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Abstract

We review some recent constructions of time-dependent random probability measures of Gibbs type

which exhibit diffusive behaviour. The characterization of the dynamics of the type frequencies, and

those of the type heterogeneity in the underlying population, also known as alpha diversity, allows

for a qualitative classification of these models according to whether the heterogeneity is driven by

state-dependent quantities and whether the frequencies dynamics are directly affected by the overall

heterogeneity.
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1. Introduction

Gibbs-type priors, introduced in Gnedin and Pitman (2005), represent a large class of dis-

crete random probability measures whose laws act as nonparametric priors for Bayesian

inference. They can be characterized in terms of the predictive distributions on the observ-

ables they induce (see Lijoi, Mena and Prünster (2007a,b)). These are of the form

P
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)
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with α < 1 and (X∗
1 , . . . ,X

∗
k) denoting the k ≤ n distinct values observed in the sample

(X1, . . . ,Xn), each X∗
i having multiplicity ni. Moreover, the set of non–negative weights

{Vn,k : n ≥ 1, 1 ≤ k ≤ n} satisfies the forward recursive equation

Vn,k = (n− αk)Vn+1,k + Vn+1,k+1 (2)

for any k = 1, . . . , n and n ≥ 1, with V1,1 = 1. Assuming P ∗ is a non–atomic probability

measure on some space X, a natural interpretation for (1) is that Vn+1,k+1/Vn,k is the prob-

ability of observing a new distinct value not included in the sample X1, . . . ,Xn, whereas

the second summand describes the probability of observing a replicate of an already seen

value. Relevant special cases of the above predictive structure include the Pitman–Yor

process (Pitman and Yor, 1997), for which
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the Dirichlet process (Ferguson, 1973), obtained by setting α = 0 in (3); the normalized

generalized gamma processes (Lijoi, Mena and Prünster, 2007a), which arises by setting
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for β > 0 and Γ(a, b) being the incomplete gamma function; and the normalized inverse-

Gaussian process (Lijoi, Mena and Prünster, 2005), recovered by setting α = 1/2 in (4).

Applications of Gibbs-type priors include mixture modeling (Ishwaran and James, 2001;

Lijoi, Mena and Prünster, 2007a), linguistics and information retrieval (Teh and Jordan,

2010), species sampling (Lijoi, Mena and Prünster, 2007b), Lijoi, Mena and Prünster

(2007c), Navarrete, Quintana and Müller (2008) and survival analysis Jara et al. (2010),

among others.

Here we discuss some recent extensions of Gibbs-type random probability measures to

time-dependent models. A recent strand of literature on Bayesian nonparametric dependent

processes in this framework has been initiated by the proposal of the dependent Dirichlet

process in MacEachern (1999, 2000), a family of random probability measures indexed by

a covariate, whereby the observations are exchangeable only conditionally on the covariate

value. See Hjort, Holmes, Müller and Walker (2010) and Müller and Mitra (2013) for a re-

cent account on the state of the art on this line of research. In the Dirichlet case, a consider-

able research production has been favored by the availability of the so-called stick-breaking

representation, due to Sethuraman (1994), which has proven to be a valuable and versatile

instrument from a practical point of view. Stick-breaking representations are also available

for the Pitman–Yor process (Pitman, 1995), for the normalized generalized gamma pro-

cess with a completely explicit representation for the normalized inverse-Gaussian process

(Favaro, Lijoi and Prünster, 2012), and for homogeneous normalized random measures

with independent increments (Favaro et al., 2016).

In the following we review some recent results on certain classes of temporally de-

pendent Gibbs-type random probability measures. Such constructions are based on first

principles, without relying on stick-breaking representations by means of which one can

impose virtually any dynamic feature, but will rather be defined in terms of interaction of

the underlying vector of observables. This is somehow similar in spirit to the recent random

measure approaches to the definition and study of dependent nonparametric priors in Li-

joi, Nipoti and Prünster (2014); Camerlenghi et al. (2016). In order to obtain well-defined

scaling limits, in the sense explained below, for the dynamics of the frequencies, one must

condition on a latent environment for dynamic random measures of Gibbs-type which are

not in the Dirichlet or Pitman–Yor classes. Such constructions have a somewhat direct in-

terpretation in population genetics, but can also be of interest for Bayesian nonparametric

inference in a framework of partial exchangeability.

2. Dynamic models for Gibbs-type priors

2.1 A general updating scheme

We concentrate on the case of Gibbs-type random probability measures with parameter

0 ≤ α < 1, assumed to hold throughout. A simple and general recipe for generating

discrete time dynamics for an arbitrary, but fixed, number of observations X1, . . . ,Xn can

be obtained by exploiting the predictive scheme (1). Given the state X1, . . . ,Xn at time t,
remove a uniformly chosen element, Xi say, and sample a replacement X ′

i from

P(X ′
i ∈ · |X1, . . . ,Xi−1,Xi+1, . . . ,Xn) (5)

=
Vn,k(−i)+1

Vn−1,k(−i)

P ∗(·) +
Vn,k(−i)

Vn−1,k(−i)

k(−i)
∑

j=1

(nj − α) δX∗
j
(·).

Here k(−i) is the number of distinct observations in the sample after removing Xi. By ex-

changeability, it can be easily seen that the resulting vector X1, . . . ,Xi−1,X
′
i,Xi+1,
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. . . ,Xn at time t + 1 has the same marginal distribution as the starting one. The iter-

ation of the above scheme generates a discrete time Markov chain on X
n, denoted as

X(n)(·) := {X(n)(m) : m ∈ N}, whose marginals states are samples from a Gibbs-

type random probability measure. This can also be seen as obtained by performing a

random scan Gibbs sampler on X1, . . . ,Xn, with (5) taking the role of the full condi-

tional distribution, which immediately implies stationarity and reversibility of the Markov

chain. This strategy has been exploited in Ruggiero and Walker (2009a,b); Favaro, Rug-

giero and Walker (2009) for constructing infinite-dimensional dynamic processes associ-

ated with Dirichlet and Poisson–Dirichlet related random probability measures. For exam-

ple in Ruggiero and Walker (2009b), the chain X(n)(·) is embedded in continuous time

by superimposing it to a Poisson process of intensity λn, which governs the n-dependent

exponentially distributed time laps between successive updates of the chain.

An interesting question is which requirements are needed in order to yield asymptot-

ically continuous trajectories for the dynamics of the frequencies of types induced by the

above scheme applied to a certain Gibbs-type random random probability measure. These

are of extreme interest in population genetics, where it is fundamental to approximate in-

tractable dynamic objects with diffusions (see, e.g., Etheridge, 2009). In Bayesian non-

parametric inference such objects can be seen as describing a dependent family of random

probability measures with continuous trajectories which are useful in a framework of par-

tial exchangeability with data collected at (non necessarily equally spaced) discrete time

points; see, e.g., Mena, Ruggiero and Walker (2011); Mena and Ruggiero (2016).

Let pi(t) be the [0, 1]-valued process which describes the evolution of the frequency of

the i-th observed distinct type, induced asymptotically, as n → ∞, by the scheme outlined

above. The task is then to derive infinitesimal dynamics such that the time-dependent vector

of frequencies p(t) = (p1(t), p2(t), . . .) has coordinatewise continuous trajectories and the

Gibbs-type law is preserved at the margin, for any t. Being able to characterize such an ob-

ject allows, by the simple association of iid locations Yi ∼ P ∗ to the frequencies, to provide

a time-dependent extension of a discrete random probability measure to a dynamic model

with continuous sample-paths. How to characterize such behaviour depends on the ana-

lytical tractability of the weights Vn,k and poses some challenging technical issues. In the

following we summarize results contained in Ethier and Kurtz (1981); Petrov (2009); Rug-

giero, Walker and Favaro (2013); Ruggiero (2014); Ruggiero and Sordello (2016) which

can be interpreted under this framework.

2.2 Clustering dynamics

Before presenting the results on the frequencies dynamics, we discuss some aspects of

what can be called the clustering dynamics, or the dynamic alpha diversity associated to

the systems considered.

A structurally relevant quantity for Gibbs-type random probability measures is the

asymptotic behaviour of the number of distinct types observed in the sample generated by

(1) as the sample size n increases. Let this quantity be Kn, and define the alpha diversity

of the model as the random variable S on (0,∞) such that

lim
n→∞

Kn

nα
= S a.s.; (6)

cf. Pitman (2006), Definition 3.10. This implicitly characterizes the heterogeneity in the

population, if we interpret the observed random variables as species. A dynamic extension

of (6) turns out to be crucial for characterizing the asymptotic dynamics of the frequen-

cies induced via (5), since it carries up-to-date information on the species heterogeneity in

the population and characterizes the environment in which the population evolves. In the
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Figure 1: Some approximate sample paths of (7) with n = 500 and for values θ = .1 (left) and θ = 1

(right), and α = 0.1 (black), 0.5 (red), 0.9 (green). As this is an approximation with finite n, for

some parameter values the trajectory can touch the boundary n1−α.

Dirichlet case (α = 0), the meaningful equivalent of (6) is given by the fact that Kn/ log n
converges to a constant (Korwar and Hollander, 1973).

In the dynamic case, one can derive an inhomogeneous Markov chain Kn(m) on the

integers for the number of distinct types, and study the asymptotic behaviour of this in terms

of scaling limits, or from a different viewpoint in terms of weak convergence of the induced

probability measures on the space of sample paths. In the Dirichlet case it is easy to show

that the dynamic version Kn(m)/ log n converges to a constant process. A consequence

is that the asymptotic result for the frequencies dynamics is parametrized by this constant

limit but the dynamics can be described independently of the current heterogeneity in the

population, which is somehow degenerate. In order to be consistent with the notation of

the next section, we will denote by p0 the appropriately rescaled limit of Kn, and by p0(t)
its dynamic counterpart.

Consider the Pitman–Yor case and rescale the space of the Markov chain Kn(m) by nα

and time by n1+α yielding the continuous–time process {Kn(⌊n
1+αt⌋)/nα}t≥0, where ⌊·⌋

denotes the floor function. One may prove that the distributional limit of such a process is

a well defined diffusion on R
+, which is the solution of

dp0(t) = θdt+
√

2αp0(t)dB(t), p0(t) ≥ 0, (7)

where B(t) is a standard Brownian motion. The interpretation of a trajectory of such

processes is that in the periods of time when p0(t) is relatively high, there is a relatively

high number of small clusters in the population, and viceversa. Note however that the height

of the path depends on the parameter values, as for example α close to 1 will produce paths

near the origin even when Kn is close to n. Figure 1 shows some approximate sample paths

of (7), for different values of α and θ.

A similar space-time transformation for Kn(m) yields a different scaling limit in the

normalized generalized gamma case. Specifically, we have

dp0(t) = (β/p
1/α
0 )dt+

√

2αp0(t)dB(t), p0(t) ≥ 0, (8)

with β > 0 as in (4). This has been recently shown in Ruggiero and Sordello (2016) (and

supersedes Theorem 4.1 in Ruggiero, Walker and Favaro, 2013).

Note that the volatility is lower in correspondence of low values of the process and vice

versa, as implied by the diffusion coefficient in (7) and (8). Furthermore, the origin acts as

an entrance boundary, meaning that the process never reaches zero (except if it is made to
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Figure 2: Some approximate sample paths of (8) with n = 500 and for values β = 1 (left) and β = 10

(right), and α = 0.1 (green), 0.5 (red), 0.9 (black).

start from there). This is due to the fact that when p0(t) approaches zero, the volatility also

drops to zero, and the positive drift pushes the process back towards the interior of the state

space. Figure 2 shows some approximate sample path examples of (8) for different values

of α and β.

2.3 Frequencies dynamics

Let now p(·) = {pi(t) : i ∈ Z+, t ≥ 0} denote the infinite vector of dynamic asymptotic

frequencies obtained according to the scheme of Section 2.1 under appropriate transforma-

tions. We will now denote by (ai,j(p))i,j≥0 the infinitesimal covariances between the ith
and jth coordinates of p, and by (bi(p))i≥0 the associated infinitesimal means of the ith
coordinate. Index by h = 1, 2, 3 the Dirichlet related model, the Pitman–Yor related model

and the normalized inverse-Gaussian related model, respectively, that is the dynamic mod-

els derived as described in Section 2.1 when using the relative urn scheme (5) for updating

the vector. Then the above quantities equal

a
(h)
ij (p) :=











2αp0, i = j = 0,

pi(δij − pj), i, j ≥ 1,

0, else,

, b
(h)
i (p) := −[b

(h)
0 (p)pi + α], i ≥ 1.

(9)

for all h, where δij = 1 if i = j and 0 otherwise, and

b
(h)
0 (p) =







0, h = 1,
θ, h = 2,

β/p
1/α
0 , h = 3.

The three models presented above are based on decreasingly ordered Dirichlet, Pitman–

Yor and normalized inverse-Gaussian sample frequencies. It is important to emphasize

that the identification of the frequencies dynamics in the ordered case is also sufficient

for characterizing the temporal model associated to each of the three mentioned random

probability measures. This is due to the invariance under size–biased permutation of Gibbs-

type priors.

The above coefficients characterize an infinite dimensional stochastic differential equa-

tion that describes the dynamics of infinitely-many frequencies, indexed by i ≥ 1, and a

positive component, indexed by i = 0. The frequencies are the relative abundances of
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the different species in a large population which marginally is of the specified Gibbs type,

whereas the 0th coordinate is the dynamic alpha diversity described in Section 2.2 for each

case. The state space of the joint processes is [0,∞)×∇∞, where [0,∞) is the state space

of the dynamic heterogeneity and the vector of frequencies takes values in

∇∞ =
{

p = (p1, p2, . . .) : p1 ≥ p2 ≥ . . . ≥ 0,
∑∞

i=1
pi ≤ 1

}

;

(vectors summing to less than one are included for technical reasons omitted here; see,

e.g., Costantini et al., 2016). In the first model (h = 1) the dynamic heterogeneity is trivial

since α = 0; cf. the Dirichlet case in Section 2.2. In the second model (h = 2), the

diversity process provides insight into the model properties in terms of how the population

heterogeneity evolves, but acts independently of the frequencies. In the third model (h =
3), all components must be considered jointly as the frequencies dynamics depend on the

current value of the diversity process.

For what concerns the coefficient describing the frequencies dynamics, the first model

identifies the infinitesimal dynamics which preserve the marginal distributions of the Dirich-

let weights, as follows:

- the expected increment or drift of the ith component pi(t) equals −θpi,

- the variance of the ith component equals pi(1− pi),

- the covariance between ith and jth component equals −pipj .

The covariance structure is reminiscent of a multinomial sampling scheme, which is in-

deed at the base of Wright–Fisher type constructions of such models from finitely-many

components with finitely-many species. See Ethier and Kurtz (1981). The interpretation of

the parameter θ in the drift is not very dissimilar from that of the Dirichlet process: in this

setting it regulates how often (in time, instead of along the sampling sequence) new species

or types appear in the population. In mathematical biology θ is interpreted as overall muta-

tion rate, that is the rate at which mutation events occur in the population, and the negative

sign of the drift reflects the fact that mutations of individuals of type i to some other type

decrease the frequency pi.
The second model, associated to the Pitman–Yor process, is analogous to the Dirichlet

process case except for the drift, which is −(θpi + α). Here the additional parameter α
introduces a further negative effect on the expected increment of each frequency. This is

related to the reinforcement effect of α in the generalized Pólya urn scheme for Gibbs-type

models. See De Blasi et al. (2015) for details. In mathematical biology the interpretation of

α in this model is to a certain extent still unclear, but some recent insight into this problem

has been provided by Costantini et al. (2016).

A distinctive feature of the third model, associated to normalized inverse-Gaussian pro-

cesses with parameter (β, 1/2), is the dependence of the ith component’s drift on the com-

ponent p0, since it coincides with −[(β/p20)pi + 1/2]. Although it appears as structurally

analogous to the previous cases, here the role of the alpha diversity is crucial, since p0(t)
is itself a diffusion which drives the time-dependent overall mutation rate θ(t) := β/p20(t).

2.4 Concluding remarks

The summarized results expose a structural difference between the first two and the third

model. In the Dirichlet and Pitman–Yor related models, the (time-dependent) distributional

properties of the distinct number of components do not directly affect the mutation rate of

the population, which is instead the case in the normalized inverse-Gaussian related model.

In the latter case the chances single individuals have to mutate vary over time, creating

a randomly changing environment to which the population evolution is subject to. This
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suggests the following qualitative classification of the three models, according to the role

of the dynamic heterogeneity:

- Dirichlet related diffusion: heterogeneity driven by constant quantities, frequencies dy-

namics not directly affected by the heterogeneity;

- Pitman–Yor related diffusion: heterogeneity driven by state-dependent quantities, fre-

quencies dynamics not directly affected by the heterogeneity;

- normalized inverse-Gaussian related diffusion: heterogeneity driven by state-dependent

quantities, frequencies dynamics directly affected by the heterogeneity.

The normalized generalized gamma case has not been included in the above classification

nor in (9), as to the present date only the dynamics for the alpha diversity have been char-

acterized. Given that normalized inverse-Gaussian models are included in the normalized

generalized gamma class, it is however reasonable to conjecture that the structure of the

problem is also the same in the dynamic case, which would yield dynamics for p0 as in (8)

and for the frequencies as in (9), analogously to the case h = 3, but for general α ∈ (0, 1).
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