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Abstract

Extreme weather and climate events such as hot spells, snow storms, and floods have
recently had a major impact on the economy, environment, and human well-being.
However, when trying to develop a statistical model for climate data, a change-point is
the single most important contributing factor for inaccurate or accurate results. Tradi-
tional change-point detection methods focus exclusively on detecting an alteration or a
shift in the arithmetic mean. However, a change in the climate will first be recognized
through changes in the frequency or intensity of extreme values. In this talk, we will
first discuss our statistical method that uses extreme values to estimate the number
and location of change-points within a climatic time series. Implementation of our
Extreme value to various time series are discussed. We then compare the performance
of our Extreme value method with a standard Bayesian method. Both methods are
applied to simulated and real climate data.

Keywords: Climate change, Change-point, Change-point detection, Extreme values,
Time Series, Bayesian framework

∗University of Arkansas, 1 University of Arkansas, Fayetteville , AR 72701
†Southern Illinois University-Edwardsville, 1 Hairpin Dr., Edwardsville, IL 62026

JSM 2016 - Section on Statistics and the Environment

2054



1 Background

With NASA’s recent publications stating that 2015 broke 2014’s record for warmest
global temperatures, the climate change debate is hotter than ever. Extreme heat events are
becoming more frequent, and rainfall (or lack thereof) is becoming increasingly volatile
in recent years. Although the effects of climate change are likely to have catastrophic
effects for life on Earth in the future, there is still a large portion of society who remains
unconvinced on the existence of climate change. If this pattern continues, all aspects of
human life will be adversely affected. In the second half of the twentieth century, for
example, there have been 71 ”billion dollar events” resulting from earthquakes that took
over 670,000 lives and cost $345 billion to fix [1]. In comparison, the same time period had
over 170 extreme climatic events such as windstorms, floods, droughts, and heatwaves that
took over 725,000 lives and generated economic losses over $700 billion [2]. Furthermore,
earlier snowmelt in western mountains means a longer dry season with widespread effects
on the ecologies of plant and animal communities, fire threat, and human water resources.
Melting of glaciers is also leading to rising sea levels - a phenomenon which threatens
coastal cities around the world. With so much at stake, there is an obvious motivation to
research these extreme climatic events to predict and take preventative measures against
these events.

While there is no single definition of what constitutes an extreme event, typically ex-
tremes can be quantified on the basis of: how rare they are, which involved the notions of
frequency of occurrence; or how intense they are, which involves notions of threshold ex-
ceedance. Thus, the term ”climate extreme” is used to signify individual climate events that
are unusual in their occurrence (minimally, the event must lie in the upper or lower tenth
percentile of the distribution).

In this paper, our primary focus will be providing a more unified and mathematically
justified procedure for detecting change-points within a climatic time series, as they can
drastically alter estimates or predictions made from a statistical model. For example, Fig-
ure 1 below shows how making predictions based on the overall trend dramatically changes
when change-point information is incorporated or neglected. This example considers an-
nually averaged temperatures recorded at New Bedford, Masschusetts, from 1812 to 1999.
The figure reports two statistical regression models: 1) a linear line (red) which has a pos-
itive rate of change for the overall trend from 1812 to 1999 and 2) 4 local linear lines
(blue) from (i) 1812 to 1890, (ii) 1890 to 1902, (iii) 1902 to 1950, and (iv) 1950 to 2000
respectively to account for the four known change-points (1888, 1906, 1951, and 1985)
represented by four vertical dashed purple lines. Observe that within each local segment
that the rate of change is negative. Therefore, if the local lines (blue) are used we would
conclude that 2 for every year that passes the temperature decreases at some constant rate,
but if the overall trend line (red) is used we would conclude that the temperature increases,
a major contradiction caused without a shadow of doubt by the station relocations during
years 1888, 1906, 1950, and 1985 (i.e the change-points in the time series).
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Figure 1: Impact of Change-points for a Climate Time Series

The example presented above is typical of climate time series in that they have a time
trend and multiple change-points induced by both climatic and nonclimatic changes such
as instrumentation changes, station changes, observer changes, etc., that act to influence
overall trend inferences. The change-point problem is well known in the climate literature;
numerous authors have presented change-point tests for the case of a single mean shift when
the series has no trends. A partial list of references for this task includes; [3], [4], [5], and
[6].

For reasons described above, our main objective in this study is to develop a scientific
method that can accurately estimate the number and the location of change-points within
a climate time series. A climate time series is a sequence of climate points (observations)
measured at successive points in time (say annual) spaced at uniform time intervals which
is described by an underlying distribution. Intuitively, we can think of a change-point as a
point in time at which unknown quantities (parameters) of the distribution or model abruptly
change. Finding change-points can also equivalently be seen as the subdivision of a series
into segments characterized by homogeneous statistical features (e.g. mean and standard
deviation). Establishing the existence, and ultimately the number and locations, of such
change-points in climatic time series can be a extremely difficult task. Despite the diffi-
cultly, the need is essential and therefore has received much attention over the past 40 years
as researchers seek irrefutable evidence of climatic change and its link to anthropogenic
activities. Besides climate-related changes, other nonclimatic factors such as relocation of
weather stations and changes of instrumentation are apt to cause sudden changes and these
must be identified to properly analyze climatic time series; see [7].

The majority of existing algorithms for detecting the change-points of a time series are
based on detecting changes in the mean or standard deviation of the time series. For shorter
time series, the problem may be simplified into detecting a single change point (if it exists at
all). The methods for solving these problems can often be generalized to account for cases
with multiple change points or an unknown number of change points. [8] specifies a maxi-
mum number of discontinuities allowed, then uses both Haar (square) wavelets and a brute
force minimization of the residual squared error to determine the placement of piecewise
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continuous line segments. [9] automate the creation of a matrix of over-determined linear
equations and consecutively solve this system for every possible combination of change
points that satisfies their constraints. While techniques like these prove to be accurate in
situations where normality assumptions are satisfied, they become very computationally
intensive very quickly. [10] tried a dynamic programming method to make this computa-
tional burden more manageable, while [11] used Branch and Bound techniques to eliminate
sub-optimal segmentations and reduce the number of computations needed.

Another approach is to model the time series as a discrete-time discrete-state Markov
process [12]. In this method, we use Markov Chain Monte Carlo methods to sample from
the posterior distribution of the change point locations. Our Bayesian approach in this paper
falls into this category of strategies. Though all of these techniques are great for detecting
changes in mean and variance, they have a tendency to fall short while detecting changes in
non-normal distributions. We compare our Bayesian method to an Extreme Value approach
in normal and non-normal situations.

2 The Bayesian Approach

2.1 Prior Distributions

We start off with a Bayesian model of detecting change-points. The main idea of this
approach is to determine a model that would lead to prior probabilities for the number and
location of these change-points, then condition each interval on the previous change-point to
derive a posterior distribution via Markov Chain Monte Carlo methods. In this approach, we
assume a linear regression model: yi = µ+ βxi + ε, ε ∼ N(0, σ2), i = 1, 2, ..., n. We can
then define a change point as a point where the parameters change: let ys:t = ys, ys+1, ..., yt
and s ≤ t∗ ≤ t. We say t∗ is a change point if Ys:t∗ ∼ N(µ1, σ

2
1) and Yt∗:t ∼ N(µ2, σ

2
2),

where µ1 6= µ2 or σ1 6= σ2. Among the xi of the time series areK change-points t1, ..., tK .
So, our problem boils down to finding the set {t1, ..., tK} and unknown K. We then define:

P (next change point at location t|change point at location s) = g(|t− s|)

where l = |t− s| corresponds again to the length of the interval between successive change
points. This g assumes that this conditional probability depends only on the distance be-
tween 2 change points. This seems to be a reasonable assumption, as changes in distribu-
tions are certainly easier to detect when the distance between them is larger. If two change
points are too close together, then it becomes difficult to determine how many change points
are occurring in a small interval.

This g is also a probability mass function for the distance between successive change
points s and t. We can also define the cumulative distribution function for distance as

G(l) =
l∑

i=1

g(i)

We can also interpret g as the pmf for the position of the first change-point, since g(t) =
g(|t−0|), where s=0 marks the position of the first point of the time series. These functions
g and G also imply a prior distributions on the number and location of change points [13].

A reasonable choice of g for climatic time series would be the geometric distribution
with probability λ corresponding to the average length of time between change points. We
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chose the geometric distribution for a multitude of reasons: each point of our time series
is a Bernoulli trial (it either is a change point or it isn’t), it assumes independence between
each individual point, and it assumes that each point is equally likely to be a change point
(an assumption we will have to test, but is reasonable for a starting prior). This geometric
distribution implies that the number of change points is distributed BIN(n, λ) while the
location of the change points is distributed UNIF(0, n). We also put a prior on λ, as the
Beta(a, b) distribution is the conjugate prior of parameter λ.

We next construct the pdf for the number of change-points K. Since K ∼ BIN(n, λ),
we have the discrete PDF

f(K|λ) =

(
n
K

)
λK(1− λ)n−K

After K is observed, L(λ) = f(K|λ) defines a likelihood function (0 < λ < 1). We also
have the prior distribution on λ: λ ∼ Beta(a, b). This yields the pdf

B(λ) =
Γ(a+ b)

Γ(a)Γ(b)
λa−1(1− λ)b−1, 0 < λ < 1

A beautiful property of the Beta distribution is that we have E[λ] =
a

a+ b
and Var(λ) =

E[λ](1− E[λ])

a+ b+ 1
. We can use prior estimates for E[λ] and Var(λ) to obtain values for a and

b. With the likelihood function and prior distribution, we can finally construct the posterior
distribution:

p(λ|K) =
p(K|λ)p(λ)∫
p(K|λ)p(λ)dλ

which is

p(λ|K) =

Γ(a+ b)

Γ(a)Γ(b)
λa−1(1− λ)b−1

(
n
K

)
λK(1− λ)n−K

∫ 1
0

Γ(a+ b)

Γ(a)Γ(b)
λa−1(1− λ)b−1

(
n
K

)
λK(1− λ)N−Kdλ

=⇒ p(λ|K) =
λa+K−1(1− λ)b+(n−K)−1

I

where

I =

1∫
0

λa+K−1(1−λ)b+(n−K)−1dλ = Beta(a+K, b+n−K) =
Γ(a+K)Γ(b+ n−K)

Γ(a+ b+ n)

So,

p(λ|K) =
Γ(a+ b+ n)

Γ(a+K)Γ(b+ n−K)
λa+K−1(1− λ)b+n−K−1

In other words, p(λ|K) ∝ λa+K−1(1 − λ)b+n−K−1. Notice that this is the kernel of
Beta(a+K, b+ n−K). From this, we can also obtain the posterior mean for λ:

E[λ|K] =
a+K

a+ b+ n
=

n

a+ b+ n
· K
n

+
a+ b

a+ b+ n
· a

a+ b
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This has an easy interpretation, as the first product is the data weight times the data estimate,
while the second product is the prior weight times the prior estimate.

When we look at the data itself, we are going to assume a linear regression model. I.e.
we assume that on some segment {s+ 1, s+ 2, ..., t} that Ys+1:t = Xβ + ε, where X is a
(t− s)× p matrix of basis functions, β is a p× 1 vector of regression parameters, and ε is
a (t − s) × 1 vector of iid normal noise: ε ∼ N(t−s)(0, σ

2I). We assume conjugate priors
in this regression framework, so σ2 follows an Inverse Gamma distribution with parameters
ν/2 and γ/2. The hyperparameter ν represents the strength of the prior: ν = 2 indicates
a weak prior and can be increased depending on strength of the prior. Hyperparameter γ
represents the expected variance in each segment. We can use the mode γ

ν+2 = s2, where
s is the observed standard deviation of the segment to find an appropriate choice for γ.
The jth component of β, βj , is distributed Normal with mean 0 and variance σ2δ2j with
δ2j = (X ′s:tXs:t)

−1
jj . For each iteration, we simplify notation by denoting Ys+1:t as Y and

(t− s) as m. This gives us:

P (Y |β, σ2) =
1

(2π)m/2σm‘
exp

(
− 1

2σ2
(Y −Xβ)T I−1m (Y −Xβ)

)
(1)

P (β|D,σ2) =
1

(2π)p/2σp|D|1/2
exp

(
− 1

2σ2
βTD−1β

)
(2)

P (σ2|ν, γ) =
(γ/2)ν/2

Γ(ν/2)
(σ2)−ν/2−1exp

(
− γ

2σ2

)
(3)

where D = diag(δ21 , ..., δ
2
p) and Im is an m ×m identity matrix. From Baye’s Theorem,

we have
P (Y ) = P (Y |D, ν, γ)

=
∫∫

P (Y, β, σ2|D, ν, γ)dβdσ2

=
∫∫

P (Y |β, σ2)P (β|D,σ2)P (σ2|ν, γ)dβdσ2
(4)

If we multiply (1) and (2), we obtain

P (Y |β, σ2)P (β|D,σ2) ∝ exp

(
−1

2σ2
((Y −Xβ)T (Y −Xβ) + βTD−1β)

)
∝ exp

(
−1

2σ2
(Y TY − 2Y TXβ + βTXTXβ + βTD−1β)

)
From here, we let

M = (XTX +D−1)−1

P = (I −XMXT )
||Y ||2p = Y TPY

Then the above expression reduces to

P (Y |β, σ2)P (β|D,σ2) ∝ exp
(
−1

2σ2
((β −MXTY )TM−1(β −MXTY ) + ||Y ||2p

)
So, the posterior distribution for β is still normal with mean MHTY and variance σ2M :

P (β|D,σ2) =
1

(2π)q/2σq|M |1/2
exp

(
−1

2σ2
(β −MXTY )TM−1(β −MXTY )

)
(5)

JSM 2016 - Section on Statistics and the Environment

2059



Integrating out β, we then obtain

P (Y |D,σ2) =

∫
P (Y |β, σ2)P (β|D,σ2)dβ

=
1

(2π)m/2σm
(2π)q/2σq|M |1/2

(2π)q/2σq|D|1/2
exp

(
−1

2σ2
||Y ||2p

)
=

1

(2π)m/2σm

(
|M |
|D|

)1/2

exp

(
−1

2σ2
||Y ||2p

)
We can next multiply (3) and (6) to obtain

P (Y |D,σ2)P (σ2|ν, γ) ∝ (σ2)−m/2−ν/2−1exp

(
−
γ + ||Y ||2P

2σ2

)
So, the posterior distribution on σ2 is still Inverse Gamma with scale parameter
(m+ ν)/2 and shape parameter (γ + ||Y ||2P ).

P (σ2|ν, γ) =
((γ + ||Y ||2P )/2)(m+ν)/2

Γ((m+ ν)/2)
(σ2)−(m+ν)/2−1exp

(
−
γ + ||Y ||2P

2σ2

)
Finally, we integrate out σ2 to obtain

P (Ys+1:t) = P (Y |D, ν, γ)

=

∫
P (Y |D,σ2)P (σ2|ν, γ)dσ2

=

[
1

(2π)m/2σm

(
|M |
|D|

)1/2][(γ/2)ν/2

Γ(ν/2)

][
Γ((m+ ν)/2)

((γ + ||Y ||2P )/2)(m+ν)/2

]
= π−m/2

(
|M |
|D|

)1/2 (γ)ν/2

(γ + ||Y ||2P )(m+ν)/2

Γ((m+ ν)/2)

Γ(ν/2)

(6)

To make this easier to implement, we perform our calculation in log space:

log(P (Ys+1:t)) = −m
2
log(π) +

1

2
(log|M | − log|D|) +

ν

2
log(γ)

− m+ ν

2
log(γ + ||Y ||2P ) + log(Γ((m+ ν)/2))− log(Γ(ν/2))

(7)

2.2 Developing Estimates

Since our number of change-pointsK is unknown, we must develop a way of estimating
it to make use of our posterior distribution. In this model we define a change-point as a
point where the time series changes in mean or variance, so it is natural to try a regression
approach to this problem. Between any two change-points we can expect some regression
function to hold, i.e. between change points Ti = Cj and Ti+1 = Ck,

E[Yi:j ] = β0 +
m∑
l=1

βlXl

So, we can find the probability of the observed data given these models. I.e. we calculate
f(Yi:j) = f(Yi:j |X) for each substring in our data.
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In coded form, this would be the following nested for loop:

for i = 1 to N

for j = i+ dmin to N

Yi:j |X ∼ N(Xβ, σ2I)

where σ2 is the residual variance and dmin is the minimum distance between two change-
points. Using these small regression models, we can create a method for estimating K.
First, define Pk(Y1:j) = Pk(Y1:j |X) as the probability of having k change points in the first
j data points. So, we obtain

P1(Y1:j) =

j−1∑
v=1

P (Y1:v) · P (Yv+1:j)

In other words, we start by finding the probability of one change point in the first j obser-
vations by multiplying probabilities of two non-overlapping strings and summing over all
possible placements of the change-point.

From here, we can find P2(Y1:j) by multiplying the probability of the first segment
having a change-point, P1(Y1:v, by f(Yv+1:j) to fill out the rest of the segment. Again, we
sum over all possible placements of the second change-point to obtain the total probability
of having two change-points in the first j data points.

P2(Y1:j) =

j−1∑
v=1

P1(Y1:v) · P (Yv+1:j)

Continuing this pattern, we obtain

Pk(Y1:j) =

j−1∑
v=1

Pk−1(Y1:v) · P (Yv+1:j)

This pattern can be continued until k = kmax, the maximum number of change-points
allowed. This would be determined by dmin described above. Once this process is finished,
we can choose the k with the highest probability to be our estimate for K.

To estimate the vector of change points t, we use the following algorithm:

1. For s = 1, ..., N − 1 and t = 2, ..., N , calculate the log-likelihood log(P (Ys:t) .

2. Create process Q(s) = P (Ys:N |s− 1 is a change-point). We know that
Q(N) = P (YN :N ), and for s < N ,

Q(s) =
N−1∑
t=s

P (Ys:t)Q(t+ 1)g(t− s+ 1) + P (Ys:N )(1−G(N − s))

for g and G the prior distributions on change-points as described above.
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3. Compute posterior probability of tk+1|tk for k = 1, ...,K. In this step, we start by
computing

P (tk+1|tk, Y1:N ) =
P (Ytk+1:tk+1

)Q(tk+1 + 1)g(tk+1 − tk)
Q(tk + 1)

From here, we simulate tk+1from P (tk+1|tk, Y1:N ), then increment k := k + 1. If
tk < N , then we start the algorithm over with the next point in the series. Otherwise,
we output the simulated change points t1, ..., tK .

3 The Extreme Value Approach

Our primary goal here is to develop the statistical theory needed to use extreme values
to estimate the number and location of change-points in a climatic time series. Instead of
simply observing changes in the mean as in traditional methods, we observe tail values (the
extreme temperature events in each year) to find estimates of where scale and shape pa-
rameters may change. For example, a year with several record high temperatures and less
extreme cold temperatures may indicate a shift of our entire distribution towards higher tem-
peratures. Since extreme temperatures are often easier to observe than changes in mean, we
hypothesize that an extreme value method will outperform traditional methods in accuracy.

To accomplish this, we employ a likelihood ratio test used by [14] in which we assume
the climatic time series distribution is non-Gaussian with βt and ξt as unknown scale and
shape parameters (respectively). From this test, we can test whether βt and ξt change over
the entire segment or at each individual point. We will start off using the extreme values
as estimates for where change points occur, then can refine this estimate to find spikes in
likelihood where the change-points are most likely to be.

We start off with a time series {Zit : i = 1, 2, ..., n; t = 1, 2, ...,m}, where i is the
index for each individual year and t is the index for time (in this case, day of the year). We
label our K change-points t1, t2, ..., tK , which cuts our time series into K + 1 segments.
In each of these segments, we assume that Zit ∼ fj , j = 1, 2, ...,K + 1. In other words,
each segment has its own distribution function that differs from those of adjacent segments
(fj−1 and fj+1) in right tail. We also define t0 = 1 and tK+1 = n+ 1

3.1 Likelihood Ratio Test

Before going into the likelihood ratio test, we will need a few definitions.

Definition 3.1. A random process {Xt} is stationary if it is a stochastic process whose
joint probability distribution does not change when shifted in time, i.e. its parameters do
not change over time.

Definition 3.2. A random process {Xt} is degenerate if it converges to a single value.
In other words, there exists some number t∗ and some constant c such that for i > t∗,
P (Xi = c) = 1. A non-degenerate process is one that is not degenerate.

Consider a random process {Xt}. Assume that the process is stationary and has marginal
distribution F with upper end point xF . [15] showed that if the distribution of excesses
Xt − u of a high threshold u (u < xF ), scaled as a function of u, converges to a non-
degenerate limiting distribution as u → xF , that distribution must be the General Pareto
distribution (see (9) below).
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As a result, for sufficiently high thresholds u, the General Pareto distribution will be the
most practical family of distributions for statistical estimations of excesses over u.

To observe these excesses, we create the sequence Zt = max(Zit), t = 1, ..., T . Going
along with this, we use the aforementioned likelihood ratio test proposed by [14]. Consider
the following tail model:

P (Zit > z + u|Zit > u) =
(

1 +
ξtz

βt

)−1/ξt
+

(8)

where βt > 0 and ξt are unknown scale and shape parameters (respectively), and a+ =
max(0, a). We can then say that t∗ is a change-point if βt or ξt significantly changes before
and after t∗. This comes down to the
hypothesis test

H0 : (β1, ξ1) = ... = (βT , ξT )

vs

HA : (β1, ξ1) = ... = (βt∗ , ξt∗) 6= (βt∗+1, ξt∗+1) = ... = (βT , ξT )

for some point t∗. To test this, [16] use the test statistic Zn =
√

max
1≤m≤n

(−2log∧m), where

∧m =
supθ,η

∏n
i=1 f(Xi; θ, η)

supθ,τ,η
∏m
i=1 f(Xi; θ, η)

∏n
i=m+1 f(Xi; τ, η)

In the context of our problem, log∧t∗ = L(β̂, ξ̂) − L1(β̂1, ξ̂1) − L2(β̂2, ξ̂2) and our test
statistic becomes Zn =

√
max

t∗∈[εT,(1−ε)T ]
(−2log∧t∗), where L(β̂, ξ̂) is the log-likelihood for

(9) based on the positive excesses εit = Zit − u for all i = 1, ..., n and t = 1, ..., T .
L1(β̂1, ξ̂1) is the log-likelihood function based on the positive excesses of samples up to
and including t∗, while L2(β̂2, ξ̂2) is based on the positive excesses of samples after t∗.

From here, we calculate a critical value V from the (1− α)th quantile of√
max

ε≤s≤1−ε

[ B2
2(s)

s(1− s)

]
where B2(s) is the sum of two Brownian bridges. If our Zn < V ,

then we fail to reject our null hypothesis - there is not sufficient evidence of a change-point
in our segment. In this case, our algorithm is finished. Otherwise we have Zn > V , and we
reject H0 at significance level α. From here, we can estimate our first change-point with
T̂1 = argmaxt∈[εT,(1−ε)T ](−2log∧t∗) and obtain two segments. We can then repeat this
process on these two segments and subsequently created segments until we fail to reject H0

for all segments. Note that we do not carry out our hypothesis tests on segments with length
less than or equal to εT (we can consider these segments to have automatically failed to
reject H0) , and we must be sure to adjust our α by using α

2 each time we divide a segment.
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4 Simulation Study

In our simulation study, we perform each of the previously described methods on a
normally distributed data set, a t-distributed data set, a Beta-distributed data set, and a
Pareto-distributed data set. For each of these data sets, we also try cases where the num-
ber of change-points in the data ranges from 0 to 3. We will also vary whether these
change points result in changes in mean, standard deviation, or other parameters. In the
Bayesian case, our data is Yt where t = 1, 2, ..., 748. In the Extreme value case, our data
is Zit,where i = 1, 2, ..., 365 and t = 1, 2, ..., 748. The red vertical lines in each graph
correspond to the change points detected by each algorithm.

The simplest and most natural case to consider first is when all of the data is normally
distributed. We first begin by setting a change point at t∗ = 400.

Yt, Zit ∼

{
N(15, 2) if t ≤ 400

N(10, 4) if t > 400

In the two change point case, we have

Yt, Zit ∼


N(10, 4) if t ≤ 270

N(15, 4) if 270 < t ≤ 570

N(15, 2) if t > 570

Figure 2: Bayesian simulation with 1 change point at t∗ = 400

Figure 3: Extreme value simulation with 1 change point at t∗ = 400
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Figure 4: Bayesian simulation with 2 change points at t∗ = 270 and t∗ = 570. Posterior
probabilities = 1.00

Figure 5: Extreme value simulation with 2 change points at t∗ = 270 and t∗ = 570

With this simple case working well for both methods, we next try our hand at some
non-normal data. Simulation 2 is run with t-distributed data. Again in our first case we
have a single change-point at t∗ = 400.

Yt, Zit ∼

{
t(30) + 40 if t ≤ 400

t(40) + 10 if t > 400

In the multiple change point case we have

Yt, Zit ∼


t(30) + 40 if t ≤ 270

t(10) + 20 if 270 < t ≤ 570

t(60) + 50 if t > 570

Figure 6: Bayesian simulation with 2 change points at t∗ = 270 and t∗ = 570. Posterior
probabilities = 1.00
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Figure 7: Extreme value simulation with 2 change points at t∗ = 270 and t∗ = 570

Finally, our third simulation applies our methods to Pareto-distributed data. With the
Pareto distribution being a distribution often used to model extreme events, we predicted
that the extreme value approach would be much more valuable in predicting these change
points. As before, we used all of these same change-points as in previous simulations. As
in the Beta case, the extreme value approach is far more accurate than the Bayesian MCMC
method. Once again we attempt multiple cases:

Yt, Zit ∼

{
Pareto(2, 2) if t ≤ 400

Pareto(5, 2) if t > 400

In the multiple change point case we have

Yt, Zit ∼


Pareto(2, 2) if t ≤ 270

Pareto(5, 2) if 270 < t ≤ 570

Pareto(2, 5) if t > 570

Figure 8: Bayesian simulation with 1 change point at t∗ = 400. All posterior probabilities
= 1.00
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Figure 9: Extreme value simulation with 1 change point at t∗ = 400

Figure 10: Bayesian simulation with 2 change points at t∗ = 270 and t∗ = 570. Posterior
probabilities = 1.00

Figure 11: Extreme value simulation with 2 change points at t∗ = 270 and t∗ = 570

Our detected change points turn out being very similar in ”approximately normal” data,
but differed considerably when the data was clearly not normal. In such cases, the ex-
treme value method clearly dominates the traditional Bayesian approach. The extreme value
method also turned out to be considerably faster to run than the Bayesian approach.
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5 Application to Real Data Set

After testing our methods on synthetic data sets, we turn our attention to a set of climate
data from Chula Vista, California. This data set contains the mean temperatures, recorded
monthly, of Chula Vista from years 1919 to 1996.

Figure 12: Known change-points lie at t∗ = 582, 708, 760 which correspond to July 1966,
December 1981, and April 1985 respectively.

Figure 13: Bayesian simulation with 1 change point at detected at t∗ = 689. Posterior
probability = 0.60
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Our Bayesian MCMC method finds one change-point at t = 689, which is fairly close
to the true change-point at t = 708. Indeed, at first glance the graph seems to make its most
drastic change in this area. After checking this result with multiple Bayesian change point
packages in R, this result appears to be the best that we can do with this approach.

Figure 14: Extreme Value method with change points detected at t∗ = 44 and t∗ = 63.

In our extreme value case, we group the data into years and create a sequence out of
each year’s highest temperatures. Though we have fewer points in this sequence, we pick
up an extra change point and some surprisingly nice results. The change-points in this graph
lie at t = 44 and t = 63, which correspond to the years 1962 and 1981. These are close to
the true change points, but we lose some accuracy in switching our t values from months to
years.

6 Conclusions and Further Research

Overall, we found the extreme value approach to have several advantages over the tra-
ditional Bayesian approach. The algorithm produced faster and more accurate results with
minimal knowledge of the data’s distribution. Possible areas of further research include
testing for robustness of this method and optimization of our R code. I am also interested
in seeing if the two methods may be combined and experimenting with how various priors
may further improve our estimates.
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7 Appendix: R Functions

# p r i o r d i s t r i b u t i o n s
g <− f u n c t i o n ( k , lambda )
{

p = ((1− lambda ) ˆ ( k−1))∗ lambda
r e t u r n ( p )

}
G <− f u n c t i o n ( k , lambda )
{

p = 1−(1− lambda ) ˆ k
r e t u r n ( p )

}
# F u n c t i o n f o r comput ing l o g l i k e l i h o o d s
l l i k e l i h o o d s <− f u n c t i o n (Y, nu = 2 , gam = 2){

f o r ( i i n 1 : n ){
f o r ( j i n 1 : i ){

m <− i−j +1
Yst <− m a t r i x (Y[ i : j ] , nrow=m)
Hst <− m a t r i x (H[ i : j , ] , nrow=m, n c o l =2)
gam = 4∗ v a r ( Yst )
i f ( i s . na ( gam ) ) {

gam=1
}
M <− s o l v e ( t ( Hst)%∗%Hst + s o l v e (D) )
P <− d i a g ( r e p ( 1 ,m) ) − Hst%∗%M%∗%t ( Hst )
Y2p <− t ( Yst)%∗%P%∗%Yst
L [ i , j ] <− (−m/ 2 ) ∗ l o g ( p i )− . 5∗ ( l o g ( d e t (M))− l o g ( d e t (D) ) ) + ( nu / 2 ) ∗ l o g ( gam )
− ( (m+nu ) / 2 ) ∗ l o g ( gam+Y2p)+ lgamma ( ( n+nu ) /2)− lgamma ( nu / 2 )

}
}
r e t u r n ( t ( L ) )

}
# Backward s i m u l a t i o n f u n c t i o n
backward <− f u n c t i o n ( L , k gu es s =1){

Q[ n ] <− min ( exp ( L [ n , n ] ) , 1 )
f o r ( s i n ( n−1) :1 ){

f o r ( t i n s : ( n−1)){
p = min ( exp ( L [ s , t ] ) , 1 )
Q[ s ] <− Q[ s ]+ p∗Q[ t +1]∗ g ( t−s +1 , kg ue s s / n )

}
p2 <− min ( 1 , exp ( L [ s , n ] ) )
Q[ s ] <− Q[ s ] + p2∗(1−G(N−s , k gu e s s / n ) )

}
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r e t u r n (Q)
}
# Forward s i m u l a t i o n f u n c t i o n
f o r w a r d <− f u n c t i o n (Q, L , k gu es s =1){

n <− l e n g t h (Q)

# i c o r r e s p o n d s wi th t a o k , j w i th t a o ( k +1)
# each row of t a o c o r r e s p o n d s t o p o s t e r i o r P ( t a o ( k +1)= j | t a o k = i )
f o r ( i i n 1 : ( n−1)){

f o r ( j i n ( i + 1 ) : n ){
i f ( j == n ){

p = min ( exp ( L [ i +1 , n ] ) , 1 )
t a o [ i , j ] <− p∗(1−G( n−i , k gue s s / n ) ) / Q[ i +1]

} e l s e {
p = min ( exp ( L [ i +1 , j ] ) , 1 )
t a o [ i , j ] <− p∗Q[ j ]∗ g ( j−i , k gue s s / n ) / Q[ i +1]

}
}
t [ i ] <− which . max ( t a o [ i , ] )
i f ( t [ i ] >= n ){

b r e a k
}

}
r e t u r n ( t )

}

# Extreme Value change p o i n t s e a r c h f u n c t i o n
c p s e a r c h = f u n c t i o n ( Z , a l p h a ){

n = nrow ( Z )
i f ( n<3 | | a l p h a < . 0 0 6 2 5 ){

r e t u r n ( m a t r i x ( 0 , 1 , 1 ) )
}

# compute l i k e l i h o o d r a t i o s
f o r ( i i n 1 : ( n−1)){

Zi = as . m a t r i x ( Z [ 1 : i ] )
Z i p l u s 1 = as . m a t r i x ( Z [ ( i + 1 ) : n ] )
L1 = f ( Zi , be ta1 , x i 1 )
L2 = f ( Z i p l u s 1 , be ta2 , x i 2 )
lambda [ i ] = L − L1 − L2

}

f o r ( i i n 2 : n ){
d e l t a 0 . h a t = d e l t a 0 . h a t + ( Z [ i ] − ph i0 . h a t ∗Z [ i −1 ] ) / ( n−1)

}

f o r ( i i n 2 : n ){
s2 = s2 + ( 1 / ( n−2) )∗ (Z [ i ] − d e l t a 0 . h a t − ph i0 . h a t ∗Z [ i −1] ) ˆ2
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Omega [ i ] = Z [ i ] − d e l t a 0 . h a t − ph i0 . h a t ∗Z [ i −1]
}
f o r ( i i n 2 : n ){

OmegaSum [ i ] = OmegaSum [ i −1] + ( 1 / ( s2 ∗ s q r t ( n ) ) ) ∗Omega [ i ]
}

k . h a t = which . max ( abs ( OmegaSum ) )

# t e s t s t a t i s t i c from Brownian b r i d g e
OmegaSumOrd = OmegaSum [ o r d e r ( OmegaSum [ , 1 ] ) ]

f o r ( t i n 1 : 1 0 0 0 0 ){
s = r u n i f ( 1 , 0 , 1 )
ns = as . i n t e g e r ( n∗ s )
Os = Omega [ 1 : ns ]
Bnt = ( 1 / s q r t ( s2 ∗n ) ) ∗ sum ( Os )
B[ t ] = s q r t ( ( ( 2 ∗ Bnt ) ˆ 2 ) / ( s ∗(1− s ) ) )

}
Bord = B[ o r d e r (B ) ]
V = Bord [ c r i t I n d e x ]
V
cps = m a t r i x ( 0 , 1 , 1 )
i f ( i s . f i n i t e (V) && i s . f i n i t e ( Zn ) && V < Zn ){

cp . h a t = which . max ( abs ( lambda ) )
} e l s e {

cp . h a t = 0
}
cps [ 1 ] = cp . h a t
i f ( cp . h a t > 0){

Z1 = m a t r i x ( Z [ 1 : cp . h a t ] )
Z2 = m a t r i x ( Z [ ( cp . h a t + 1 ) : n ] )
cp1 = c p s e a r c h ( Z1 , a l p h a / 2 )
cp2 = c p s e a r c h ( Z2 , a l p h a / 2 )
cps = as . m a t r i x ( c ( cps , cp1 , cp2 ) )
z e r o s = which ( cps == 0)
c p s o r d = cps [ o r d e r ( cps [− z e r o s ] ) ]
i f ( l e n g t h ( c p s o r d ) < 1){

cps = m a t r i x ( 0 , 1 , 1 )
} e l s e {

cps = c p s o r d
}

}
r e t u r n ( cps )

}
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