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Abstract 

Researchers have begun to realize that treating individual trees within a single plot as 
independent is erroneous (Penttenen et al. 1992, Mateu et al. 1998). Our goal was to 
reproduce the induced spatial dependence of plot data and to assess the efficacy of 
redundancy analysis for testing spatial variability. We designed a range of conditions for 
plots that included manipulation of microsite productivity and spatial pattern complexity. 
Simulated populations without confounding effects of competition and mortality were 
analyzed using redundancy analysis (RDA) to quantify spatial variability and partial 
redundancy analysis (pRDA) to test for spatial dependence. We found that increased 
variation in growth and decreased average tree size differences among microsites resulted 
in decreased efficacy of variation partitioning by RDA and decreased efficacy of spatial 
dependence testing by pRDA. However, spatial pattern complexity of the simulated plots 
caused mixed results of variation partitioning. The results indicated that RDA and pRDA 
are reliable methods of analysis and are suitable for applications to field data. 
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1. Introduction 
In order to investigate spatial effects on tree growth, we developed a method to simulate 
forest plots, then tested the efficacy of statistical methods to detect and quantify spatial 
variability in forest plots. A lack of information exists on dependable methods to detect, 
quantify, and map spatial heterogeneity in small-scale forest plots (Marignani et al. 2007, 
Hou et al. 2015). An increased effort to improve plot uniformity has led to questions as to 
how spatial patterns of tree growth emerge over time. Spatially dependent growth of trees 
results from many factors; in particular, genotypic variation and microsite conditions are 
thought to greatly influence variation of tree structure within a plot (Schweingruber 1987, 
Downes et al. 2002). Variation in height-age trajectories amongst trees growing together 
in the same plot but of different genetic stocks is noted in the literature (Buford & Burkhart 
1987, Magnussen & Kremer 1993, Tang et al. 2001). Both conceptually and 
mathematically, if non-clonal trees are planted together, there will always exist a 
confounding of genetic and microsite effects on tree growth (Buford & Burkhart 1987). A 
logical first step in understanding the underlying causes of spatially dependent tree growth 
is to understand how spatial patterns emerge in plots and to quantify those effects. 
 
Simulations based on model forests are used by scientists to gain greater insights into a 
host of forestry issues (Tokolo & Shrestha 1999, Tommpo 2006, Hou et al. 2015).  A large 
number of publications utilize simulations to better understand treatment outcomes, 
economic feasibility, and carbon sequestration with respect to climate change (Betts et al. 
1997, Galbraith et al. 2010, Haynes et al. 1994, Huntingford et al. 2013, Prentice 1993, 
Scheller & Mladenoff 2005, Solomon 1986, Webster et al. 2003). Furthermore, simulations 
have been used by environmental scientists to better understand, compare, and verify 
statistical methods to be applied in the field (i.e Borcard & Legendre 2002, Legendre et al. 
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2011, Peres-Neto et al. 2006, Peres-Neto & Legendre 2010, Hou et al. 2015). Simulations 
provide insight into future scenarios so that uncertainty can be minimized and management 
can adapt. One can use simulations to control environmental and spatial factors so that 
statistical methods can be applied in field-like conditions with the benefit of knowing actual 
plot conditions.  
 
Induced spatial dependency can be produced by functional dependence of the response 
variables on explanatory variables that are themselves spatially correlated (Borcard & 
Legendre 2002). In our study, the response variables are the height and diameter of each 
tree and the explanatory variable is the site index (SI) - a measure of site productivity. We 
simulated plots with imbedded patterns of microsite productivity, thereby creating a 
functional dependence of height and diameter on the explanatory variables that are 
themselves spatially correlated. In our study, it is assumed that Y (height and diameter) has 
acquired the spatial structure of X (site index). If all important spatially-structured 
explanatory variables are included in the analysis, equation (1) correctly accounts for the 
spatial structure induced in Y. 
                                                𝑦𝑗 = 𝑓(𝑋𝑗) + 𝜀𝑗 .                                                         (1) 
 
In equation (1), yj is the value of the dependent variable y at site j and 𝜀𝑗 is the error term 
whose value is independent from tree to tree (Dray et al. 2012, Dale & Fortin 2014). If 
induced spatial dependency is occurring, then it should be properly accounted for in the 
model in order to perform correct standard statistical tests of the relationship between Y 
and X.  
 
Testing of spatial effects requires that the spatial structure be expressed by meaningful 
spatial variables. The most straightforward method for modeling spatial relationships is 
polynomial regression where the geographic coordinates are used to generate trend surfaces 
(Legendre 1990, Borcard & Legendre 2002). However, trend surface is only satisfactory 
when the sampling area is approximately homogenous, the sampling design is closely 
regular, the number of spatial locations is “reasonable” (Norcliffe 1969), and the spatial 
structure to be modeled is somewhat simple (Dray et al. 2006). A more modern method of 
creating meaningful spatial variables is Moran’s eigenvector maps (MEM’s) (Dray et al. 
2006).  Moran eigenvector maps rely on eigenvector decomposition of truncated 
geographic distance matrix (Griffith & Peres-Neto 2006).    
 
Our goal in this study is to reproduce the induced spatial dependence caused by microsite 
variability and measure the efficacy of redundancy analysis to test and quantify spatial 
effects. To meet this goal we analyze plots with a range of spatial pattern complexity and 
growth potential.  

 
2. Methods 

2.1 Study material and simulated data 

This study simulated 5 hypothetical plots, each with a unique microsite design (Figure 1). 
The simulation produced tree height and diameter measurements similar to loblolly pine 
(Pinus taeda L.). Each plot consists of 25 rows and 25 columns of simulated trees. Trees 
are “planted” on 10-foot square spacing on ~1.43 acre plots. Each plot was assigned 1 of 5 
microsite patterns. Microsite arrangements are distinct formations of high or low areas of 
productivity within each plot.  
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Figure 1. Illustration of the 5 spatial patterns used in this study. Microsites are 
distinguished by color. From left to right: Control, biplot, triplot, quadplot, and freeplot. 
 
Plots were developed to represent a range of possible microsite patterns and most 
importantly, to induce spatial dependence by creating areas within a plot that have varying 
levels of productivity. By creating areas of high and low productivity, the size of each tree 
is dependent on its location in space. There are 1 to 5 microsites per plot represented by:  
  
(Refer to Figure 1) 
Control- The control plot has a single site index value because of microsite homogeneity. 
The SI value is 70 feet average dominant height at base age 25. 
Biplot- Two microsites on the biplot, 70 feet average dominant height at base age 25 (green) 
and 80 feet average dominant height at base age 25 (blue). 
Triplot- Three microsites of the triplot have a SI value of 60 feet average dominant height 
at base age 25 (yellow), 70 average dominant height feet at base age 25 (green), or 80 feet 
average dominant height at base age 25 (blue). 
Quadplot- The quadplot has four microsites with SI value of 50 feet average dominant 
height at base age 25 (orange), 60 feet average dominant height at base age 25 (yellow), 70 
feet average dominant height at base age 25 (green), or 80 feet average dominant height at 
base age 25 (blue). 
Free plot- The free plot has five microsites. The large green area of the free plot is SI 70 
feet average dominant height at base age 25. The small light blue area is SI 60 feet average 
dominant height at base age 25, the dark blue area circumscribing the blue area is SI 65 
average dominant height feet at base age 25. The red area is SI 75 feet average dominant 

JSM 2016 - Section on Statistics and the Environment

1994



 

height at base age 25 and the yellow area is SI 80 feet average dominant height at base age 
25.  
 
All calculations and simulations were done using R software. Since SI values are averages, 
we drew SI values for each individual tree from an assumed distribution. Assuming 
normality we state: SIijk~N(𝜇𝑗 , 𝜎𝑗

2) where the ith simulation ranges from i=1…S, the jth 
microsite ranges from j=1…k, and the kth tree ranges from k=1…K. For estimating SI 
values we hold this condition true for each microsite: 𝐶𝑉𝑗 = 0. 10 = (𝜎𝑗 ÷ 𝜇𝑗) ∗ (100%) 
where 𝜇𝑗 is the mean and CVj  is the coefficient of variation. We then used SI as our 
environmental variable Xijk=[SIijk]. For the trees to reflect the spatial dependence (size of 
tree dependent on its location in space) caused by SI fluctuations within plots, we imposed 
different mean diameter at breast height (DBH) values for each microsite.  
  
For k microsites we have 𝜇1 <  𝜇2 < ⋯ < 𝜇𝐾 , where 𝜇𝐾  is the mean DBH for the Kth 
microsite. For each simulation the CV was equal among all microsites. That is, 
𝐷𝐵𝐻𝑖𝑗𝑘~𝑁(𝜇𝑗 , 𝜎2), where 𝜎2 is chosen to achieve a prespecified value of 𝐶𝑉 = (𝜎 ÷ 𝜇) ∗

(100%).  Table 1 displays all 15 possible combinations examined for each spatial pattern. 
It should be noted, however, that the control plot only has 5 possible combinations (5 levels 
of CV 5%-25% and 0 levels of size difference) because there are no differences in mean 
DBH specified. As an example of treatment application, we can look at the biplot. In Table 
1, the cell where CV=10% and difference in mean DBH=1 in. intersect, represents 1 of the 
15 scenarios to be used in simulations for the biplot. In this example, the green portion of 
the biplot (see Figure 2) will contain trees with DBH values drawn from a normal 
distribution, N(5, 0.25), and the blue portion will contain trees with DBH values drawn 
from the distribution N(6, 0.36). These two distributions reflect the difference in mean 
DBH=1 in between the two microsites and variance calculations based on a 10% CV. 
 
Table 1. Illustration of 15 possible scenarios for each spatial pattern with k>1 microsites. 
Each scenario will be simulated for each spatial pattern. The control plot will be simulated 
with all 5 levels of CV. 

 
 
 
 
From DBH values we can then estimate total tree heights, which are calculated based on 
established diameter-height relationships. Equation (2) from Sabatia and Burkhart (2013) 
was used to model heights: 
 

                                         𝐻𝑖𝑗𝑘 =
𝛽0𝑒

𝛽1𝐷𝐵𝐻𝑖𝑗𝑘
−1

3.28
+   𝜃𝑖𝑗𝑘 .                                                    (2) 

 
The parameter estimates from Sabatia and Burkhart (2013) are from a loblolly pine study 
of similar planting density. Where Hijk is the total height (feet) and DBHijk is the diameter 
at breast height (inches) of the kth tree in the jth microsite of the ith simulation. The index 

Coefficient	of	Variation

5% 10% 15% 20% 25%
0.5 (0.5,5%) (0.5,10%) (0.5,15%) (0.5,20%) (1,25%)

Difference	in	mean	DBH	(inches)

1 (1,5%) (1,10%) (1,15%) (1,20%) (1,25%)

2 (2,5%) (2,10%) (2,15%) (2,20%) (2,25%)
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values range from, i=1…S, j=1…k, and k=1…K. For equation (2), 𝛽 0 is the upper 
asymptote parameter, 𝛽1 is the rate parameter, and 𝜃𝑖𝑗𝑘 is the random error due to the kth 
tree [𝜃𝑖𝑗𝑘~𝑁(0, 𝜎𝜃

2)] (Sabatia & Burkhart 2013). The estimated equation from Sabatia and 
Burkhart (2013) is then: 
 

                  𝐻𝑖𝑗𝑘 =
20.382𝑒

−7.309𝐷𝐵𝐻𝑖𝑗𝑘
−1

3.28
+ 𝜃𝑖𝑗𝑘 ,  𝜃𝑖𝑗𝑘~ 𝑁(0, 0.5186) .         (3) 

 
We now have our response matrix Yijk=[DBHijk , Hijk]. The last data we compute are the 
spatial variables. We simulated trees on a 10ft by 10ft planting grid and collected spatial 
information based on the Cartesian coordinate system. The tree in the top left position of 
the plot (origin position) has spatial coordinates (0,0), the tree to the immediate right of the 
origin has coordinates (10,0), the tree immediately beneath the origin has coordinates 
(0,10), and the tree down one row and to the right one column has coordinates (10,10). A 
pairwise matrix of distances (Dqr) was then constructed. Dqr contains the distances between 
each tree. A threshold value is chosen to truncate matrix Dqr. We used R software package 
PCNM (Legendre et al. 2012) for this analysis with default options that use the longest 
edge of the minimum spanning tree (Legendre et al. 2012), which in our case is 10ft. The 
following rule is then used to truncate Dqr : 
 

Dtrunc(qr) {

𝐷𝑡𝑟𝑢𝑛𝑐 (𝑞𝑟) = 𝐷𝑞𝑟,                               𝑖𝑓    𝐷𝑞𝑟 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐷𝑡𝑟𝑢𝑛𝑐 (𝑞𝑟) = 4 × 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                   𝑖𝑓                          𝑖 = 𝑗

𝐷𝑡𝑟𝑢𝑛𝑐 (𝑞𝑟) = 4 × 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑            𝑖𝑓   𝐷𝑞𝑟 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

 
Next, a principal coordinate analysis (PCoA) was performed on Dtrunc(qr). The resulting 
principal coordinates are spatial eigenfunctions that model multiscale distance 
relationships among trees within each plot (Dray et al. 2006). We retained only the 
eigenvectors with positive eigenvalues (spatial variables) because they model positive 
spatial autocorrelation. Lastly, a forward selection of the remaining spatial variables is 
done to select significant spatial variables which compose the matrix W. 
 
It should be noted that each iteration of the simulation process examines a “new” plot. For 
example, the biplot was simulated thousands of times throughout this study. Each iteration 
of the biplot holds only microsite pattern and spatial location of trees constant, but the trees 
take on different values for every simulation. 
 
2.2 Redundancy Analysis 

Redundancy analysis (RDA) (Rao 1964) is a method that extends multiple linear regression 
to multivariate linear regression involving multiple response variables and a common 
matrix on predictors. Variation partitioning for RDA with multivariate response and two 
sets of predictor matrices (X for environmental factors and W for spatial) are 
straightforward and applications for more than two predictor matrices are possible (Peres-
Neto & Legendre 2010). Methods such as RDA utilize the spatial variables created with 
MEM’s to estimate the contribution of spatial variation in the response data and filter out 
the effects of spatial correlation when testing the importance of ecological factors (Peres-
Neto & Legendre 2010).  
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Figure 1. Illustration of the variation partitioning by RDA. Here, X and W are two 
explanatory matrices and [a], [b], [c], and [d] are fractions of variance. If matrix X is a 
matrix of environmental variables and W is a matrix of spatial variables then the fraction 
[a] is pure environmental variability, [b] is confounded variability of environmental and 
spatial, [c] is pure spatial, and [d] is the residual component. Fractions [a] and [c] are 
considered testable fractions and significance tests can be carried out by pRDA.  
 
In this study, RDA was done using R software’s “VEGAN” package (Oksanen et al. 2013). 
The first step to RDA is to standardize the response variables (Borcard et al. 1992). The 
response variables mentioned hereafter are considered standardized. This symmetric form 
of analysis utilizes a response matrix Y625x2 (hereafter Y), where 625=25 rows x 25 
columns, and with explanatory vector X625x1 (hereafter X) and covariables W625x2 

(hereafter W).  In RDA, the ordination axes are obtained by a PCA of 𝑌̂, which is computed 
by fitting the Y variables to X by multivariate linear regression (Laliberté et al. 2009). An 
important characteristic of the RDA process is that the ordination of Y produces ordination 
axes that are linear combinations of X (Peres-Neto & Legendre 2010, ter Braak & Prentice 
1988). Multiple linear regression on all variables in X is done for each variable in Y and 
𝛽̂ = [𝑋𝑡𝑋]−1𝑋𝑡𝑌 is calculated (Peres-Neto et al. 2006).  
 The canonical R2, called the bimultivariate redundancy statistic by Miller & Farr 
(1971), quantifies the strength of the linear relationship between variables Y and X, where 
Ŷ are the multivariate estimated values of the response: 
  

𝑅𝑌|𝑋
2 =

𝑆𝑆(𝑌̂)

𝑆𝑆(𝑌)
 .                                                                   (4) 

 
In equation (4), 𝑆𝑆(Ŷ) is the total sum of squares of Ŷ and 𝑆𝑆(Y) is the total sum of squares 
of Y. We construct an equivalent adjusted R2 measure to the one introduced by 
Ezekiel (1930), denoted by rR2, where n is the number of observations and m is the 
number of degrees of freedom in the fitted model: 
  

r𝑅2 = 1 − (1 − 𝑅𝑌|𝑋
2 )

𝑛−1

(𝑛−𝑚−1)
 .                                         (5) 

 
Referring to Figure 2, we can begin to calculate the fractional explained variance 
components (a,b, and c) as well as the unexplained variance component (d) by following 
steps outlined by Legendre (2008). Variation partitioning of Y results from three simple 
RDA’s each with a different independent matrix. For example, we used X, W, and X|W to 
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estimate variation from environmental, spatial, and environmental and spatial variables, 
respectively. 
We followed this procedure for each iteration of our simulation. Referring to Table 1, there 
are 5 scenarios for the control plot (only changes in CV can be used since there are no 
microsites) and 15 combinations of CV and difference in mean DBH for the biplot, triplot, 
quadplot, and free plots. For each of these scenarios 1000 simulations were run and the rR2 
values were collected. After the 1000 simulation runs an estimate of pure spatial variation 
is obtained for given spatial patterns and scenarios.  
 

2.3 Partial Redundancy Analysis 

Partial RDA can test an individual explanatory matrix while controlling for the linear 
effects of a second matrix containing covariables (Legendre et al 2011). In pRDA we are 
able to isolate and test for pure effects (ter Braak & Smilauer 2002). The most compelling 
function of pRDA is that one can test for pure effects of spatial, environmental, chemical, 
treatment, and other components while controlling for the linear effects of other covariables 
(Legendre et al 2011).  
 
Partial redundancy analysis was conducted using R software’s “VEGAN” package 
(Oksanen et al. 2013). Matrices X and W are interchangeable, depending on which partial 
variance is to be tested. For our specific objectives, we tracked the significance testing of 
Y~W|X. This is the hypothesis of spatial dependence and tests the significance of fraction 
[c], (see Figure 2) representing pure spatial variation. A two-stage approach to testing the 
significance of the pure spatial component was taken. First, the software calculated the 𝑅2 
statistic of partial regression: 
 

𝑅𝑌~𝑊|𝑋
2 =

𝑆𝑆(𝑌~𝑊|𝑋)

𝑆𝑆(𝑌~𝑊)
                                                            (6) 

 
Following this calculation, the F-statistic was used to test the overall significance of the 
partial regression relationship is: 
  

𝐹 =
𝑅𝑌~𝑊|𝑋

2

𝑚
∙

1−𝑅𝑌~𝑊|𝑋
2

𝑛−1−𝑚−𝑞
                                                            (7) 

 
Where n is the number of observations, m is the number of parameters, and q is the number 
of covariables in W. Significance of the F-statistic may be tested with the F-distribution if 
the assumption of normality of the residuals holds and the data are standardized. However 
this is rarely the case in many ecological studies, and for this reason, permutation tests are 
preferred and are used in this study. Specifically, we used a permutation of the residuals of 
the reduced model. 
 
The null hypothesis for the partial F-test of X|W states that the response is not spatially 
dependent. For each of the spatial patterns all applicable scenarios in Table 1 were 
simulated 1000 times, and for each iteration of the simulation a permutation F-test was 
performed (999 permutations per test). Each iteration of the simulation was considered a 
Bernoulli trial and assigned a 1, if the null hypothesis was rejected, and 0 otherwise. After 
simulations, the efficacy of pRDA in detecting spatial dependency was estimated by 
calculating the probability of success as the average of all trials.  
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3. Results  
3.1 Redundancy Analysis 

We used RDA to perform a variation partitioning to estimate the pure spatial variability. 
Table 2 contains the estimated rR2 value associated with the pure spatial component. As 
discussed earlier, there are 15 scenarios per spatial pattern. The scenarios are a combination 
of differences in mean DBH and CV as shown in Table 1. Notably, the rR2 values for the 
control plot are 12-13%. The largest rR2 values are usually in the quadplot, which is one of 
the more complex patterns. More variation tends to be captured in scenarios with larger 
differences in DBH and lower values of CV. The mount of variation explained tends to 
increase from control plot to triplot or quadplot before decreasing. 
 
Table 2 Estimated rR2 for each spatial pattern and all scenarios. 
 

Coefficient of Variation  Control Biplot Triplot Quadplot Free   

5% 13% 6% 46% 24% 24% 0.5 inch 

10% 13% 10% 29% 19% 20%   

15% 13% 11% 22% 16% 16%   

20% 13% 12% 18% 15% 15%   

25% 12% 13% 16% 14% 13%   

         

Coefficient of Variation  Control Biplot Triplot Quadplot Free   

5% 13% 3% 62% 76% 22% 1 inch 

10% 13% 7% 52% 67% 20%   

15% 13% 9% 41% 55% 18%   

20% 13% 10% 33% 44% 16%   

25% 12% 12% 27% 36% 15%   

         

Coefficient of Variation  Control Biplot Triplot Quadplot Free   

5% 13% 0% 68% 76% 20% 2 inch 

10% 13% 3% 63% 72% 19%   

15% 13% 5% 55% 66% 19%   

20% 13% 7% 47% 59% 18%   

25% 12% 8% 40% 50% 17%   
 
 
3.2 Partial Redundancy Analysis 

Partial redundancy analysis was used to detect spatial dependence. The results reported are 
the probability of detecting spatial dependence for all combinations of spatial patterns and 
scenarios. Table 3 contains the results from the pRDA simulations. 
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Table 3 Illustration of the results from pRDA. The values represent the probability of 
detecting spatial dependence. 

Coefficient of Variation  Control Biplot Triplot Quadplot Free   

5% 0.04 1 1 0.99 1 0.5 inch 

10% 0.06 0.88 0.86 0.99 1   

15% 0.04 0.77 0.51 0.9 1   

20% 0.06 0.58 0.39 0.8 1   

25% 0.04 0.51 0.31 0.8 1   

         

Coefficient of Variation  Control Biplot Triplot Quadplot Free   

5% 0.04 1 1 1 1 1 inch 

10% 0.06 1 0.98 0.99 1   

15% 0.04 0.96 0.92 0.98 1   

20% 0.06 0.93 0.85 0.86 1   

25% 0.04 0.86 0.56 0.77 1   

         

Coefficient of Variation  Control Biplot Triplot Quadplot Free   

5% 0.04 1 1 1 1 2 inch 

10% 0.06 1 1 1 1   

15% 0.04 1 1 1 1   

20% 0.06 0.99 0.97 0.98 1   

25% 0.04 1 0.83 0.92 1   
 
 
The highest probabilities for detection are for the free plot and with larger differences in 
DBH among microsites. The probability for detecting spatial dependence in the control 
plot is consistently at approximately 0.05. This reflects the type 1 error rate of 𝛼 = 0.05, 
which is the probability of rejecting the null hypothesis when the null hypothesis is true.  
 

4. Discussion 
4.1 Redundancy Analysis  

The variation partitioning and quantification of spatial variability performed as expected. 
Referring to Table 2, we see there is no distinct pattern in the amount of spatial variation 
captured. This confirms that spatial pattern complexity and perhaps the shape of microsites 
can influence the efficacy of RDA to capture spatial variability. Even if there are no 
obvious patterns in how rR2 changes with spatial pattern complexity, one can still see that 
large differences among spatial pattern reflected in rR2. It is possible that the spatial 
processes, in the biplots, for example, show fortuitous correlations with the environmental 
variable (Bell et al. 2006). The rR2 of the control plots ranges from 12-13%. This observed 
spatial variation is simulated by chance, but it happens to reflect realistic measures of 
variability in a seemingly random or aggregated tree growth. Lepš and Kindlmann (1987) 
noted in their study that it is incorrect to deduce the independence of individuals within a 
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population from an observed random pattern. The results from this portion of the 
simulation study were very promising. The values from Table 2 are rR2 values, and we 
expected them to be rather low (<10%), but found values as high as 76%. The largest 
portions of variation explained by the spatial component were found in the scenarios with 
the greatest difference in mean DBH and in more complex spatial patterns. 
 
The difference in mean DBH among microsites was examined at three levels (0.5in, 1in, 
2in).  As the difference in mean DBH increases among microsites, the rR2 values increase 
as well. This trend is intuitive. By implementing larger differences in mean DBH we are 
essentially creating stronger and more obvious spatial dependencies. Redundancy analysis 
is detecting the stronger relationship between size and spatial location. Coefficient of 
variation is very influential in how much spatial variability is captured.  
 
In Table 2, as expected, CV increase the rR2 decreases. The amount of variation used to 
draw DBH values for each microsite blurs the line, so to speak, between microsites. 
Graphing the DBH distributions of each microsite simultaneously shows increased overlap 
of the distributions with increased values of CV. Conceptually, as overlap among the 
distributions increases, there is an increase towards uniformity and thus spatial 
dependencies become less obvious. 
 

4.2 Partial Redundancy Analysis  

We used pRDA simulations to measure the probability of successfully detecting spatial 
dependency with permutation F-tests which looked at the significance of the “pure spatial” 
component. These results are promising, with many scenarios showing greater than .80 
probability of success and some with a success probability of 1. These results are promising 
because we observed higher success rates in the most complex spatial pattern, which 
contained smaller more frequent microsites. This may be the most realistic spatial pattern. 
Palmer (1980), who quantified spatial patterns of plant environment relationships in 
hardwood plots, found that most of the spatial dependence measured in his variables were 
at small scales (within 10 meter subplots). Our results indicate that spatial patterns with 
smaller, more frequent microsites more often had significant spatial variables. The trends 
observed are surprising. An increase in spatial pattern complexity increases the probability 
of successful detection. More influential than pattern complexity is difference in mean 
DBH. 
 
As difference in mean DBH increases, the probability of detecting spatial dependency 
increases. The increase in mean difference in DBH creates more obvious spatial 
dependencies and less overlap among distributions of microsites. The largest effect seems 
to result from increases in CV.  
 
As CV increases, the probability of detecting spatial dependency decreases. The increased 
amount of variation in each microsite actually increases the uniformity of the plot and 
assuages the effects of spatial dependencies. Therefore, it becomes increasingly more 
difficult to detect spatial dependency with higher amounts of variation. 
 
The probability of detecting spatial dependence of the control plot for all scenarios was 
approximately 0.05. This is a reassuring statistic because it validates the statistical methods 
used. An 𝛼=0.05 for the permutation F-tests was specified before running the simulations. 
Therefore, about 5% of the time we would expect the test to detect spatial dependence 
when there is none. 
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