, we present a general algorithm of how to construct a function +���
 (,���
) 
that takes only integer values and that will serve as an upper (lower) bound for the values 

of the random variable ���. Although this function might not be unique, the algorithm 

shows how to derive the unique lowest upper bound +∗���
 (greatest lower bound 

	,∗���
) of a single nonresponse from the exponential family with respect to some error 

probability  (.). For the frequentist approach, these bounds are derived based on the 

joint distribution /���, ���|�
 of both responses and nonresponses. For the Bayesian 

approach, the bounds are derived based on the posterior predictive distribution 

/����|��, �
. 
 

3. Frequentist Approach 
 

In this section, the upper prediction limit +∗���
 is computed such that the frequency of 

making a wrong prediction will not exceed the predefined maximum error probability  

 

/!��� > +∗���
# ≤ .                                        3.1 

 

The joint distribution of �� 	and ���, ����, ���|�
 = 2�3����|�
42�3$�����|��, �
4, is 

 

���� , ���|�
 = 5ℎ���
���
� �!"��
��#65ℎ����
���
� �!"��
���#6.                   3.2 

 

We write it as a product of two terms, ����, ���|�
 = 5�7�8|�
62�3����|8, �
4, such that 

one term will express the probability distribution function of the sufficient statistic 9 =
9���, ���
. Note that 9 = 8, and its distribution, �7�8|�
, is from the exponential family 

(Casella and Berger 2002, p.217): 

 

���� , ���|�
 =  :;�8
����
� �!"��
8#< =>���
>��$�
?�7
 @,                         3.3 

 

where ����
 = 5���
6� and ;�8
 is a normalizing factor that does not depend on �. 

 

Function ;�8
 in 3.3 is theoretically known as long as we know the representation of 

ℎ���
 and ℎ����
. We can calculate ;�8
 numerically as a cumulative sum of ℎ���
 and 

ℎ����
, even in cases when space of �� is unbounded. First, for the observed �� and a 

very small A, 0 < A < 1, choose 8DEF such that 1 − ∑ 5ℎ���
ℎ�8 − ��
 ;�8
⁄ 6�� < J. 

Then, we have to go out far enough in the space of �� to make sure that all possible terms 

are included in ;�8
. Thus, for a realization ��KLM of ��, choose ��DEF =max!�: ��KLM ≤ � ≤ 8DEF#, such that ℎ���
ℎ�8 − ��
 ;�8
⁄ < A and then compute 

;�8
, 
 

;�8
 = ∑ 5ℎ���
ℎ�8 − ��
6��R7STU .                                               3.4 

 

An upper limit +���
 for the unobserved data ��� is a function of random variable ��. The 

probability of wrong prediction at the upper limit +���
 does not exceed , that is, 

 

/V��� > +���
W = ∑ 2:;�8
����
� �!"��
8#<∆747 ≤ ,                     3.5 
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where ∆7= ∑ 55ℎ���
ℎ����
6 ;�8
⁄ 6��Y7Z[∗���
  depends on both 8 and +���
. We can 

interpret and compute ∆7 in terms of the cumulative distribution function of the random 

variable �� given 8 = �� + ���. 

 

Among all integer-valued functions +���
 that satisfy the latter condition for all 8 ≥ 0, 

we are interested in the function +∗���
 that is the smallest, +∗���
 ≤ +���
 for every 

�� = ��. Choose +∗���
, +∗���
 = max:�:∑ 55ℎ���
ℎ��
6 ;�8
⁄ 6��Y7Z[∗���
 > <. 
Hence, /���� > +∗���

 ≤ . The greatest lower bound 	,∗���
 of a single nonresponse 

��� is derived with respect to some error probability . using a similar algorithm. 

Conditions on �� and ��� will remain the same. The only difference in this case is 

defining the probability of wrong prediction as /!� < ,∗�^
# ≤ .. 

 

3.1 Illustration: The Poisson Case 
 

Random variables �� and ��� conditioned on the rate parameter _ are independent 

Poisson. Their distributions are given by 2.1 and 2.2, where	ℎ���
 = �`�
�� ���!
⁄ , 

ℎ����
 = �`�
�$� ����!
⁄ ,  `� = 10 is the past time interval,  � = _`�, `� = 5 is the 

future time interval, and �� = _`�, and _ is unknown. 

 

 

/!��� > +∗���
# = ∑ c�dMefdMg
h'i�jkeljkg
7! ∆7mn7op ≤ ,                        3.6 

 

 where 8 = �� + ��� ∈ rf, ∆7= ∑ 55ℎ���
ℎ����
6 ;�8
⁄ 6��Y7Z[∗���
 , and  = .05. ;�8
 
 is computed numerically as 

 

;�8
 = 	∑ 25�`�
�� ���!
⁄ 65�`�
7Z�� �8 − ��!
⁄ 64��R7STU .                     3.7 

 

The values of 8DEF and +∗���
 computed using the general algorithm for the Poisson illustration are 

presented in Table 1. Figure 1 demonstrates the derivations of the upper limits shown in Table 1. 

Each row of the matrix in Figure 1 represents a cumulative distribution function of ��|8,  and ∆7=
∑ 55ℎ(��)ℎ(���)6 ;(8)⁄ 6��Y7Z[

∗(��)
, where 8 changes through rows and �� changes through 

columns. Figure 2 demonstrates the derivations of the upper limits shown in Table 1 when the 

distributions of �� and ��� are known to be Poisson. 8 changes through diagonals while �� changes 

through columns. Each diagonal represents a probability mass function of ��|8 on the Poisson 

distribution. The probability of wrong coverage is calculated as a Poisson weighted sum of ∆7 terms 

indicated in blue; 8 = �� + ��� > 0. 

 

The exact frequentist lower prediction limit (s(��)) for a single future observation from a 

distribution in the exponential family is derived using a similar algorithm. Conditions on 

�� and ��� will remain the same. The only difference is in defining the probability of 

wrong prediction. In this case, the probability of wrong prediction is given by 

/!� < s(��)# ≤ ., and it should not exceed some error probability .. 

 

We tested the algorithm using actual data from the quarterly hog survey. Using a small 

subset of quarterly hog survey responses, we predicted the upper bounds for the missing 

counts of total hogs and pigs used for market and at home per county in a particular 

stratum whenever the information on total weight was available. The prediction bounds 

included the true count in 90% of the cases, and missed it in only 10%. Further testing on 
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larger sample sizes will help better investigate the actual probability of wrong prediction 

and the efficiency of the algorithm. 

 

 

 

Table 1. The computed values of 8DEF and +∗(��) when the observed 

�� = ��, `� = 10, and `� = 5 

 

�� 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

8 2 4 6 8 10 12 14 15 17 19 21 22 24 26 

+∗(��) 2 3 4 5 6 7 8 8 9 10 11 11 12 13 

 

 

 

 
  8\��  0     1     2     3     4     5     6     7     8     9     10    11    12    13 
  

   0     NA  0.000 0.000 0     0     0     0     0     0     0     0     0     0     0 

   1   0.333 1.000 0.000 0     0     0     0     0     0     0     0     0     0     0 

   2   0.111 0.556 1.000 0     0     0     0     0     0     0     0     0     0     0 

   3   0.037 0.259 0.704 1     0     0     0     0     0     0     0     0     0     0 

   4   0.012 0.111 0.407 0.802 1.000 0.000 0.000 0     0     0     0     0     0     0 

   5   0.004 0.045 0.210 0.539 0.868 1.000 0.000 0     0     0     0     0     0     0 

   6   0.001 0.018 0.100 0.320 0.649 0.912 1.000 0     0     0     0     0     0     0 

   7   0.000 0.007 0.045 0.173 0.429 0.737 0.941 1     0     0     0     0     0     0 

   8   0     0.003 0.020 0.088 0.259 0.532 0.805 0.961 1.000 0.000 0.000 0     0     0 

   9   0     0.001 0.008 0.042 0.145 0.350 0.623 0.857 0.974 1.000 0.000 0     0     0 

  10   0     0.000 0.003 0.020 0.077 0.213 0.441 0.701 0.896 0.983 1.000 0     0     0 

  11   0     0.000 0.001 0.009 0.039 0.122 0.289 0.527 0.766 0.925 0.988 1     0     0 

  12   0     0     0.001 0.004 0.019 0.066 0.178 0.368 0.607 0.819 0.946 0.992 1.000 0.000 

  13   0     0     0.000 0.002 0.009 0.035 0.104 0.241 0.448 0.678 0.861 0.961 0.995 1.000 

  14   0     0     0.000 0.001 0.004 0.017 0.058 0.149 0.310 0.524 0.739 0.895 0.973 0.997 

  15   0     0     0.000 0.000 0.002 0.009 0.031 0.088 0.203 0.382 0.596 0.791 0.921 0.981 

  16   0     0     0     0     0.001 0.004 0.016 0.050 0.127 0.263 0.453 0.661 0.834 0.941 

  17   0     0     0     0     0.000 0.002 0.008 0.027 0.075 0.172 0.326 0.522 0.719 0.870 

  18   0     0     0     0     0.000 0.001 0.004 0.014 0.043 0.108 0.223 0.391 0.588 0.769 

  19   0     0     0     0     0.000 0.000 0.002 0.007 0.024 0.065 0.146 0.279 0.457 0.648 

  20   0     0     0     0     0     0     0     0.004 0.013 0.038 0.092 0.191 0.339 0.521 

  21   0     0     0     0     0     0     0     0.000 0.007 0.021 0.056 0.125 0.240 0.399 

  22   0     0     0     0     0     0     0     0.000 0.000 0.012 0.033 0.079 0.163 0.293 

  23   0     0     0     0     0     0     0     0.000 0.000 0.000 0.019 0.048 0.107 0.206 

  24   0     0     0     0     0     0     0     0     0     0     0     0.028 0.068 0.140 

  25   0     0     0     0     0     0     0     0     0     0     0     0.000 0.042 0.092 

  26   0     0     0     0     0     0     0     0     0     0     0     0.000 0.000 0.058 

 

Figure 1: Entries ∆7 of this matrix are computed as ∑ 55ℎ(��)ℎ(���)6 ;(8)⁄ 6��Y7Z[
∗(��)

; 8 changes 

through rows while �� changes through columns. The  8DEF and ��, indicated by red colored cells, yield 

the upper limit function +∗(��) = 8DEF − ��. 
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���\�� 0     1     2     3     4     5     6     7     8     9     10    11    12   13  
 

[0,]    NA  0.667 0.444 0.296 0.198 0.132 0.088 0.059 0.039 0.026 0.017 0.012 0.008 0.005 

[1,]  0.333 0.444 0.444 0.395 0.329 0.263 0.205 0.156 0.117 0.087 0.064 0.046 0.033 0.024 

[2,]  0.111 0.222 0.296 0.329 0.329 0.307 0.273 0.234 0.195 0.159 0.127 0.100 0.078 0.060 

[3,]  0.037 0.099 0.165 0.219 0.256 0.273 0.273 0.260 0.238 0.212 0.184 0.156 0.130 0.107 

[4,]  0.012 0.041 0.082 0.128 0.171 0.205 0.228 0.238 0.238 0.230 0.214 0.195 0.173 0.151 

[5,]  0.004 0.016 0.038 0.068 0.102 0.137 0.167 0.191 0.207 0.214 0.214 0.208 0.196 0.181 

[6,]  0.001 0.006 0.017 0.034 0.057 0.083 0.111 0.138 0.161 0.179 0.190 0.196 0.196 0.191 

[7,]  0.000 0.002 0.007 0.016 0.030 0.048 0.069 0.092 0.115 0.136 0.154 0.168 0.178 0.182 

[8,]  0     0.001 0.003 0.007 0.015 0.026 0.040 0.057 0.077 0.096 0.116 0.133 0.148 0.159 

[9,]  0     0.000 0.001 0.003 0.007 0.013 0.022 0.034 0.048 0.064 0.081 0.099 0.115 0.130 

[10,] 0     0.000 0.000 0.001 0.003 0.007 0.012 0.019 0.029 0.041 0.054 0.069 0.084 0.100 

[11,] 0     0.000 0.000 0.001 0.002 0.003 0.006 0.011 0.017 0.025 0.035 0.046 0.059 0.072 

[12,] 0     0     0     0     0.001 0.002 0.003 0.006 0.009 0.014 0.021 0.029 0.039 0.050 

[13,] 0     0     0     0     0.000 0.001 0.001 0.003 0.005 0.008 0.012 0.018 0.025 0.034 

 

Figure 2: Matrix of the probability mass function of ��|8, where 8 = ��+���. The corresponding row of the 

red colored cell probabilities indicate the maximum 8 such that ∆7> .05; 8 changes through diagonals. 

Hence, the row indexes indicate the upper limit function +∗(��).  The probability of wrong coverage is 

calculated as a Poisson weighted sum of ∆7 (sum of the lower part of the diagonal) indicated in blue; 8 =

�� + ��� > 0. 

 

 

 

4. Bayesian Approach 
 

The construction of the predictive density function is the essence of Bayesian prediction 

analysis.  In this section we present general steps to compute the predictive density 

function and Bayesian prediction limits of a discrete distribution from the exponential 

family. Similar to the frequentist approach, our data consist of two parts,Y = (�� , ���), 

where �� describe the observed data and ��� the missing data to be imputed. Both �� and 

��� conditioned on � are independent 

 

���(��|�
 = ℎ���
���
� �!"��
��#                                                   (4.1) 

 

��$�����|�
 = ℎ����
���
� �!"��
���#,                                           (4.2) 

 

where ℎ�. 
 is a nonnegative real-valued function that does not depend on � and ��. 
 is a 

nonnegative real-valued function of � that does not depend on �� or ���. Furthermore, � 

is now considered a random variable. 

 

Our goal is to construct a function u∗���
 which takes only integer values and will serve 

as an optimal upper bound for the imputed values of ��� with respect to some error 

probability , when �� is observed. 

 

For �, we considered proper priors from the conjugate class of the exponential family of 

distributions that belong also to the exponential family 

 

���
 ∝ 5���
6w� �!"��
x#.                                                                (4.3) 

 

The posterior distribution of � given �� would also be from the exponential family 
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� ��|��� ∝ 5���
6wf�� �!"��
#�x + y
,                                            (4.4) 

 

where �� = ����, ���, … , ���
 and y = ∑ ��z�zo� . 

 

The posterior predictive distribution, /����|��
, is computed as � /����|�
/��|��
���  

 

/ �������� ∝ � ℎ����
5���
6wf�f�� �!"��
#���� + x + y
��� .                        (4.5) 

 

For the observed �� = ��, we take as the smallest upper Bayesian prediction limit u∗���
, 
the 1 −  percentile of the predictive distribution. And, as the largest lower Bayesian 

prediction limit ,∗���
, we take one more than the . percentile of the predictive 

distribution. 

 

Jeffreys and uniform non-informative priors were adopted for the parameter. The upper 

prediction limits based on uniform prior and lower prediction limits based on Jeffreys 

prior appeared to coincide with their respective exact frequentist upper and lower 

prediction limits. 

 

5. Concluding Remarks 
 

We introduced a distribution-based (frequentist) technique to compute lower and upper 

bounds for a missing response from the exponential family. The algorithm makes no use 

of the parameter estimate. Adding these bounds as a new constraint would guarantee, 

with respect to some predefined error probability, that the imputed values belong to the 

same population as the observed values of the variable under consideration. We tested the 

algorithm using a small sample from the quarterly hog survey and plan to further 

investigate the probability of wrong prediction and the efficiency of the algorithm by 

testing it on larger size datasets. 

 

Upper and lower Bayesian prediction limits were discussed. A proper prior distribution 

from the exponential family of distributions was adopted for the parameter. We also 

considered uniform and Jeffreys noninformative priors and investigated the relationship 

of the Bayesian prediction limits derived based on these noninformative priors with their 

respective frequentist prediction limits. The upper prediction limits based on uniform 

prior and lower prediction limits based on Jeffreys prior appeared to coincide with their 

respective exact frequentist upper and lower prediction limits. 
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