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Abstract 
The Canadian Census long form is a quinquennial large-scale sample survey for which 
millions of estimates on the Canadian population are published at various levels of 
geography. In 2016, to improve the analytical potential and the intelligibility of the 
published point estimates, Statistics Canada wants to be able to calculate a variance-based 
quality-indicator (QI) for each estimate. In addition, for the first time, analysts having 
access to microdata will be provided replicate weights enabling them to produce variance 
estimates on their own. This paper summarizes the development of a replication variance 
estimator that uses few replicates to be integrated into the existing dissemination systems. 
Emphasis will be put on the challenges of developing the variance estimator and the results 
of a Monte Carlo simulation supporting the choice of the method to be used. These 
challenges include the very large sample size along with the large sampling fraction, the 
need to calibrate the replicate weights and the numerous variance estimates being 
calculated for both smooth and non-smooth statistics in a limited timeframe while 
respecting confidentiality of the data provided. 
 

Key Words: Large-scale survey, variance estimation, dissemination, balanced half-
samples, Jackknife, finite population correction  

 

 
1. Introduction 

 
The Canadian Census program has a five year cycle and consists of both a census of the 
population and, since 1971, a sample survey of households receiving a more detailed 
census questionnaire called the Census long form. The Census long form was mandatory 
until 2006. In 2011, it was made voluntary and the data was collected through the National 
Household Survey (NHS). The Canadian government reinstated the Census mandatory 
long form for 2016. Every census cycle, millions of estimates on the Canadian population 
are published at various levels of geography using the Census long form data. In 2011, a 
sample design based on the subsampling scheme of Hansen and Hurwitz (1946) was used 
to follow up nonrespondents in an effort to minimize the impact of nonresponse caused by 
the voluntary nature of the NHS. Because total nonresponse was not expected to be as 
much of an issue in 2016 due to the mandatory nature of the Census long form, no follow-
up subsample of nonrespondents was taken. The 2016 sample design consists of taking a 
stratified systematic sample with a sampling fraction of one-fourth. This is the same as the 
sample design in 2006 except that the sampling fraction was one-fifth. 
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Before 2011, neither variance estimates nor quality indicators (QI) based on variance 
estimates were released. Instead, the formula for calculating the standard error of an 
estimator of a total under simple random sampling without replacement, adjustment factors 
for the design and weighting effect and instructions on how to use them for variance 
estimation were provided to analysts in Census technical reports. To derive the adjustment 
factors provided in the reports, variance estimates were produced using classic Taylor 
linearization under the assumption that systematic samples can be approximated by simple 
random samples. Multiplicative adjustment factors were calculated using a Monte Carlo 
simulation and applied to the variance estimates to compensate for a downward bias. In 
2011, the same general variance estimation methodology was used. However a different 
dissemination strategy was adopted since the more complex design and the more 
pronounced nonresponse made the design effects a lot less homogeneous. Variance 
estimates were disseminated for key characteristics and geography. With both 
dissemination approaches, the variance estimates were published many months after the 
publication of the point estimates. The goal of Statistics Canada for 2016 is to be able to 
calculate a variance-based QI for all published long form estimates. 
 
This paper summarizes the development of a replication variance estimator that uses few 
replicates to be integrated to the existing dissemination systems. The selection of the 
replication method to be used with the 2016 Census long form data is based on the results 
of a Monte Carlo simulation study based on a pseudo population constructed from the 2006 
Census long form responses. Section 2 describes the methodological challenges faced in 
the development of a variance estimator. Section 3 gives an overview of a few replication 
methods. Section 4 describes the various components of the analysis including the Monte 
Carlo simulation setup, the two contending replication methods, the weight calibration 
strategy and various statistics used in the Monte Carlo study. Section 5 gives the results of 
the study and a conclusion is given in Section 6. 

 
2. Challenges in developing a variance estimation methodology 

 
Developing a variance estimator meeting all of Statistics Canada’s needs is a challenge. 
Firstly, millions of estimates are produced by Statistics Canada from the Canadian Census 
long form data using the dissemination system of the census. They cover various topics 
and geographies. In addition, analysts having access to the Census long form microdata 
files can also calculate their own estimates using data analysis software. The variance 
estimation methodology needs to cover both situations. Secondly, in order to inform users 
of data quality in a timely manner, the Census long form variance estimates should be 
calculated promptly. To achieve this, and because of the great volume of variance estimates 
that needs to be calculated and delivered, the variance estimation methodology needs to be 
integrated into the existing dissemination systems. Thirdly, point estimates released for the 
Canadian Census long form consist of totals, means, ratios and percentiles. Other types of 
point estimates may also be calculated from the various microdata files. The chosen method 
will thus have to produce good quality indicators for linear and non-linear as well as smooth 
and non-smooth point estimates. In other words it should be versatile. Finally and most 
importantly, the design weights go through a series of adjustments before they are used for 
estimation. These adjustments, which consist of a total nonresponse adjustment and a 
calibration to known totals, need to be taken into account when calculating the variance 
estimates.  
 
Classic Taylor linearization, which was used in previous cycles, requires that the estimator 
be linearized. This is not possible with non-smooth estimators such as medians. 
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Furthermore, the linearization method is too complex to be implemented within the 
dissemination systems. To address the various challenges, replication methods that use a 
small number of replicates were considered to estimate the variance of the Census long 
form estimates. Each method considered has its own weaknesses and strengths in terms of 
convergence, bias and versatility for instance. The number of replicates was set to 16 in 
the first steps of development, but was later increased to 32 to insure a minimum stability 
of the variance estimator. 

 
3. Overview of various replication methods 

 
The first method studied in the development process was the variance estimation method 
of the long form public-use microdata files, namely the Dependent Random Group (DRG) 
method, see for instance Wolter (1985, or the 2007 reedition). The DRG method consists 
of partitioning the observed sample, often referred to as the parent sample, into R disjoint 
random groups or replicates using the same sample design as the one used for the parent 
sample. The main advantage of the method is its implementation simplicity. Variance 
estimation of both smooth and non-smooth estimators can also be undertaken. A 
disadvantage is that one has to make a compromise between stability of the variance 
estimator, which is a function of the number of groups, and desirable asymptotic properties 
of replicate estimators (Wolter, 1985, page 23, or the 2007 reedition, page 25), which is a 
function of the size of each group. Favouring stability (i.e. numerous small size groups) 
might generate problems with some types of estimators, for example when, for a given 
replicate, a ratio estimate has no unit contributing to the denominator. Calibration of the 
replicates may also be affected by small replicate sizes when the calibration method is 
intricate or tight, meaning that it uses many calibration constraints on a limited number of 
responding units. This might result in either an artificial increase of the replicate weight 
variances or the inability to replicate the calibration performed on the parent sample. To 
circumvent this problem, Särndal et al. (1992, page 430) propose to repeat T times the DRG 
method using a small number of replicates and then to average the T variance estimates to 
obtain the final variance estimate. The resulting estimate would be more stable and would 
have a smaller bias under tight calibration. The approach was studied with 16 replicates. 
To form the replicates with the largest group size possible, the DRG method was repeated 
eight times using two groups. However, even with this variant, it was not always feasible 
to perform estimation and calibration on the replicates. Furthermore, the method does not 
achieve the precision of other replication methods using the same number of replicates. 
 
Repeating the DRG method many times with two large replicates led us to consider the 
Balanced Repeated Replication (BRR) method, which also uses half-samples to form the 
replicates. The balancing property ensures that the variance estimator corresponds to the 
variance estimator one would obtain if all possible half-samples were used for variance 
estimation. As with the DRG method, the BRR method can estimate the variance of both 
smooth and non-smooth estimators. Estimation and calibration on the replicates can still 
be problematic however since the replicates do not contain all of the sampled units. Another 
weakness of the method is that the number of replicates needed is close to the number of 
first-phase strata. This makes the method impractical when the number of first-phase strata 
is very large, such as in the Census long form. To reduce the number of replicates, a 
Partially Balanced Repeated Replication method (PBRR) was considered. The PBRR 
balances the replicates within groups of first-phase strata rather than across the sample. 
 
The problem with the replication of ratio estimates and calibration of the replicate weights 
was solved by using the modified BRR method also known as the BRR-epsilon or Fay’s 
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BRR as described in Rao and Shao (1999). With the BRR-epsilon method, a factor 
perturbing value –epsilon– is introduced in the definition of the replicate weights in order 
to have replicate weights closer to the design weights. The replicate weights of the BRR-
epsilon take the values  1 kd  or  1 kd , 0 1  , instead of 0 or 2 kd  as with the 
classic BRR. With the introduction of an epsilon in the replicate weights, the entire sample 
contributes to each replicate. This may facilitate replicate estimation and calibration. It also 
allows the inclusion of a finite population correction factor inside the epsilon to reduce the 
biases caused by the large sampling fraction of the Census long form survey, as will be 
described in Section 4.3.1. The BRR-epsilon method and the PBRR method were combined 
to produce the first contender, the PBRR-epsilon. 
 
A variant of the Jackknife method was considered as a second contender for variance 
estimation. The customary delete-one Jackknife method as described in Wolter (1985, or 
the 2007 reedition) was not considered since it does not properly estimate the variance of 
non-smooth estimators due to the lack of variation between the replicate estimates. Instead 
the delete-a-group variation of the Jackknife, DAGJK, defined by Kott (2001), was 
examined. With the DAGJK method, a random group of units is removed from the parent 
sample to form each replicate. The method can estimate the variance of non-smooth 
estimators provided that the size, d, of the group removed is large enough and that the set 
of replicates corresponds to a random sample taken from all possible groups of size 
 n d  taken from the parent sample of size n. More specifically, the size of the group, d, 

should satisfy the relation n d n   to ensure convergence of the variance estimator for 
non-smooth estimators, see Efron and Tibshirani (1993). Problems may again occur with 
the replication of some ratio estimators and tight calibration since the replicates do not 
contain all the sampled units. As with the PBRR-epsilon, an epsilon was introduced in the 
creation of the replicate weights in order to include all sampled units in each replicate and 
to correct for the large sampling fraction, as will be described in Section 4.3.2. 
 

4. Analysis setup 
 
4.1 Monte Carlo simulation 
The PBRR-epsilon approach and the DAGJK-epsilon approach were compared through a 
Monte Carlo simulation. 
 
4.1.1 Monte Carlo population 
The 2016 Monte Carlo study on variance estimation was initiated before the 2016 survey 
was made mandatory. The study was based on the Monte Carlo simulation done in 2006 to 
estimate the bias of the variance estimators, see Benjamin (2008) for more details. For 
simplicity the same simulation was used. It is based on a pseudo population created from 
the 2006 Census long form responses. The set of responses represents close to 20% of the 
population because of the 20% sampling rate and the high response rate to the Census long 
form. To create the pseudo population, 12 Census Divisions, CDs, have been selected 
across the country based on size and operational considerations. Canada is comprised of 
approximately 300 CDs and the median size of each CD is about 38,000 people. Within 
each selected CD, pseudo weighting areas, WAs, were formed by combining the WAs in 
homogeneous groups of five to create pseudo WAs. The pseudo WA is thus representative 
of the Canadian population in a WA. The WA is the level of geography at which calibration 
was performed in 2006. It contains between 1,000 and 3,000 households and is formed of 
approximately eight dissemination areas, DAs. Similarly, DAs were also combined in 
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groups of five to create pseudo DAs. Then, one pseudo WA was randomly selected by CD. 
Hence the pseudo population consists of the 12 selected pseudo WAs for a total of 20,259 
households. In the rest of the paper, the pseudo population, the pseudo WA and the pseudo 
DA will be referred to as the population, the WA and the DA. 
 
4.1.2 Monte Carlo samples and design weights 
The Monte Carlo simulation uses 500 samples. Each sample is created by selecting a 
stratified simple random sample of households by DA without replacement from the 
population using a sampling fraction of one-fifth (Benjamin, 2008). Each sample has 4,089 
households which represents approximatively one-fifth of the population since the size of 
a stratum is not always a multiple of five. Even though the survey’s design is stratified 
systematic, generating simple random samples in the simulation is justified because each 
stratum is relatively small and homogeneous. Sampling for the Monte Carlo simulation is 
illustrated in Figure 1. 
 

 
Figure 1: Monte Carlo simulation setup 
 
4.2 Calibration 
Initial design weights are calculated for each sample which are then calibrated to match 
population totals. The current calibration strategy has two steps. The first step consists of 
selecting the calibration constraints to be used out of a pre-defined set of potential 
constraints. Constraint selection is performed independently once for each WA and once 
for all WAs combined. Selection also does not depend on the selected sample. One of the 
reasons for the constraint selection process is to avoid direct or indirect calibration on 
constraints targeting too few households, called small constraints. The small constraints 
are first identified by comparing the number of households in the population having the 
characteristic of the constraint to a pre-set threshold. Once a constraint has been identified 
as small, it cannot be used as a calibration constraint. A forward selection process is then 
used to add the remaining calibration constraints one at a time, starting with these two 
which are mandatory: total number of households and total number of persons in the 
geography. At each step of the process, potential constraints are evaluated one by one and 
they get discarded when: 1) they are judged to be too collinear with the selected set of 
constraints; or 2) they would cause implicit calibration to any small constraints if they were 
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added to the selected set. Among the evaluated constraints, the one that splits best the 
population of the geography in two equal parts is chosen. The second step is calibration 
per se to known totals based on the chosen constraints. Calibration is performed on all 
selected constraints at once. The constraint totals are derived from the Canadian census 
variables and from administrative data linked to the census records. In the long form survey 
these variables are known for the entire population, whereas in the simulation even the 
variables of interest of the survey are known for the entire population. Calibration variables 
are referred to as “2A” variables since the long form was called the 2A form in 2006. 
Conversely variables coming from the Census long form sample only are referred to as 
“2B” variables. Characteristics under study in the simulation are derived from both sets of 
variables. 
 
4.3 Contending Replication methods 
This section presents in more details the final two replication methods studied to estimate 
the variances of the Census long form estimates. 
 
4.3.1 Partially Balanced Repeated Replication – epsilon (PBRR-epsilon) 
The first contender for variance estimation is the Partially Balanced Repeated Replication 
method described in Section 3, in which the replicates are balanced within groups of two 
strata. The goal was to create 15 substrata of two or more sampled households for each 
stratum and hence obtain 30 substrata by pair of strata. This is rather straightforward for 
strata with 30 or more sampled households: households are sorted randomly and are 
distributed consecutively to each substratum. For strata with fewer than 30 sampled 
households, only 2hn    substrata having at least two sampled households were 

generated. If hn  is odd, the last sampled household is randomly assigned to one of the 
existing 2hn    substrata. Finally, households within each substratum were divided into 
two clusters. The SAS procedure PROC SURVEYMEANS was used to generate the 32 
BRR replicates by pair of strata. The procedure uses a 32 by 32 Hadamard matrix to 
determine the clusters that will compose each replicate. The BRR replicates of each pair of 
strata form the PBRR replicates. This is illustrated in Figure 2. 
 

 
Figure 2: Creation process of the PBRR replicates 
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Once the replicates are formed, the replicate weights are calculated. The general PBRR-
epsilon weights are given by: 
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where ( )rs  is the rth replicate subsample and r = 1, …,32. 
 
Because the sizes of the two clusters within a substratum are not always equal, the replicate 
weights were first adjusted as described in Rao and Shao (1999) for the case where the 
number of PSUs is larger than two in some strata. If 
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where  ( ) ( ) ( )RA
i i i i

r r r
h h h hn n n  , ( )rs  is the rth replicate subsample and r = 1, …,32. The 

large sampling fraction was corrected by adding a finite population correction factor, 1 ,f  
to the definition of the epsilon value. One has to be careful in the selection of the epsilon. 
On the one hand, a value close to 1 gives results similar to those of the original PBRR 
method and hence introduces a lot of fluctuation in the replicate weights. On the other hand, 
a value close to 0 gives results similar to the Taylor linearization or the delete-one-
Jackknife, which are superior to the BRR for smooth estimators but are not appropriate for 
non-smooth estimators (Rao & Shao, 1999). Based on simulations, Judkins (1996) suggests 
that an epsilon value close to one-half is a good compromise if one needs to estimate the 
variance of various estimators. Different values of epsilon were studied and this paper 
presents only the results obtained with the most promising value which is:

 1 2k kf   , where 1k kf d . Finally, the replicates were calibrated using the same 
calibration strategy as the one used for the full Monte Carlo sample. Only variance 
estimates of totals were studied in the Monte Carlo simulation. The PBRR-epsilon variance 
estimator is given by: 
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rg  is the calibration factor of the rth replicate. Note that the squared 
term in the denominator of the variance estimator would normally be equal to epsilon 
squared. A modified version of the epsilon was used in the denominator in order to make 
the finite population correction effective in the variance estimator. 
 
4.3.2 Delete-a-group-Jackknife-epsilon (DAGJK-epsilon) 
To obtain a DAGJK-epsilon variance estimator with 32 replicates, the average of two 
DAGJK-epsilon variance estimators with 16 replicates was used. Firstly, the two 
independent sets of 16 replicates were created by dividing the households of the parent 
sample into two independent sets of 16 DRGs. Secondly, the replicate subsamples, ( )rs , 
were constructed by removing each DRG from the parent sample. This is illustrated in 
Figure 3. 
  

 
Figure 3: Creation process of the DAGJK replicates 
 
For negligible sampling fractions, Kott (2001) defines the DAGJK weights of the rth 
replicate as: 
 
  ( ) ( )RA I DRGr r

k h k rd d k    , 
 
where ( ) ( )RA r r
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hn  is the number of units 

in stratum h but not in DRG r and .k s  To correct for the large sampling fraction and to 
ensure that all households contribute to every replicate, an epsilon was added to the 
definition of the replicate weights. The final weights are defined as follows: 
 

   ( ) ( )1 RA I DRG 1r r
k k k h rd d k     

  , 
 
where 1k kf   , 1k kf d , 1,...,16r   and k s . Finally, each replicate was calibrated 
to the totals of the population. Since only totals where studied in the Monte Carlo 
simulation, the variance estimator of the DAGJK-epsilon method is: 
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4.4 Statistics under study 
Many statistics are studied in the Monte Carlo simulation. They are used to compare the 
two contending replication methods. 
 
4.4.1 Targeted statistics based on the Monte Carlo samples estimates 
The calibrated estimated totals, MCˆ i

YT , and their expectations, are given by: 
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The targeted variance and coefficient of variation are approximated by: 
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In the rest of the paper, the Monte Carlo estimates obtained will be considered the real 

values. Hence      MC MC MC
ˆ ˆ ˆ ˆE ,Var andCVY Y YT T T

 

will be referred to as

     ˆ ˆ ˆE ,Var andCVY Y YT T T .  
 
4.4.2. Estimated statistics based on the replication methods 
For each Monte Carlo sample, the replicate estimates and the corresponding estimated 
variances are calculated as defined in Section 4.3. From these statistics, the expected 
estimated variance and coefficient of variation of the point estimate are approximated by 
the following formulas: 
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and  
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Then, the variance of the variance estimator and the coefficient of variation of the variance 
estimator are calculated as follows: 
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The above statistics are used to estimate the biases of the variance estimator and the 
coefficient of variation through: 
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In addition, the bias estimates are approximately normally distributed because of the central 

limit theorem. Let 
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5. Results 

 
To evaluate the performance of both the PBRR-epsilon and the DAGJK-epsilon methods, 
the bias and the stability of the variance estimates were compared for the two types of 
characteristic. Section 5.1 looks at the bias while Section 5.2 looks at the stability of the 
variance estimates. 
 
5.1 Comparison of the PBRR-epsilon and the DAGJK-epsilon variance 

estimators  
Figure 4 compares the expected estimated CV,  ˆCV YT



, to the target CV,  ˆCV YT , by 
method and by type of variable, 2A and 2B. The figure shows the CVs for population totals 
of 100 or more. The thick blue lines correspond to the regression lines through the origin 
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and the thin red lines correspond to Y=X. The figure shows a consistent overestimation of 

 ˆCV YT


 for the DAGJK method. The overestimation is not seen with the PBRR-epsilon 
method. All variants of the DAGJK-epsilon studied also overestimated the variances. Table 
1 gives the regression slopes by method and by type of variable. It puts in number the 
overestimation of the DAGJK-epsilon method seen on Figure 4. The regression slopes are 
four hundredth point lower for the PBRR-epsilon than the DAGJK-epsilon for both types 
of characteristics. The overestimation is also slightly larger for 2A variables. 
 

 
Figure 4: Graph of  ˆCV YT



 (%) against  ˆCV YT  (%) and the regression line by method 
and by type of characteristic where population totals are greater or equal to 100 
 

Table 1: Estimated regression slopes for    ˆˆ ˆCV CV ,Y YT T


   
where the population totals are greater or equal to 100 

 

Variable Method 
Number of 

observations 
Regression  

slope 
2A PBRR-epsilon 1243 1.00 
 DAGJK-epsilon 1243 1.04 
2B PBRR-epsilon 2564 0.99 
  DAGJK-epsilon 2564 1.03 

 
Figure 5 again shows the slight overestimation of the expected estimated CVs for the 
DAGJK-epsilon method. Confidence intervals for the bias of the CV, as defined by 

Equation (2), can indicate the quality of the expected estimated CV,  ˆCV YT


. Because of 
the central limit theorem, one would expect 95% of the intervals to contain the value 0. 
Table 2 shows that the PBRR-epsilon method surpasses the DAGJK-epsilon method in 
terms of bias of the variance estimator because the coverage rate is closer to 95% for each 
type of characteristic and more so for the 2B characteristics. 
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Figure 5: Graph of  ˆB CV YT

  
  

 against the number of households in the population 

having the characteristic by method and by type of characteristic where population totals 
are greater or equal to 100 
 

Table 2: Percentage of confidence intervals for the bias of the CVs that contain 0, 
where population totals are greater or equal to 100 

 

Variables Method 
Number of 
observations 

% of the C.I. that 
includes 0 

2A PBRR-epsilon 1243 83.75 
 DAGJK-epsilon 1243 70.47 
2B PBRR-epsilon 2564 92.75 
 DAGJK-epsilon 2564 83.31 

 
5.2 Comparison of the stability of both variance estimators 
Another way of studying the quality of the variance estimator is to look its variance. Figure 
6 shows the expected estimated CV of the variance estimates against the expected 
estimated CV of the point estimates. The horizontal line is set at 33.3%. 
 
The figure shows that the variances of the variance estimates inflate when the expected 
variance estimates are small. The increase in the variances of the variance estimates is not 

as strong for large expected variance estimates. For small  ˆCV YT


, the large 

 MC ˆVar Var YT
  

  
 are not too much of a concern since the confidence intervals for 

 ˆVar YT


 are short. The figure also shows that the expected variances of the estimated 
variances are mostly under the reference line when the expected variances of the point 
estimates are within a certain interval.  
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Figure 6:  ˆCV Var YT

  
  

 (%) against  ˆCV YT


 (%) by method and by type of 

characteristic, where population totals are greater or equal to 100 
 

 
Figure 7:  ˆCV Var YT

  
  

 (%) against the Monte Carlo average number of households with 

the characteristic by method and type of characteristic 
 
Figure 7 presents the Monte Carlo CV estimates of the variance estimates with respect to 
the average number of households having a given characteristic in the parent sample. The 
graphs were produced in order to identify the minimal number of households needed for a 
given characteristic to ensure that the variance estimator had a CV in percent smaller or 
equal to 33.3%. Asymptotes can be seen on the figure, especially with the 2B 
characteristics. These occur when the number of households having the characteristic 
corresponds to almost all the households of a given WA in the sample. Each WA thus has 
its own asymptote. These cases correspond to the largest CVs of the variance estimates of 
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Figure 6 and, as mentioned above, they are not viewed as problematic. From these results, 
the minimum number of households necessary to obtain a coefficient of variation of the 
variance estimates smaller than 33.3% was derived. More specifically, local regressions 
were done for each of the 4 combinations of variance estimation methods and types of 
characteristic, excluding the data points of the asymptotes. The minimum number of 
households necessary to produce a CV below 33.3% with the PBRR-epsilon method are 
36 and 30 for the 2A variables and the 2B variables respectively. The numbers obtained 
with the DAGJK-epsilon method are 37 and 29 for the 2A variables and the 2B variables 
respectively. 
 

6. Conclusion 
 

The regression slopes of  ˆCV YT


 against  ˆCV YT  by method and type of characteristic 
show that the PBRR-epsilon produces variance estimates very close to the real variances 
while the DAGJK-epsilon tends to overestimate the variances. Also, a higher percentage 
of the 95% confidence intervals for the bias of the estimated CVs includes the value 0 with 
the PBRR-epsilon method than with the DAGJK-epsilon method. Both the PBRR-epsilon 
method and the DAGJK-epsilon method require a similar number of households having 
the characteristic to ensure that the estimated CV of the variance estimator is below 33.3%. 
For 2A variables, the minimum number of households obtained with the PBRR-epsilon 
method is 36 while it is 37 with the DAGJK-epsilon method. For 2B variables the minimum 
number of households obtained with the PBRR-epsilon method is 30 and 29 with the 
DAGJK-epsilon method. Based on the results of the study, the PBRR-epsilon method has 
been chosen to estimate the variances of the Census long form estimates. The feasibility of 
using 100 replicates to further increase the stability of the PBRR-epsilon variance estimator 
is now being assessed. 
 
Throughout our study, the impact of different calibration strategies on variance estimation 
has in fact been evaluated. This paper does not show the results obtained with the different 
strategies but they can be summarized by the following statements: 
 The calibration strategy affects the quality of the variance estimator; 
 In order to reduce the bias of the variance estimator it is important to keep the number 

of calibration constraints under a certain threshold. Statistics Canada’s Advisory 
Committee on Statistical Methods suggested using as a rule of thumb for a given 
calibration geography no more calibration constraints than the square root of the 
number of responses; and 

 It is important to have a fixed set of calibration constraints for the sample and all 
replicates to stabilize the variance estimator. Standard variance estimation methods are 
not designed to take into account the variability introduced by randomly selecting the 
calibration constraints based on the sample. 
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